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Introduction grid, they introduce new challenges due to their variable and often low-inertia
nature. These changes require updated models and more sophisticated
methods for computing the network's equilibrium point. With the increasing
complexity of modern grids, which now include advanced control systems and
decentralized generation, real-time monitoring of the system’s behavior is
becoming more critical. The use of Wide-Area Monitoring Systems (WAMS),
which employ Phasor Measurement Units (PMUs) for real-time data collection,
aids in the identification of disturbances and the prediction of system behavior
[3]. 

   These systems can compare real-time measurements with predicted
equilibrium points to determine if emergency actions, such as load shedding or
generation tripping, are required. Additionally, the emergence of smart grids
and the integration of distributed energy resources make it even more important
to have accurate methods for computing the network’s equilibrium post-fault.
Faster, more efficient algorithms are essential to handle the rapid dynamics of
modern power systems, especially in cases where fault clearing happens within
milliseconds. Transient stability studies often begin with a pre-fault steady-state
analysis, which determines the system's operating point under normal,
undisturbed conditions. During this phase, power flow equations are solved to
determine the voltage levels at each node in the grid, the power generation and
consumption balance, and the mechanical and electrical power generated by
synchronous machines. However, when a fault occurs such as a short circuit or
a transmission line failure the system is disturbed from its equilibrium point. The
electrical system follows a dynamic response dictated by the network
configuration and the physical properties of the generators, loads, and other
components. The network topology changes during the fault, and once the fault
is cleared, the system must recover to a new steady-state equilibrium. To
compute this new equilibrium, the generator dynamics must be taken into
account. The dynamic behavior of synchronous machines is governed by the
swing equations, which describe how the rotor angles and speeds evolve over
time in response to changes in mechanical input (generated by the turbines)
and electrical output (generated by the power network). These equations are
second-order nonlinear differential equations, making them challenging to solve
directly. However, they provide critical insights into how each generator
responds to changes in the network and how the entire system might behave
under various disturbances [4].

    One of the central contributions of this paper is to show how the EDAM can
be applied to a range of generalized Klein–Gordon equations that include
higher-order terms or interaction potentials. These more complex models allow
for a richer set of solitonic solutions, including multi-kink configurations, which
are of particular interest in high-energy physics and cosmology. The study of
multi-kink solitons is important for understanding more complex systems that
involve multiple fields or interactions, such as those seen in models of the early
universe or in non-abelian gauge theories. Furthermore, the EDAM allows us to
explore the stability of kink solutions by analyzing their behavior under small
perturbations. This is particularly significant in the context of field theories,
where solitons often represent stable structures that can interact with other
fields or particles, and the stability of these configurations is paramount to their
physical relevance. The advantages of the EDAM are not limited to its ability to
generate exact solutions; the method also facilitates a deeper understanding of
the qualitative behavior of solitons in nonlinear field equations. Through 

   In modern power systems, ensuring that the system remains stable under
both normal and disturbed conditions is critical, especially considering the
increasing complexity of interconnected grids and the integration of renewable
energy sources. One of the fundamental aspects of power system security is
transient stability, which refers to the system's ability to maintain synchronism
after a significant disturbance, such as a short circuit or line failure. The
equilibrium point of the network, particularly at the fault clearing instant, plays a
crucial role in determining whether the system will return to a stable operating
state or experience undesirable oscillations that could lead to instability.
Accurately computing this equilibrium point is essential in transient stability
studies, as it provides a reference for evaluating the system's behavior post-
fault. The moment a fault is cleared when protective devices disconnect the
faulted component the system enters a new operating state, and understanding
this transition is critical for system protection, dynamic control, and real-time
stability monitoring [1].

Description
    The equilibrium point of a power system is defined as the operating condition
where all dynamic and algebraic variables in the system remain constant over
time, assuming no further disturbances. When a fault occurs, the system is
disturbed from its equilibrium point, and during the fault period, the system
follows a transient path. Upon fault clearing, the network’s topology and
dynamics change, and the system begins to evolve toward a new equilibrium.
Computing this equilibrium involves solving the network's power flow equations,
which are influenced by the new post-fault network configuration. In this stage,
both the electrical behavior of the network and the dynamics of generators and
controllers must be considered. Traditionally, engineers rely on numerical
methods, such as Newton-Raphson iteration and Runge-Kutta integration, to
solve these equations for the post-fault condition. These techniques, while
effective, can be computationally expensive, particularly for large-scale power
systems. However, they are essential for modeling the system’s behavior
accurately and predicting whether it will return to a stable state or experience
oscillations that could lead to cascading failures [2]. 

   An essential part of this process is the analysis of generator dynamics, which
are described by swing equations that model the angular displacement and
speed of synchronous machines. These swing equations, along with the
algebraic equations for the power system’s network, must be solved
simultaneously to determine the system’s new equilibrium. Moreover, post-fault
stability is not solely determined by the network's configuration; the system's
inertia, which is influenced by both conventional synchronous machines and
modern inverter-based sources, plays a significant role in stabilizing the system.
As renewable energy sources particularly solar and wind are integrated into the
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    In conclusion, computing the network's equilibrium point at the fault clearing
instant is a critical component of transient stability studies and has profound
implications for power system operation, protection, and resilience. Accurate
determination of this equilibrium point allows system operators to predict the
system’s response to disturbances, assess its stability, and implement
corrective measures if necessary. With the rise of renewable energy sources,
distributed generation, and advanced grid technologies, the need for precise
and efficient methods to compute equilibrium points is more pressing than ever.
Traditional methods, while effective, face challenges in large, complex
networks, especially in real-time applications. As the field progresses, there is
an increasing reliance on computational advancements, such as machine
learning, to enhance the accuracy and speed of these calculations. By
improving the understanding and computation of equilibrium points, power
systems can be better equipped to handle disturbances, ensuring a stable and
reliable supply of electricity. As power grids become more interconnected and
variable, the ability to predict and manage transient stability will be an essential
part of safeguarding the grid against large-scale failures and ensuring long-term
reliability.
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https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4117135/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4117135/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4117135/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.sciencedirect.com/science/article/pii/S0142961219304624
https://www.sciencedirect.com/science/article/pii/S0142961219304624
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.mdpi.com/1099-4300/20/9/670
https://www.mdpi.com/1099-4300/20/9/670
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.mdpi.com/1424-8220/21/5/1910
https://www.mdpi.com/1424-8220/21/5/1910
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.sciencedirect.com/science/article/pii/S0025556499000309
https://www.sciencedirect.com/science/article/pii/S0025556499000309
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/
https://www.ams.org/tran/0000-000-00/S0002-9947-2017-06795-7/

