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Introduction
Atmospheric aerosols interact with water vapour which is one 

of the central issues of current research in atmospheric and climate. 
The atmospheric RH in equilibrium with the aqueous solutions 
of atmospheric aerosols at a given temperature depends on the 
hygroscopic nature of the solutes, their compositions, concentrations 
and the effective sizes of these aerosols [1]. The effect of aerosols on the 
atmosphere climate and public health also among the central topics in 
current environmental research.

Aerosols particle scatter and absorb solar and terrestrial radiation 
and also involved in the formation of clouds and precipitation as cloud 
condensation nuclei (CCN). The efficiency of particles as CCN also 
affects both aerosol particle and cloud droplet lifetimes [2]. It is well 
recognized that these effects represent one of the largest uncertainties 
in assessing the changes in radiative forcing from pre-industrial times 
to the present [3]. As such, understanding the hygroscopic properties 
of aerosols and the processes that govern cloud droplet activation are 
important. Kohler theory has been used to predict the CCN-activity of 
inorganic compounds for many years [1].

This paper focus on volume based hygroscopicity (kv) model were it 
is applied to the data extracted from optical properties of aerosols and 
clouds (OPAC) to determine the Kelvin radii and bulk hygroscopcity 
of the aerosols.

Methodology
Where water soluble components (WASO, consists of scattering 

aerosols), water insoluble (INSO), soot (SOOT) not soluble in water, 
ssam and sscm are Sea-salt accumulation and coarse modes particles 
that consist of the various kinds of salt contained in seawater [4-11]. 
The mitr are Mineral transported, is used to describe desert dust 
that is transported. The Mineral (nucleation mode) MINM, Mineral 
(accumulation mode) MIAM, and Mineral (coarse mode) MICM, 
are mineral aerosols or desert dusts that are produced in arid regions 
(Table 1) [12-26].

The kohler theory that will describe the equilibrium water vapor 
saturation ratio S is given by

w eS a k=                (1)

Where aw represent the water activity and ke is the Kelvin effect. The 
relationship between

Droplet radius and RH at equilibrium can also be given as:
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Where R is the universal gas constant and T is the temperature. 
According to ref. [13], eqn (2) can be written as:
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The aerosol’s hygroscopicity growth factor g(S), [13,14] is defined as:
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Where S can be set for eight values, substituting eqn (5) in to eqn 
(4) we get
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The first term on the RHS of eqn (6) is the Kelvin effect given as
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The Second term on the RHS of eqn (3.6) is the water activity given as:
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Abstract
In this study, a volume based hygroscopicity (kv) model was applied to the data obtained from Optical Properties 

of Aerosol and Clouds (OPAC), the properties obtained were the radii of arctic, continental clean, continental polluted, 
maritime clean, maritime polluted, Sahara and urban at eight relative humidity of 0%, 50%, 70%, 80%, 90%, 95%, 
98%, and 99%. The Kelvin radii (A) and bulk hygroscopicity (B) were determined using regression analysis, the result 
shows that B is more dominant than A for maritime clean and maritime polluted, also discovered that maritime clean 
and maritime polluted has higher value of kv while Saharan has lowest. We also discovered that R2 is greater than 90%, 
p-value and significance are less than 0.05, therefore the parameter kv is good for atmospheric modeling.
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Result and Discussion
From Table 2, we can observe that, based on the values of R2, 

the data fitted the equation very well and by looking at the table, we 
can observe that B is more dominant than A for maritime clean and 
maritime polluted due to their p-values and from the values of Kelvin 
radii, it observed that, only Saharan aerosols is negative which means 
that the Kelvin radii apart from positive (Figure 1 and Table 2) [26].

From Figure 1, It can be seen that volume based Kelvin effect on the 
Saharan, is linear and is while Urban, Continental polluted, continental 
clean are independent of RH and are greater than one. The Maritime 
polluted and Arctic have the same type of pattern, that is why they 
increase with the increase in RH and is more sensitive at higher RHs 
(90-99%). Lastly the Maritime clean is more sensitive to RH and is non-
linear (Table 3).

Table 3 show that, the data fitted the equation very excellent by 
considering the values of R2. By observing the result it can be seen that 
maritime clean and maritime polluted has high values of kv due to 
dominant of sea salt while it is moderate for arctic aerosols and is less 
for Saharan due to sufficient mineral at the region.

Figure 2 represents bulk hygroscopicity and Kelvin radii of the 
aerosols where it shows linearity for both bulk hygroscopicity and 
Kelvin radii except that of Sahara due to its compositions.

From Figure 3, it shows a linear relationship between bulk 
hygroscopicity and volume based Hygroscopiciciy where the 
continental average, continental clean, Sahara and urban falls between 
0-0.5, arctic falls between 1.5-2 and lastly maritime clean and maritime 
polluted falls between 2-2.5 (Figure 4).
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But atmospheric aerosols usually comprised mixtures of soluble 
components, therefore an effective hygroscopic growth factor of the 
mixture, geff (S) representative for the entire aerosols particle population 
is giving from the previous study as:
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The effective or volume equivalent radius of the mixture was 
determined using the relation
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Where xk denote the volume fractions, using the Zdanovskii-
Stokes-Robisnson relation (ZSR relation) [15-18].

For many components eqn (6) can be written to represent the 
property of the bulk components using eqns (9) and (10) as:
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By using regression analysis with SPSS 16, the constants A and B 
were determined.

Therefore eqn (7) can be written as
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The hygroscopicity parameter κv relates the volume of the dry 
aerosol particle (Vd) to the volume of water (Vw) and the activity of 
water (aw) in the aqueous droplet:

Model number Aerosols model types Aerosols 
components

Number concentrations (cm3) Rmin Rmax Sigma Rmod
(µm) (µm) σ (µm)

1 Arctic Inso 0.01 0.005 20 2.51 0.471
Waso 1,300.00 0.005 20 2.24 0.0212
Soot 5,300.00 0.005 20 2 0.0118
Ssam 1.9 0.005 20 2.03 0.209

2 Continental clean Waso 2,600.00 0.005 20 2.24 0.0212
Inso 0.15 0.005 20 2.51 0.471

3 Continental Polluted Inso 0.6 0.005 20 2.51 0.471
Waso 15,700.00 0.005 20 2.24 0.0212
Soot 34,300.00 0.005 20 2 0.0118

4 Desert Waso 2,000.00 2.24 0.0212 0.0212 0.005
Minm 269.5 1.95 0.07 0.07 0.005
Miam 30.5 2 0.39 0.39 0.005
Micm 0.142 2.15 1.9 1.9 0.005

5 Maritime Clean Waso 1,500.00 0.005 20 2.24 0.0212
Ssam 20 0.005 20 2.03 0.209
Sscm 0.0032 0.005 60 2.03 1.75

6 Maritime Polluted Waso 3,800.00 0.005 20 2.24 0.0212
Soot 5,180.00 0.005 20 2 0.0118
Ssam 20 0.005 20 2.03 0.209
Sscm 0.0032 0.005 60 2.03 1.75

7 Urban Waso 28,000.00 0.005 20 2.24 0.0212
Inso 1.5 0.005 20 2.51 0.471
Soot 130,000.00 0.005 20 2 0.0118

Table 1: The models extracted from OPAC at 0 RHs.
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From Figure 4, it can be seen that only Sahara aerosol has a 
good agreement between volumes based hygroscopicity and bulk 
hygroscopicity.

Conclusion
From the results obtained, we observed that bulk hygroscopicity 

(A) dominates the Kelvin radii (B) for maritime clean and maritime 
polluted and also as RH increase, the Kelvin effect increases. This 
implies that, they are more sensitive at deliquescence point (90-99%). 
By observing the volume based hygroscopicity parameter kv, it can be 
seen that, it has higher value for maritime clean and maritime polluted 
and less for Saharan and Figure 2 shows a good agreement between 
Kelvin radii and bulk hygroscopicity except for Saharan due to its 
compositions.
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Figure 1: A volume based Kelvin effect plotted against relative humidity using 
eqn (12).
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Figure 2: A plot of bulk hygroscopicity and Kelvin radii using eqn (11).
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Table 3: The results of volume based hygroscopicity using eqn (12). 0
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Figure 3: A plot of volume based and Kelvin radii for atmospheric aerosols.
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Figure 4: A plot of volume based and bulk hygroscopicity for atmospheric 
aerosols.
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