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Introduction
Detecting confounding is an important part of research. 

Uncontrolled confounding can cause spurious, magnified, or 
minimized results and can produce effect sizes comparable to those 
observed in epidemiologic studies. Confounding is defined as the 
mixing of effects between an exposure, an outcome, and a third 
extraneous variable, known as a confounder [1-3]. Three standards 
are often used to describe confounder variables: (1) Confounders must 
be associated with the exposure of interest, (2) confounders must be 
associated with the outcome of interest, and (3) confounders must not 
lie on the causal pathway between the exposure and outcome [1,2]. In 
other words, a confounder must be a separate and distinct trait that is 
associated with, but not affected by, the exposure and the outcome of 
interest. 

Causal pathway models and Directed Acyclic Graphs (DAG) 
are graphical displays that can be used to describe and illustrate 
relationships between variables, including confounding [4], as shown 
in Figure 1. Arrows indicate associations between variables with the 
direction illustrating the causal direction. As there is no path that can 
be traced from exposure to outcome through, the confounder does 
not fall on the pathway between E and Y. DAGs are useful tools to 
describe associations between variables without the need for regression 
assumptions. When qualitative associations between variables are 
unknown, DAGs are limited in requiring associations to be stated a 
priori and are therefore not appropriate for model building scenarios 
[4,5].

Determining the Probability Distribution and Evaluating Sensitivity and 
False Positive Rate of a Confounder Detection Method Applied To Logistic 
Regression

Abstract
Background: In epidemiologic studies researchers are often interested in detecting confounding (when a third 

variable is both associated with and affects associations between the outcome and predictors). Confounder detection 
methods often compare regression coefficients obtained from “crude” models that exclude the possible confounder(s) 
and “adjusted” models that include the variable(s). One such method compares the relative difference in effect estimates 
to a cutoff of 10% with differences of at least 10% providing evidence of confounding. 

Methods: In this study we derive the asymptotic distribution of the relative change in effect statistic applied to 
logistic regression and evaluate the sensitivity and false positive rate of the 10% cutoff method using the asymptotic 
distribution. We then verify the results using simulated data.

Results: When applied to a logistic regression models with a dichotomous outcome, exposure, and possible 
confounder, we found the 10% cutoff method to have an asymptotic lognormal distribution. For sample sizes of at least 
300 the authors found that when confounding existed, over 80% of models had >10% changes in odds ratios. When the 
confounder was not associated with the outcome, the false positive rate increased as the strength of the association 
between the predictor and confounder increased. When the confounder and predictor were independent of one another, 
false positives were rare (most  < 10%).

Conclusions: Researchers must be aware of high false positive rates when applying change in estimate confounder 
detection methods to data where the exposure is associated with possible confounder variables.

In practice, it is difficult to determine whether a variable will be 
a confounder in the population of interest. Data driven confounder 
detection methods often examine “crude” and “adjusted” estimates of 
effect size in samples drawn from the population [1,6-8]. One popular 
method is to evaluate the magnitude of confounding by examining the 
relative change in estimated effect size before and after adjusting for the 
possible confounder. The difference in effect size is divided by the crude 
effect estimate, providing the magnitude of the difference, relative to 
the unadjusted effect size. If the relative difference is “large” (i.e., > 
10%) [2,6,8], investigators conclude that there is confounding [1,6-8]. 
When researchers detect confounding of the association between the 
exposure and outcome using this “change in estimate” approach, the 
model adjusted for the confounder is generally preferred [1,6-8].

Maldonado and Greenland (1993) applied crude and adjusted 
regression models to simulated data. They selected the preferable 
model based on the results of several confounder detection methods 
by evaluating the estimated effect size, the average relative bias, the 
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the estimate obtained from the selected model compared to the model 
underlying the simulated data. The authors focused their evaluation on 
the precision of estimates produced from single realizations of data. 
While their results reflect the precision of estimates as the confounder 
detection methods are applied in practice, Maldonado and Greenland 
did not evaluate whether the correct model was selected given the 
simulation parameters [6]. It is important to evaluate the sensitivity 
and false positive rate (1-specificity) of confounding detection methods 
to better understand the method reliability in providing accurate 
information under a variety of scenarios.

As data driven methods generally rely on some change statistic, it 
is reasonable to assume that the sensitivity and false positive rate of the 
detection method rely on the probability distribution of the statistic. A 
better understanding of this distribution may provide inference on the 
strengths and limitations of such confounder detection methods. To 
our knowledge, no studies have examined the probability distribution 
of the relative change in estimate statistic, how frequently the adjusted 
model is selected when confounding is present (sensitivity) or how 
often it is falsely detected when confounding is absent (false positive 
rate; 1-specificity). In this study, we derive the probability distribution 
of a 10% change in odds ratios rule for logistic regression results and use 
synthetic data to compare simulated results to derived results. Under 
a variety of scenarios we determine how often we expect to correctly 
detect confounding and how often we misclassify a change in estimated 
effect size observed by chance as confounding.

Derivation of Probability Distribution of the Change in 
Estimate Statistic

Suppose that we have an observable, dichotomous outcome, Y, 
such that Y~ Binomial(p) . If Y depends on two observable variables, E 
and C, the true association between Y, E, and C can be expressed as a 
function of the parameter p:

0 1 2
plog E C

1 p
 

= β +β +β − 
                (1)

We can represent the effect estimates of E and C as odds ratios, 
computed as exp(β1) and exp(β2). After observing Y, E, and C we may 
be interested in finding estimates for coefficients β0, β1, and β2 to better 
understand the associations between the variables. While no closed-
form solution exists in general, maximum likelihood estimates for 
coefficients β0, β1, and β2 can be found using the Newton-Raphson 
Algorithm. As a result, the estimates 0β̂ , 1̂β , and 2β̂  have asymptotic 
normal distributions.

In practice, we may wish to determine whether the variable C is a 
confounder. To do this, we can compare two nested logistic regression 
models: equation 2 including variable E as the sole predictor variable 
and equation 3 including both E and C
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Note that if C is a confounder of the association between Y and E 
then we expect 1 1θ ≠ γ  and can look for evidence of confounding by 
evaluating the relative difference between effect size estimates. When 
using logistic regression, we typically compare the relative difference 
between odds ratios: 
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We compare R to some predetermined cutoff, such as +/-0.10, to 
evaluate the likelihood of confounding.

We can find the probability density function of R to determine the 
probability of having evidence of confounding in a given scenario, i.e. 

( )P R c>  where C is some predetermined cutoff. R is a function of 
estimates 1θ̂  and 1γ̂ , computed using the observed values of Y, E, and C. 
Though the parameters they estimate may differ 1 1( )θ ≠ γ , the statistics 
are not independent and their correlation is nonzero. As 1θ̂  and 1γ̂  are 
asymptotically normal, it is straightforward to show that if ( )2
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. As a result, ( ) ( )2 2
1 1 1 1

ˆˆexp ~ LN , 2γ − θ γ − θ σ + τ − ρστ  [9], where LN is 

the lognormal distribution. We are interested in ( )P R c>  which can 
be re-expressed as follows:
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Using the cumulative density function of the lognormal 
distribution, this can be expressed as:
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For large sample sizes, we can use simulated data to obtain 
estimated (empirical) values for θ, γ, τ, σ, and ρ, and compute the 
expected probability of detecting confounding. 

Note that the derivation of the asymptotic distribution of   is 
independent of the distributions of the exposure and confounder 
variables and the derivation is true for continuous as well as categorical 
predictor variables. 

Simulated Data
Simulated data had a dichotomous outcome (Y), a dichotomous 

exposure (E), and a dichotomous third variable and possible 
confounder (C). Probability of exposure was range of effect sizes 
commonly observed in epidemiologic research. When the confounder  
C was present, the probability of the outcome was decreased by half, 
stayed the same, or was doubled: 
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( ) ( )P Y | C 1 kP Y= = (7)   for  k 0.5,1.0,2.0=

In scenarios where   did not affect the probability of disease (k = 1) 
no confounding was present. 

Associations between C and E were defined by a conditional 
probability.

( )
( )

P C | E 1 k
P C | E 0 1 k,k 0.25,0.50,0.67,0.75

= =

= = − =
                  (8)  

For example, when k 0.25= , one in four exposed observations had 
confounder trait C, while three of four unexposed observations had 
trait C. For k 0.50= , one in two observations had trait C and there was 
no association between C and the exposure variables. No confounding 
was present.

When there is no association between E and Y (odds ratio = 1.0), 
there cannot be confounding. While a change in the estimate after 
adjustment could be misclassified as confounding, this scenario is not 
evaluated in this study.

The underlying probability of Y for unexposed subjects without   

C was 10%. Sample sizes were 300, 1000 and 3000. For each set of 
parameters, 1000 datasets were simulated. 

Logistic regression models were applied to simulated data and 
estimated odds ratios and logodds were recorded for the crude model, 
predicting Y by E (equation 2), and for the adjusted model, which 
included the exposure E and the possible confounder C as independent 
variables (equation 3). All simulations and statistical analyses were 
performed using R version 2.11.1[10].

Detecting Confounding using Probability Distributions
For each set of simulation parameters, the mean and standard 

deviation of the logodds for the effect of exposure E were computed 
for the crude and adjusted models across the 1000 simulated datasets. 
We also computed the correlation between the crude and adjusted 
coefficients. Using the empirical estimates for θ and τ in the crude 
model, for γ and σ in the adjusted model, and for the correlation ρ, 
we computed the probability of  R  having a magnitude greater than 
10% based on the probability distribution derived above. We then 
determined the sensitivity for simulation scenarios where confounding 

Confounder
N = 300 N = 1000 N = 3000

P(Confounder|Exposure)† P(Confounder|Exposure)† P(Confounder|Exposure)†

OR* Effect^ 0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75
S FPR S S S FPR S S S FPR S S

0.5 P(Y)x0.5 0.8711 0.0447 0.8205 0.8893 0.9610 <0.0001 0.9253 0.9590 0.9985 <0.0001 0.9970 0.9983
0.5 P(Y)x1‡ 0.6817 0.0002 0.5124 0.6889 0.4468 <0.0001 0.2303 0.4774 0.2109 <0.0001 0.0354 0.2155
0.5 P(Y)x2 0.9264 0.0488 0.8843 0.9157 0.9947 0.0002 0.9828 0.9944 >0.9999 <0.0001 0.9999 >0.9999
2 P(Y)x0.5 0.9096 0.0611 0.8798 0.9143 0.9887 0.0002 0.9840 0.9921 >0.9999 <0.0001 0.9999 >0.9999
2 P(Y)x1‡ 0.6196 <0.0001 0.4035 0.6100 0.3672 <0.0001 0.1299 0.3394 0.0983 <0.0001 0.0067 0.1045
2 P(Y)x2 0.9779 0.1160 0.9375 0.9698 0.9999 0.0090 0.9987 0.9998 >0.9999 <0.0001 >0.9999 >0.9999
3 P(Y)x0.5 0.9257 0.0797 0.9075 0.9468 0.9953 0.0028 0.9952 0.9966 >0.9999 <0.0001 >0.9999 >0.9999
3 P(Y)x1‡ 0.6049 <0.0001 0.4039 0.5845 0.2984 <0.0001 0.1085 0.3257 0.0745 <0.0001 0.0040 0.0930
3 P(Y)x2 0.9886 0.3127 0.9681 0.9915 >0.9999 0.1518 0.9999 >0.9999 >0.9999 0.0223 >0.9999 >0.9999

*OR is the odds ratio between exposure and outcome.
^Confounder Effect is the influence of the presence of the confounder variable on the outcome. The confounder halves the probability of the outcome (P(Y)x0.5), has no 
effect on the outcome (P(Y)x1), or doubles the probability of the outcome (P(Y)x2).
†P(Confounder|Exposure) is the association between the possible confounder and exposure variable. The probability of the confounder among exposed subjects is 0.25, 
0.50, 0.67, or 0.75. The probability of confounder among unexposed subjects is 0.75, 0.50, 0.33, and 0.25, respectively.
‡Row displays False Positive Rate as there is no association between possible confounder and outcome, Y, and therefore no confounding. 

Table 1: Sensitivity and False Positive Rate of 10% Change in Odds Ratio Rule Using Lognormal Probability Distribution (P(Exposure)=0.50)

Confounder
N = 300 N = 1000 N = 3000

P(Confounder|Exposure)† P(Confounder|Exposure)† P(Confounder|Exposure)†

OR* Effect^
0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75

S FPR S S S FPR S S S FPR S S
0.5 P(Y)x0.5 0.869 0.061 0.821 0.899 0.961 <0.001 0.926 0.955 0.999 <0.001 0.999 0.999
0.5 P(Y)x1‡ 0.686 0.010 0.487 0.690 0.452 <0.001 0.224 0.479 0.219 <0.001 0.034 0.218
0.5 P(Y)x2 0.938 0.057 0.901 0.927 0.994 0.002 0.989 0.995 >0.999 <0.001 >0.999 >0.999
2 P(Y)x0.5 0.922 0.075 0.882 0.914 0.993 0.003 0.995 0.991 >0.999 <0.001 >0.999 >0.999
2 P(Y)x1‡ 0.630 0.004 0.404 0.590 0.350 <0.001 0.123 0.324 0.101 <0.001 0.007 0.095
2 P(Y)x2 0.985 0.113 0.955 0.973 >0.999 0.021 0.998 >0.999 >0.999 <0.001 >0.999 >0.999
3 P(Y)x0.5 0.936 0.084 0.914 0.951 0.997 0.006 0.999 0.998 >0.999 <0.001 >0.999 >0.999
3 P(Y)x1‡ 0.590 0.003 0.380 0.580 0.288 <0.001 0.114 0.324 0.074 <0.001 0.004 0.090
3 P(Y)x2 0.996 0.267 0.978 0.994 >0.999 0.150 >0.999 >0.999 >0.999 0.030 >0.999 >0.999

*OR is the odds ratio between exposure and outcome.
^Confounder Effect is the influence of the presence of the confounder variable on the outcome. The confounder halves the probability of the outcome (P(Y)x0.5), has no 
effect on the outcome (P(Y)x1), or doubles the probability of the outcome (P(Y)x2).
†P(Confounder|Exposure) is the association between the possible confounder and exposure variable. The probability of the confounder among exposed subjects is 0.25, 
0.50, 0.67, or 0.75. The probability of confounder among unexposed subjects is 0.75, 0.50, 0.33, and 0.25, respectively.
‡Row displays False Positive Rate as there is no association between possible confounder and outcome, Y, and therefore no confounding. 

Table 2: Sensitivity and False Positive Rate of 10% Change in Odds Ratio Rule From Simulated Data (P(Exposure)=0.50).
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truly existed and the false positive rates for scenarios where confounding 
did not exist. 

Detecting Confounding using Simulated Data
The relative change in estimate statistic R was computed using the 

odds ratios for crude and adjusted models applied to each simulated 
dataset. Confounding was defined as a change from the crude to 
the adjusted odds ratio with magnitude exceeding /+ −  10%. We 
determined the observed sensitivity and false positive rates for the 
simulation scenarios.

Results
Table 1 displays the derived sensitivity and false positive rates 

for a probability of exposure of 50%. Table 2 contains corresponding 
sensitivity and false positive rate estimates from simulated data. 
Similarly, Tables 3 and 4 display the computed and simulated sensitivity 
and false positive rates, respectively, for a 5% probability of exposure.

Across odds ratios between Y and E with 50% exposure, stronger 
associations between E and C corresponded to increased sensitivity. 

For example, for an odds ratio of 3.0 and a sample size of 300, when  
C doubled the probability of disease and the probability of C was 0.67 
among exposed subjects, the sensitivity computed using the lognormal 
distribution (equation 6) was 0.9681. This is compared to a sensitivity 
of 0.9915 when the probability of C was 0.75 among exposed subjects. 
For the same two scenarios, 978 and 994 of the 1000 simulated datasets 
respectively, had relative differences of the crude and adjusted effect 
sizes that exceeded 10% (sensitivity of 0.978 and 0.994). 

Sensitivity was higher when the probability of Y was doubled in 
the presence of the confounder than when the probability of Y was 
reduced by half. The sensitivity for detecting confounding was roughly 
symmetric for inverse associations between E and C (i.e. the probability 
of C was 0.75 vs. 0.25 among exposed subjects; Table 1, 2).

When C did not impact the probability of disease but was associated 
with the exposure variable, the false positive rates were substantially 
larger for reduced sample sizes (Figure 2). False positive rates were at 
least 40% for a sample size of 300, at least 10% for a sample size of 1000, 
and at least 0.4% for a sample size of 3000 (Table 1). In all scenarios, 
the false positive rate when C was not associated with exposure E 

Confounder
N = 300 N = 1000 N = 3000

P(Confounder|Exposure)† P(Confounder|Exposure)† P(Confounder|Exposure)†

OR* Effect^
0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75

S FPR S S S FPR S S S FPR S S
0.5 P(Y)x0.5 0.8590 0.4761 0.8700 0.9003 0.9690 0.0964 0.9273 0.9653 0.9998 0.0036 0.9928 0.9992
0.5 P(Y)x1‡ 0.7003 0.0593 0.5154 0.7009 0.4074 <0.0001 0.1945 0.4278 0.1363 <0.0001 0.0206 0.1429
0.5 P(Y)x2 0.9220 0.4261 0.8329 0.9283 0.9922 0.1388 0.9712 0.9977 >0.9999 0.0190 0.9995 >0.9999
2 P(Y)x0.5 0.8606 0.4779 0.8392 0.9177 0.9784 0.1022 0.93 0.9661 0.9998 0.0055 0.9951 0.9991
2 P(Y)x1‡ 0.7059 0.0724 0.5096 0.6681 0.4099 <0.0001 0.2005 0.4069 0.1363 <0.0001 0.0136 0.1498
2 P(Y)x2 0.9370 0.4857 0.8189 0.9235 0.9946 0.2147 0.9585 0.9978 >0.9999 0.0694 0.9991 >0.9999
3 P(Y)x0.5 0.8705 0.6537 0.8700 0.9048 0.9569 0.0672 0.8843 0.9493 0.9997 0.0014 0.9921 0.9984
3 P(Y)x1‡ 0.6974 0.2368 0.5431 0.6908 0.4399 <0.0001 0.1899 0.4173 0.1625 <0.0001 0.0237 0.1798
3 P(Y)x2 0.9093 0.5116 0.8327 0.9128 0.9923 0.1261 0.9660 0.9975 >0.9999 0.0038 0.9998 >0.9999

*OR is the odds ratio between exposure and outcome.
^Confounder Effect is the influence of the presence of the confounder variable on the outcome. The confounder halves the probability of the outcome (P(Y)x0.5), has no 
effect on the outcome (P(Y)x1), or doubles the probability of the outcome (P(Y)x2).
†P(Confounder|Exposure) is the association between the possible confounder and exposure variable. The probability of the confounder among exposed subjects is 0.25, 
0.50, 0.67, or 0.75. The probability of confounder among unexposed subjects is 0.75, 0.50, 0.33, and 0.25, respectively.
‡Row displays False Positive Rate as there is no association between possible confounder and outcome, Y, and therefore no confounding. 

Table 3: Sensitivity and False Positive Rate of 10% Change in Odds Ratio Rule Using Lognormal Probability Distribution (P(Exposure)=0.05).

Confounder
N = 300 N = 1000 N = 3000

P(Confounder|Exposure)† P(Confounder|Exposure)† P(Confounder|Exposure)†

OR* Effect^
0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75 0.25 0.50 0.67 0.75

S FPR S S S FPR S S S FPR S S
0.5 P(Y)x0.5 0.880 0.327 0.787 0.866 0.972 0.061 0.939 0.974 >0.999 0.003 0.998 >0.999
0.5 P(Y)x1‡ 0.672 0.093 0.459 0.655 0.398 0.002 0.177 0.396 0.167 <0.001 0.029 0.183
0.5 P(Y)x2 0.948 0.327 0.858 0.916 >0.999 0.087 0.986 >0.999 >0.999 0.003 >0.999 >0.999
2 P(Y)x0.5 0.872 0.316 0.804 0.910 0.964 0.093 0.952 0.975 >0.999 0.008 0.999 >0.999
2 P(Y)x1‡ 0.637 0.061 0.405 0.632 0.406 <0.001 0.184 0.410 0.129 <0.001 0.017 0.144
2 P(Y)x2 0.954 0.334 0.838 0.942 0.998 0.132 0.983 0.999 >0.999 0.023 >0.999 >0.999
3 P(Y)x0.5 0.872 0.312 0.826 0.866 0.983 0.109 0.962 0.986 0.999 0.014 0.999 >0.999
3 P(Y)x1‡ 0.659 0.074 0.445 0.622 0.375 0.001 0.177 0.385 0.140 <0.001 0.013 0.163
3 P(Y)x2 0.949 0.400 0.815 0.939 >0.999 0.192 0.975 >0.999 >0.999 0.071 >0.999 >0.999

* OR is the odds ratio between exposure and outcome.
^ Confounder Effect is the influence of the presence of the confounder variable on the outcome. The confounder halves the probability of the outcome (P(Y)x0.5), has no 
effect on the outcome (P(Y)x1), or doubles the probability of the outcome (P(Y)x2).
† P(Confounder|Exposure) is the association between the possible confounder and exposure variable. The probability of the confounder among exposed subjects is 0.25, 
0.50, 0.67, or 0.75. The probability of confounder among unexposed subjects is 0.75, 0.50, 0.33, and 0.25, respectively.
‡ Row displays False Positive Rate as there is no association between possible confounder and outcome, Y, and therefore no confounding. 

Table 4: Sensitivity and False Positive Rate of 10% Change in Odds Ratio Rule From Simulated Data (P(Exposure)=0.05).
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was similar to or smaller than the false positive rate for C having no 
association with the outcome. For large sample sizes, when C was not 
associated with exposure E, the false positive rates approached zero 
(Table 1, 2; Figure 2).

The sensitivity and false positive rate of the change in estimate 
method for detecting confounding derived from equation 6 were very 
similar to probabilities from simulated data. The largest difference 
observed had a magnitude of 0.05; however most differences were 
less than +/- 0.015 (Table 1-4). As derivations based on equation 6 are 
asymptotic in nature, increased sample sizes provided more similar 
sensitivity and false positive rates between the computed value from 
the lognormal distribution and the observed values from simulated 
data. 

Similar results were observed for a 5% probability of E with reduced 
sensitivity and increased false positive rates, particularly for a sample 
size of 300 (Table 3, 4). 

Discussion
Across the examined sample sizes and strengths of associations 

between confounders, exposures, and outcomes, the change in estimate 
confounding detection method, applied with a 10% cutoff, had high 
sensitivity. The method had low false positive rates when there was no 
association between the exposure and third extraneous variable. False 
positives were more common when the exposure and third variable 
were associated but there was no association between the third variable 
and outcome (Figure 2). The inflated false positive rate may be due 
to the strong association between the exposure and the third variable 
resulting in an apparent weak association between the third variable 
and the outcome. As a result, the third variable contributes similar 
information about the outcome as the exposure and the regression 
coefficient for the exposure variable may be affected. When the 
exposure and third variable are independent they contribute different 
information about the outcome and the crude and adjusted regression 
coefficients are similar. 

The results presented from this study are for a logistic regression 
with a single exposure and possible confounder variable. Despite 
this, the mathematical derivation of the lognormal distribution can 
be similarly applied to other generalized linear models and we would 
expect similar results. We have not examined the implications of 

these results in the context of time to event analysis, Cox proportional 
hazard models, or semi- and nonparametric analyses. In this study 
we considered a dichotomous exposure and confounder. Results do 
not rely on the distribution of either variable and similar results are 
expected for continuous, nominal, and ordinal predictor variables. We 
examined the implications of a 10% rule for confounder detection. 
Similar discussions can be made for a 15% or 20% cutoff which 
provide lower sensitivity and higher specificity than those observed 
here. Of note, in these scenarios we would expect the same patterns of 
increased false positive rates when the outcome is not associated with 
the third variable regardless of the cutoff percentage. While we have 
not examined all scenarios, we believe that the presence of additional 
covariates, confounders, and interactions in regression models would 
not affect the results of the confounder detection methods examined 
in this study.

For linear regression, it is straightforward to show that the 
comparable statistic for the relative difference in parameter estimates 
can be expressed as the ratio of two correlated normally distributed 
random variables. Determining the sensitivity and false positive rates in 
this setting are left for future research. Further research is also required 
to understand the implications of false positive and false negative 
confounding results with survival analysis, semi-, and nonparametric 
regression methods.

While investigators often assume that a change in effect size in 
a single realization of data indicates confounding [3,11], crude and 
adjusted effect sizes may differ for other reasons. Noncollapsibility is 
when effect measures change upon stratification of the covariate [1-3]. 
It can occur when the third variable is affected by the exposure, and, 
therefore, does not meet the definition of a confounder. The result can 

C = Confounder
E = Exposure
Y = Outcome

C

E Y

Figure 1: Causal Diagram of a Single Confounder
Figure 1 displays a causal diagram where there is one outcome (Y), one 
exposure variable (E), and one confounder (C).
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Figure 2: False Positive Rates of Contrasting Scenarios, Odds Ratio Between 
Exposure and Outcome=2.0, Derived From Lognormal Distribution
Figure 2 illustrates the false positive rates (1-specificity) of two contrasting 
scenarios, each with an odds ratio between exposure (E) and outcome (Y) of 
2.0. In the first scenario there is no association between Y and third variable 
(C) but there is an association between E and C. Exposed subjects have 
twice the probability of trait C as unexposed subjects. (Line CY is missing in 
Figure 1.) In the second scenario there is no association between E and C  
but trait C doubles the probability of outcome Y. (Line EC is missing in Figure 
1.) All probabilities are derived from the lognormal distribution using empirical 
estimates from simulated data for parameter values. 
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be large changes between crude and adjusted models that are not due 
to confounding [3]. 

The effect measure (i.e., risk ratios, odds ratios, logodds, etc.) 
compared will affect the distribution of the change in effect size 
statistic and the results of the comparison [7]. For example, simulated 
data with 1000 observations, a dichotomous predictor, an odds ratio of 
2.0, a probability of confounder of 0.75 among exposed subjects, and a 
doubling of the probability of disease when the confounder is present 
had an unadjusted odds ratio, log odds and risk ratio of 1.641, 0.495, 
and 1.076, respectively. The adjusted model had an odds ratio, log odds 
and risk ratio of 1.994, 0.696 and 1.101, respectively corresponding to 
a 22.2%, 40.5% or 2.3% change. As a result, the conclusion of whether 
confounding exists would depend on the effect measure selected.

It is possible for a variable to satisfy all three criteria of being a 
confounder (see Figure 1) while not meeting the definition of a 
confounder. For example, a dichotomous variable may have opposing 
directions of association with the outcome and exposure variable, 
thereby canceling the effect. In this circumstance, the variable is 
associated with both the exposure and the outcome and does not lie in 
the causal pathway; however it may have no effect on the association 
between the exposure and outcome [7]. The third variable would not 
be classified as a confounder by definition or by a change in estimate 
method, though it does meet all three standards. 

It is important to identify and control for confounder variables 
to better understand the underlying relationships between predictors 
and outcomes. Unmeasured confounding alone can cause effect sizes 
of magnitudes commonly observed in epidemiologic studies [12]; 
however the expansion of models to include additional variables is 
not without cost. In this study, we found that when the exposure and 
possible confounder were associated with one another but the possible 
confounder was not associated with the outcome, false positives where 
the change in estimate had magnitude of at least 10% were often 
observed. This rate was magnified for smaller sample sizes. A practical 
implication of this is when investigators performing randomized 
clinical trials compare the experimental and control treatment arms at 
baseline. The groups may differ on some underlying characteristic and 
it is standard practice to control for variables associated with treatment 
group [1]. The result is the misclassification of confounding, the 
selection of models with more predictor terms than needed, with fewer 
available degrees of freedom, and with inflated confidence intervals for 
the exposure of interest. Such misclassification is more problematic 
with small sample sizes where less precision and fewer degrees of 
freedom are available. For small or moderate sample sizes, in a single 
realization of data, investigators will have an increased probability of 
false positives and may include variables in regression models that 
are, in truth, unnecessary and may alter the association observed; 
conclusions made, and reduce the precision of estimated effects when 
compared to population parameters [2,6,7].

Conclusions
Comparing the relative change in estimated odds ratios between 

crude and adjusted logistic regression models provides a simple, 
readily available and easily applicable confounder detection method for 
statistical and epidemiological applications. Such methods have high 
sensitivity and low false positive rates when there are true associations 
between the outcome and exposure and the outcome and possible 

confounder, regardless of sample size or the association between the 
exposure and confounder. Higher false positive rates are expected 
when the outcome is not associated with the third variable, particularly 
for small or moderate sample sizes. 

Researchers must be aware of possible false positives when 
applying change in estimate methods. When evaluating confounding 
in studies with fewer than 1000 subjects, we recommend evaluating the 
association between the outcome and possible confounder variable as 
well as the change in estimated odds ratios. While the examination of 
the magnitude of effect size change should not be used as the only source 
of information when selecting possible confounders and building 
models for analysis, when used in conjuncture with other information, 
change in estimate methods may provide useful information to identify 
confounders, build parsimonious models, and better understand 
associations between outcomes and exposures.
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