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Abstract
Aim: To explore adequate parameters for EMD of ABP signal; to determine the intrinsic characteristics of ABP 

waveform through the analysis of IMFs’ averaged period and its energy density; to examine the effect of different 
respiration patterns on IMFs extracted from ABP waveform by CEEMD.

Arterial blood pressure (ABP) reflects cardiac function, vessel compliance, and cardiorespiratory interaction and 
ABP analysis provides the estimators of this physiological information. But it is inconvenient for quantitative ABP 
assessment due to several influences, such as respiration. Recently, a novel adaptive method, called empirical 
mode decomposition (EMD), was proposed, and it was useful for non-stationary intrinsic characteristics extraction. 
Though some literatures examined that EMD helps for physiological signal analysis study, the method applied for ABP 
signal still needs further investigation. This study proposed a standard procedure of specific EMD for ABP intrinsic 
characterization during spontaneous breathing, 6-cycle breathing, and hyperventilation. The extracted components, 
called intrinsic mode functions (IMFs), were determined with the examined parameters, including ensemble number, 
added noise, and the stop criterion. The IMFs of ABP signal were categorized into five major intrinsic components, 
including the noise and irregular fluctuation (IMF1), beat-to-beat cardiac intervals (IMF2), characteristics of pressure 
waveform morphology (IMF3), base beat (IMF4), and respiratory related fluctuation (IMF5 and IMF6). 

The results showd that the characteristics of IMFs were quantified by averaged period and corresponding energy 
density with good reproducibility. The proposed algorithm produced meaningful IMFs representing the cardiac rhythm, 
intrinsic waveform mophology, and the intrinsic influence of respiration fluctuations. EMD helps for analyzing the 
underlying mechanisms of control processes, including cardiorespiratory coupling and interactions among organ 
systems at multiple time scales.
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Introduction
Arterial blood pressure (ABP) is one of the most important 

parameters of systemic circulation. ABP is principally determined by 
cardiac pumping function and resistance of peripheral vessels, which 
controlled by autonomic nerve system. Non-invasive ABP waveform 
has been used to estimate some physiological indices, such as cardiac 
output, peripheral resistance and arterial compliance [1,2]. The ABP 
waveform consists of the forward pressure wave generated by the 
heart and the backward reflection wave reflected back by the branches 
of vessels [2,3]. The velocity of the reflection pressure wave, which 
contributes to the morphology of ABP waveform, is an indicator of 
arterial compliance [1,2]. Analysis of morphologic indices of ABP 
waveform, such as systolic peaks, diastolic valleys, dicrotic notches, 
and augmented index, have been used to evaluate the activities of 
autonomic nerve system [4,5], arterial stiffness [2,3], cardiac function 
[6] and detection of cardiac arrhythmia [7]. However, most of these 
algorithms are only suitable for certain physiological states [8,9].

The ABP usually fluctuates in long-term monitoring. Respiratory 
movement causes the changes of ABP and corresponding changes of 
heart rate (HR). The effect of respiration on HR, named respiratory sinus 
arrhythmia, is considered as a surrogate of cardiac vagally modulation. 
Respiratory sinus arrhythmia has been widely applied in the calculation 
of spontaneous baroreflex sensitivity [10], though the precise phase 
dependency remains unclear. On the other hand, the extent of ABP 
fluctuation during respiration is related to central blood volume and 
cardiac-pulmonary coupling [11]. The regulation relationship between 

respiratory movement, BP and HR had been studied by using the 
fast Fourier transform (FFT) or discrete Wavelet transform (DWT) 
as frequency domain analysis [12]. FFT and DWT had been used for 
waveform decomposition in time-frequency characteristics researches, 
including heart rate variability [13] and blood pressure variability 
[12,14,15], analysis. However, these well-known transforms caused 
signal distortion and information loss due to the limitation caused by 
fundamental assumption, such as sinusoidal linear combination in FFT 
or discrete wavelet function in DWT. In recent years, Hilbert-Huang 
transform (HHT) [16] has been used increasingly in data processing 
researches because of its adaptive capability on non-stationary and 
non-linear decomposition. The distortion of original signals was 
controlled and limited, because HHT is fundamentally based on the 
entire morphology of waveform [16]. HHT may help to specify slow or 
non-rhythmic fluctuation of ABP.

The capability of HHT in dealing with non-linear and non-
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stationary signal comes from essential pre-process, called empirical 
mode decomposition (EMD). The EMD, pioneered by N.E. Huang et 
al, decomposes non-linear and non-stationary time series into finite 
set of mono-components, called intrinsic mode functions (IMFs) [17]. 
The EMD extracts the IMFs iteratively by detrending operation, called 
sifting process, based on the morphology of waveform. The essence of 
sifting process is based on iteratively energy associated extraction at 
each time scale. The EMD has been applied on HHT as a new time-
frequency analysis method in various applications [18]. Recently, 
Huang et al. characterized white noise by the spectral energy density 
and the averaged period [19]. This method could qualitatively and 
quantitatively evaluate the intrinsic characteristics of non-linear and 
non-stationary signal. This method has potential to characterize the 
intrinsic feature of ABP waveform.

The EMD is able to reduce noise as a filter bank [20-22]. But the 
EMD decomposition process contains the intermittency phenomenon, 
called mode mixing problem, owing to the sensitivity of cubic spline 
interpolation and end effects [16]. The mode mixing problem would 
lead to the transitional gaps in further examination with Hilbert 
transform. In order to overcome mode mixing problem, a noise-assisted 
data analysis method, known as ensemble EMD (EEMD), was proposed 
[23]. The EEMD helps to eliminating the mode mixing problem by 
repeated adding white noise of specific standard deviation. The final 
set of ensemble IMFs is obtained by averaging each corresponding 
IMF decomposed from different mixtures. The EEMD has been used 
in several medical studies [24-27], though EEMD is insufficient for 
characterization of ABP signal owing to its non-zero residue. The 
residue of added white noise could be removed by adding positive 
and negative white noises respectively as two mixtures of the source 
signal and added white noise, which is called complementary EEMD 
(CEEMD). The CEEMD not only extends the concept of EEMD but 
also eliminates the residue of added white noises. The characteristics 
of IMFs extracted by CEEMD are much stable [28]. However, the IMFs 
extracted by CEEMD are affected by the parameters used in CEEMD, 
such as ensemble number, added white noise, and stop criterion of 
IMF determination. The optimal setting for CEEMD applying on ABP 
analysis has not been standardized. 

Objectives and Methods
Subjects and data collection

All measurements were performed in a quiet temperature-
controlled room. The beat-to-beat ABP waveform was recorded by Task 
Force® Monitor equipped with a servo-controlled plethysmography 
(CNSystems, Medizintechnik AG, Graz, Austria). Electrocardiography 
(ECG), thoracic impedance and end-tidal CO2 concentration (EtCO2; 
RespSenseTM EtCO2, Nonin Medical Inc., Ply-mouth, Minnesota, 
USA) were recorded simultaneously. The signals of ABP, ECG and 
thoracic impedance were recorded and stored by the CNSystem. The 
analog signal of EtCO2 was fed via an analog-input interface to the 
CNSystem at a sampling rate of 200Hz, and saved on the hard disc. All 
data were exported to a computer for later analysis. 

Ten subjects (age 47 ± 21.5 male) participated in this study. All 
recruited subjects were asked to rest quietly in supine position for 10 
minutes. After all recorded signals were stabilized, a 10-min baseline 
recording was performed under spontaneous breathing. Subsequently, 
recruited subjects were asked to breathe following the examiner’s 
verbal instruction at a rate of 6 cycles per minute for 2 minutes. After 
a 5-minute rest, subjects were asked to perform hyperventilation at a 
rate of 30 cycles per minute for 2 minutes. This study was approved 

by institutional review board of the hospital. Informed consent was 
obtained from all subjects before the experiment.

Ensemble empirical mode decomposition

The algorithm of EMD contains several steps. First, the local 
extrema in the time series )(tx  were identified by peak-valley detection. 
The upper envelope )(tL  and lower envelope )(tL  were calculated by 
cubic spline interpolation based on the local maxima and the local 
minima. Both envelopes covered )(tx  at each time scale. The trend waas 
estimated by the average of )(tU  and )(tL .

2/))()(()( tLtUtm +=                   (1)

The first intermidiate component )(1 th was extracted by subtracting 
the trend from the original time series )(tx , as the detrending process.

)()()( 11 tmtxth −=                    (2)

The subtraction was performed iteratively until the trend satisfied 
the predetermined criterion. The predetermined criterion is adopted 
the value of the standard deviation of the trend )(1 tm , which was seen as 
a steady constant trend while the value is below 0.2.
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)(1 th k  would be considered as an IMF only if the trend satisfies the 
criterion after k times of the subtraction process.

)()( 11 tIMFth k =                       (4)

The first residue was calculated by the equation (5).
)()()( 11 tIMFtxtr −=                      (5)

The residue )(tri  was the target signal of ith iteration of EMD for the 
ith component extraction. After n iteration, )(tx  was decomposed into 
n IMFs, )(~)(1 tIMFtIMF n , and one residue, )(trn , which can be either the 
steady trend or a constant.
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EMD decomposes the non-stationary signal into a finite set of IMFs 
without information loss or distortion, and the results were refined 
by EEMD and much further refined by CEEMD, which added white 
noise into the source signal before EMD and got the final IMFs by 
average the IMFs corresponding to the added white noise. The added 
times of the white noise were called ensemble number and presented 
the times of EMD. This study adopted CEEMD for the ABP waveform 
decomposition. 

According to the noise dependency of noise-assisted data analysis 
method, the variation of analysis results with different white noise would 
be considered and verified at first. For eliminating the noise effect of 
CEEMD, different processing parameters for CEEMD including the 
magnitude of white noise, ensemble number, and stop criteria were 
tested. Adequate setting parameters used in this study was selected by the 
consistency of IMF features in different physiological situation, including 
baseline, 6-cycle breathing and hyperventilation. The reproducibility of 
the characteristics of IMFs depends on its variation between repeated 
analyses. The reproducibility of the decomposition results was evaluated 
by time sliding window variation with 10 trails. The result of CEEMD 
was stabilized while the ensemble number, which presents the times 
of ensemble iteration with added white noise, is greater than 200. The 
results suggested that 200 ensemble number is enough for ABP signal 
analysis. The analysis system used in this study was developed by using a 
commercial programming platform (LabVIEW, version 2011, National 
Instruments Corp., Austin, TX, USA).
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Determination of intrinsic mode function

The IMF is the function that satisfies the condition that the mean 
of the upper envelope and lower envelope, as defined by local extrema, 
approximates zero at any time instant [29]. However, the mean envelope 
is hard to achieve zero because of the non-stationary signal interference. 
There were several stop criteria for IMF determination, such as standard 
deviation, S number criterion, energy difference tracking or amplitude 
ratio [30]. Based on different stop criterion, the IMF decomposed from 
source signal would be different with various fundamental definitions. 
This study applied the direct standard deviation of mean envelope as 
the stop criterion rather than the standard deviation of the division of 
mean envelope by the intermediate signal. The IMF extraction would 
be faster than the original EMD stop criterion and well controlled due 
to its quick convergence. 

Averaged period and energy density

The CEEMD technique is usually utilized for Hilbert transform 
pre-process as the whole process of HHT and for mono-component 
extraction in order to avoid the negative frequency effect [16]. However, 
the marginal spectrum of HHT spectrum has the effect of precise 
characterization, called intra-wave frequency modulation, and it 
makes non-stationary quantitative evaluation much difficult in specific 
circumstance, such as all physiologic challenges. The characteristics of 
each IMF as non-stationary mono-component could be defined by the 
distribution of energy density and its corresponding averaged period. 
This method was originally used to study the characterization of white 
noise by EMD and to evaluate the distribution of energy density and 
corresponding averaged period of white noise [19].

∑
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N
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1
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                                                   (7)
1

,ln,ln )ln(ln −∫∫= T
TdSTdST nTnTn                (8)

nE  is the energy density of the nth IMF and nTS ,ln  is the Fourier 
spectrum of the nth IMF as the function of Tln . T  is the period along 
the axis of the spectrum after changing variable, and nT  is the estimator 
of the averaged period of the nth IMF. 

The characterization of white noise IMFs was verified by Monte 
Carlo method, which generated 1000 different white noise and 
decomposed each of them in order to examine the confidence interval 
of the distribution of the intrinsic noise component [19]. The sum 
of logarithmic averaged period nTln  and logarithmic energy density 

nEln  would approximate to a constant [31]. The averaged period and 
energy density had potential to demonstrate the characteristics of IMFs 
extracting from non-stationary source signal by EMD. In this study, 
this method was applied to determine the characteristics of IMFs.

Results
Selection of white noise

The results of noise-assisted data analysis, such as CEEMD, would 
vary when different white noises are used. This study tested different 
added white noises in CEEMD and the results are shown in Figure 
1. The mode mixing problem is obviously in the result of EMD in 
Figure 1a and is markedly attenuated by CEEMD. The IMFs are well 
discriminated along with increasing standard deviation of added white 
noise. The characterization of IMFs by averaged period and energy 

Figure 1: Results of EMD and CEEMD for ABP signal with different added noise. In all panels, top graph presents the original ABP signal, IMF1-IMF7 and the residue 
are listed below, and the bottom graph is the characterization plot with logarithmic averaged period and logarithmic energy density of each IMF. (a) EMD of ABP signal, 
CEEMD with (b) 0.1, (c) 0.2, (d) 1/15 time of standard deviation (SD) of original signal, and (e) 1/10 time of SD of original signal as the SD of noise. 
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density was well separated without overlapping in noise-assisted 
analysis. High-frequency and irregular fluctuation appears in IMF5 in 
Figure 1e when the standard deviation of added white noise was greater 
than one-tenth of standard deviation of source signal. According to 
these observations, one-fifteenth of standard deviation of source signal 
as the standard deviation of noise was selected as the setting of added 
white noise for ABP signal decomposition in CEEMD in this study. 

Reproducibility analysis

Ten 1-minute segments of resting ABP signal from each 
subject was sampled and decomposed by CEEMD respectively. The 
characteristics of IMFs were similar within the same individual. The 
coefficient of variation (CV) of logarithmic averaged period and the 
CV of logarithmic energy density in each subject were calculated for the 
reproducibility verification. Figure 2 shows that the CV of logarithmic 
averaged period and the CV of logarithmic energy density are small. 
The CV of logarithmic averaged period of IMF4 is relatively high owing 
to its mean approaching zero. The CV of both the logarithmic averaged 
period and energy density were high in IMF5 and IMF6 because 
of variable respiration-related fluctuation of ABP between subjects 
(further discussion in next paragraph). The results suggested that the 
methods used for characterization of IMFs in this study were reliable. 
Even though the ABP signal was recorded at different time points, 
the CEEMD of ABP waveform had good reproducibility in different 
individuals

Characteristics of IMFs during different breathing patterns

The results of CEEMD decomposition of ABP signals during different 
breathing patterns are shown in Figure 3. The characteristics of IMFs 
during spontaneous breathing, 6-cycle breathing, and hyperventilation 
were similar. The IMFs derived from CEEMD decomposition of ABP 
signal were categorized into five major components, including noise, 
beat-to-beat time intervals, characteristics of pressure waveform, 
base beat, and respiratory related fluctuation with the same setting of 
CEEMD. The IMF1 derived from CEEMD of ABP signal shows the 
most high frequency component in ABP, which may contain intrinsic 
characteristics of white noise with orther unexpected fluctuations 
demonstrated in Figure 4. The IMF2 shows peak-to-peak pressure pulse 
waveform as shown in Figure 5. Figure 5 shows that the morphology of 
ABP waveform was demonstrated by the first four IMFs in a small time 
scale, and the influence of respiration was eliminated from these four 

IMFs. The IMF5 and IMF6 associate with respiration related fluctuation 
of ABP, as shown in Figure 3, and present the influence of respiration, 
which was extracted from the orignal ABP signal and was eliminated 
from the other IMFs. The results of the logarithmic averaged period 
and corresponding logarithmic energy density were summarized in 
Table 1.

Beat-to-beat time intervals extracted from ABP signal

The IMF1 is within the confidence interval of energy density and 
averaged period of white noise by Monte Carlo verification as shown 
in Figure 4. The IMF1 represented the most high frequency component 
in ABP signal, which was more likely to be contaminated by noise 
caused by some artifacts or the other external influences in Figure 5b. 
IMF2 presents the sharpest changes of beat-to-beat ABP and could be a 
surrogate to determine the beat-to-beat time intervals which is derived 
from ECG recording conventionally. The beat-to-beat time series were 
calculated based on IMF2, as shown in Figure 6. The automatic peak 
detection was applied for first order difference of IMF2 and the time 
intervals were calculated by peak-to-peak duration, as described in 
the literature study [8]. Then, the time series were generated from the 
time intervals by spline interpolation, as an approach to get the beat-
to-beat time intervals. The interclass correlation test showed excellent 
correlation between beat-to-beat time intervals extracted from 
ABP signal and beat-to-beat cardiac intervals from ECG recording 
during baseline, 6-cycle breathing and hyperventilation (all interclass 
correlation coefficient > 0.980 in study subjects).

Characteristics of ABP waveform morphology

Figure 5a shows that the amplitude of IMF3 was larger when 
the ABP waveform was sharper, while in Figure 5c, the amplitude 
of IMF3 was smaller when the ABP waveform was flat. Similarly, 
the averaged period and energy density of IMF3 are different when 
the shape of ABP waveform varies between different individuals, 
as shown in Figure 5. The IMF4 represents the fundamental base 
beat waveform as the ABP waveform carrier, and its amplitude and 
frequency can indicate the related characteristics of ABP waveform. 
The characterization plot shows that IMF4 has the largest energy 
density in Figure 5. The logarithmic averaged period of IMF4 is 
approximately zero due to the beat-to-beat time period round about 
1 second in normal subjects.

Respiration related fluctuations of ABP Signal

Figure 2: The coefficient of variation (CV) of (a) logarithmic averaged period and of (b) logarithmic energy density in all subjects for each IMF, series number 1-7 present 
the number of IMF and 8 presents the residue of CEEMD. 
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Figure 3: Results of CEEMD for ABP signal during baseline, 6-cycle breathing and hyperventilation. All panels represent CEEMD of ABP signal, where top graph 
presents the original ABP signal, IMF1-IMF7 and residue after IMF extracted are listing below, and bottom graph is the corresponding recording of end-tidal CO2 (EtCO2) 
concentration. (a) baseline resting spontaneous respiration; (b) during paced breathing at 6 cycles per minute. (c) during hyperventilation at 30 cycles per minute. 

Figure 4: Monte Carlo verification of the relation between the logarithmic averaged period and the logarithmic energy density of IMFs (empty squares with labels) and 
noise (clusters of dots).
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The respiration-related fluctuation of ABP signal was shown in 
IMF5 or IMF6, as shown in Figure 3. The EtCO2 concentration was 
highly concordant with the IMF6 during slow 6-cycle breathing and 
with IMF5 during rapid hyperventilation. The Bland-Altman plot 
showed good agreement between the logarithmic averaged period with 
IMF6 of ABP signal and EtCO2 concentration during 6-cycle breathing, 
shown in Figure 7. The logarithmic averaged period with IMF5 of 
ABP signal also had good agreement with EtCO2 concentration 
during hyperventilation. The phase of ABP fluctuation had a reversal 
relationship with that of EtCO2 concentration in different respiratory 
patterns. The amplitude change of respiration signal correlated with the 
energy density of corresponding IMF. The results in Table 1 showed that 

the logarithmic averaged period provides the estimation of the relevant 
main period of each IMFs. The energy density of IMF6 increased 
during 6-cycle breathing and the energy density of IMF5 increased 
during hyperventilation.

Discussion
In general, CEEMD has good capability for non-stationary 

signal decomposition, but its result depends on the setting of several 
parameters. The proper selection of added white noise of CEEMD 
and the proper stop criterion of IMF determination are important to 
characterize the ABP signal [32]. The study suggested that CEEMD 
of ABP signal produces reliable results by using 1/15 time of standard 

Figure 5: Results of CEEMD for different ABP waveform morphology in three different subjects. All panels represent CEEMD of ABP signal, where top graph presents 
the original ABP signal, IMF1-IMF4 are listing below, and the bottom graph is the characterization plot with logarithmic averaged period and logarithmic energy density 
of each IMF. 

Baseline 6-cycle Breathing Hyperventilation
lnT lnE lnT lnE lnT lnE

IMF1 -2.43 ± 0.13 2.4 ± 0.76 -2.44 ± 0.15 2.17 ± 1.04 -2.47 ± 0.21 2.58 ± 0.9
IMF2 -1.67 ± 0.12 5.96 ± 0.51 -1.66 ± 0.11 5.91 ± 0.68 -1.62 ± 0.11 6.09 ± 0.55
IMF3 -0.85 ± 0.09 7.39 ± 0.51 -0.85 ± 0.08 7.35 ± 0.6 -0.88 ± 0.09 7.63 ± 0.47
IMF4 -0.16 ± 0.11 8.33 ± 0.73 -0.12 ± 0.12 8.31 ± 0.74 -0.23 ± .012 8.25 ± 0.72
IMF5 0.92 ± 0.26 3.79 ± 0.79 0.84 ± 0.2 3.75 ± 0.62 0.93 ± 0.17 4.91 ± 0.61
IMF6 1.85 ± 0.21 3.24 ± 0.7 2.27 ± 0.19 5.35 ± 1.07 1.86 ± 0.27 3.49 ± 1.52
IMF7 2.84 ± 0.2 3.45 ± 1.1 2.77 ± 0.24 4.86 ± 1.03 2.91 ± 0.26 3.68 ± 1.52

Residue 3.57 ± 0.2 2.69 ± 1.15 3.65 ± 0.2 3.45 ± 1.45 3.58 ± 0.19 2.98 ± 1.43

The presented form is (average ± standard deviation). IMF denotes intrinsic mode function; lnT denotes logarithmic averaged period; lnE denotes logarithmic energy density.
Table 1: The logarithmic averaged period and corresponding logarithmic energy density of each IMF during different breathing patterns.
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deviation of ABP source signal as the standard deviation of added noise 
of CEEMD and directly referred standard deviation of intermediate 
signal as the stop criterion for ABP signal characterization. The optimal 
parameters of CEEMD analysis would vary when different physiological 
signals are the targets of CEEMD. This study demonstrated the process 
to achieve reliable analysis.

CEEMD is able to extract important physiologic and pathologic 
information from ABP signal. The sifting process gives CEEMD ability to 
discriminate non-stationary orthogonal characteristics of morphology, 
such as frequency, in various time scales. Each IMF decomposed by 
CEEMD represents a frequency-amplitude modulation in narrow 
frequency band that can be related to a specific physiologic process [33]. 
However, most of previous studies applied EMD in analysis of systolic 
BP tachogram only [34], or just focused on the characteristics of one or 
two IMFs [27,34]. This study demonstrated the important features of 
all IMFs and their possible physiological meanings, which were verified 
by multi-modality monitoring and performing different respiratory 
maneuvers. By using CEEMD, the ABP signal can be decomposed 

into meaningful IMFs representing cardiac intervals, characteristics of 
pressure waveform, and respiratory pattern in this study.

The first four IMFs were regarded as non-physiological interferences 
owing to its frequency range and contained rich information of intrinsic 
waveform mophology. By the adequate parameters setting of CEEMD, 
the non-physiological artifacts and noises were restricted within 
IMF1. The CEEMD effectively eliminated artifacts in the other IMFs. 
Thus, the beat-to-beat cardiac interval and the mophology analysis, 
such as reflection wave analysis, were estimated accurately by further 
processing without the other unexpected influences. 

The morphology of ABP waveform is the summation of forward 
pressure wave and backward reflection wave, and is considered as the 
characteristics of vessel compliance referred to the reflection coefficient 
[35]. Certain IMFs, for example IMF3 and IMF4 in this study, preserved 
the features of original ABP waveform morphology. Some indices of 
arterial stiffness and atherosclerosis could be derived from these IMFs 
[27,34]. Further post-processing to characterize subtle changes in these 
IMFs may have potential to be used in classification of ABP waveform 
for pulse diagnosis [36] and cardiovascular researches.

The respiratory influence of ABP signal was observed in IMF5 or/
and IMF6 in different respiratory patterns. The adaptive sifting process 
of CEEMD, which sifting the signal iteratively from high frequency 
to low frequency in various time scale, distributes the respiration-
related ABP changes to different IMF depending on the frequency of 
respiration. The phenomenon was quantitative assessed by the averaged 
period, shown in Table 1. The energy density of IMF6 increased during 
6-cycle breathing and the corresponding logarithmic averaged period 
was 2.27, which means that the averaged period was 9.68 sec (~10 
sec) and it met the period of 6-cycle breathing. On the other hand, 
the energy density of IMF5 increased during hyperventilation and the 
corresponding logarithmic averaged period was 0.93, which means that 
the averaged period was 2.53 sec (~10 sec) and it met the period of 
hyperventilation. The good agreement between logarithmic averaged 
period of EtCO2 and that of the corresponding IMF suggested that 
respiratory pattern could be evaluated by CEEMD of ABP signal. 
By using CEEMD, ABP recording not only provided hemodynamic 
information, but also had potential to detect abnormal respiratory 
pattern such as sleep apnea. The ABP change had a reversal relationship 
with EtCO2 concentration in different respiratory patterns [37,38]. The 

Figure 6: An illustration of beat-to-beat cardiac interval extracting from the 
IMF2 of ABP signal and relationship with respiration. (a) the original IMF2 of 
ABP signal, (b) the peak detection of R-wave in ECG (solid line) and that of first 
order difference of IMF2 (dotted line), (c) the RR intervals series in ECG (solid 
line) and the beat-to-beat time interval series from IMF2 (dotted line), and (d) 
the EtCO2 concentration. 

Figure 7: Agreement between logarithmic averaged period of IMF6 of ABP 
signal and that of EtCO2 during 6-cycle breathing by using Bland-Altman plot. 
The mean difference and the limits of agreement are indicated. 
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phase delay between EtCO2 signal and respiratory fluctuation of ABP 
signal was similar to previous reports [39].

The CEEMD had good capability of non-stationary sifting and 
was served as the time-variant filter bank adaptively in various time 
scales. The IMF decomposed by CEEMD represents a posteriori mono-
component in narrow frequency band, which might be related to a 
specific physiologic process, and it might help the physiological study 
finding the optimal frequency band of regulation in multiple time scale. 
The IMF7 and the following IMFs have the potential to explore the very 
low frequency band (<0.04Hz), i.e. high logarithmic averaged period 
(>3.2) on characterization plot of IMF, in long-term ABP monitoring. 
Cardiovascular regulation in this frequency range may result from 
the metabolic, humoral, or temperature modulation [5]. The EMD 
decomposition of short-term ABP recording is not able to evaluate 
these low frequency changes. 

This study proposed a simple method to quantitatively evaluate the 
non-stationary characteristics of real medical signal, ABP for example, 
by using averaged period and energy density. These two parameters 
contained the morphology information extracted by CEEMD, and 
quantified the morphology information based on spectral integration. 
The averaged period and energy density had good reproducibility on 
repeated measurements in this study. However, these two parameters 
could only depict the differences in ABP waveform morphology 
roughly.

This study has some limitations. First, the resolution of the 
averaged period is limited by the sampling rate of the original source 
signal, and the bound of averaged period is determined by the 
recording period. Secondly, the characteristics of IMFs are mainly 
determined by the parameters of CEEMD. It seriously limits the IMF 
usefulness in characterization. The problem is compounded by the 
fact that relatively few researchers can actually study the IMF with 
the same definition, making it difficult for applying the CEEMD and 
comparison between studies. The time complexity of CEEMD belongs 
to non-deterministic polynomial time and it is insufficient for real-time 
processing. The potential applications of CEEMD merit more studies 
under standardized parameter setting, including 1/15 added white 
noise ratio, 200 ensemble number, and 0.2 as the value of stop criterion 
of the sifting process.

Conclusion
This paper demonstrates useful methods to improve the reliability 

of CEEMD of ABP signal. The characteristics of IMFs provides 
information about cardiac rhythm, intrinsic waveform mophology of 
ABP signal, and intrinsic influence of respiration fluctuations of ABP 
signal during different respiratory patterns. The mono-components 
extraction of ABP in adaptive time scale might help to discover 
the optimal frequency band of different physiological mechanisms. 
The CEEMD of ABP signal is able to provide important physiologic 
information without simultaneous ECG and respiratory monitoring. 
This study might serve as a guide to analyze specific IMFs components 
for ABP signal, and to evaluate the intrinsic characteristics of ABP 
signal qualitatively and quantitatively by averaged period and energy 
density. The proposed method helps for the researches on applications 
of CEEMD in pulse diagnosis and the exploration of optimal frequency 
band of physiological control process. 
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