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Introduction
Traditionally, “rock-paper-scissors” is a children’s game in which 

rock attens paper (rock wins), paper covers rock (paper wins), and 
scissors cut paper (scissors win). When two individuals play the game 
with their hands, rock is represented by a fist, scissors by two fingers 
extended to represent a pair of scissors, and paper by a attened hand. 
At the count of three, the two players extend their hands into one of the 
forms described. Rock breaks scissors so defeats scissors, scissors cut 
paper so scissors defeat paper, and paper covers rock so paper defeats 
rock. Viewing

the relationship between the rock, paper, and scissors, each has 
an advantage over the other. Although “rock-paper-scissors” may be 
an amusing way to settle simple disagreements between two friends, 
“rock-paper-scissors” occurs in meaningful and interesting biological 
situations as well.

Kerr et al. [1], describe an interesting relationship between three 
populations of Escherichia coli that produce toxins against each other 
resulting in a biological “rock-paper-scissors” relationship. Their 
experiments in a chemostat environment showed that coexistence of 
all three populations could occur or that one or two of the populations 
might “win” and eliminate one or both other competitors. Generally, 
they saw that one population evolved (mutated) and dominated the 
mixture after one week. Roelke and Eldrige [2], expanded on these 
results in their article.

Another interesting study is by Karolyi et al. [3], who examine a 
similar problem and demonstrate that the competition is affected by 
the distribution of the competitors. They further show that by chaotic 
mixing of the nutrient (with density S(t)) in what follows) that there are 
oscillations in the population densities, which in this paper we interpret 
as limit cycles.

Competing species problems have been extensively studied 
theoretically and experimentally. We will not list an exhaustive 
reference of such studies but rather mention a few that seem particularly 
interesting in the context of the model we develop here. In a general 
sense, competing species in the chemostat are studied in Smith and 
Waltman [4]. Many variations of the basic model of competing species 
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in the chemostat have been studied. For example, Li [5] studies a 
competition model with three competing species competing for 
three nutrients. His study is based on the experimental results seen 
by Husiman and Weissing [6], which shows that cyclic competition, 
such as in a “rock-paper-scissors” relationship, can result in periodic 
oscillations (or limit cycles). More recently, Cameron et al. [7], examine 
a “rock-paper-scissors” relationship involving a parasitic plant and 
experimentally show that coexistence of the three competitors occurs 
and confirm the conclusion with biological observations. Reichenback 
et al. [8], obtain similar results. More recently, in Hsu and Roeger [9], 
use the May-Leonard competition models to study more complex 
competition relationships in the chemostat.

Unlike these previously studied models, we give each competitor 
in a “rock-paper-scissors-lizard-Spock” relationship a defense by giving 
it the ability to produce a toxin against its enemies (or competitors). 
The production of anti-competitor toxins is of interest when the weaker 
competitor can devote some of its resources to the production of a toxin 
(or inhibitor) against its competitors at some expense to its own growth. 
In Hsu and Waltman [6], this was modelled as a constant proportion of 
the resources. Biologically, this makes sense. For example, in Majeed et 
al. [10], it is documented that mixing strains of Escherichia coli, some 
of which produce bacteriocins, which are poisons that have a negative 
effect on competing organisms, the end result can lead to coexistence of 
all competitors. Inhibitors (including those added to the environment 
as well as those produced by the organisms) in the chemostat have been 
studied in Chao and Levin [11], Levin [12], Hsu and Waltman [13], 
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Hsu et al. [14], Hsu and Luo [15], Hsu and Waltman [16], Lenski and 
Hattingh [17], and Braselton et al. [18].

Background of competition models in the chemostat

The chemostat is a basic model for competition in an open system 
and a model for the laboratory bioreactor. Such models have applications 
in ecology like modeling a simple lake or in biotechnology to model the 
commercial bio-reactor. See Frederickson and Stephanopoulos [19], or 
Smith [20], for a general discussion of competition and Hsu et al. [14], or 
Smith and Waltman [4], for a mathematical description of competition 
in the chemostat and detailed analysis of Equations 2 and 3 that follow. 
Refer to Hansen and Hubbell [21], for experimental verification of the 
match between theory and experiment in the chemostat.

In this paper, we consider a basic, resource-based model of 
competition of which the chemostat is the standard example. Such 
models have applications in ecology to model a simple lake, a simple 
digestive system, or in biotechnology to model the commercial bio-
reactor. Experimental verification of the match between theory and 
experiment can be found in Hanson and Hubbel’s study [21]. For 
a general discussion of competition models in the chemostat see 
Frederickson and Stephanopoulos [19], or Smith [20].

First, we revisit a model of three competitors competing for three 
nutrients and give each competitor a defense by giving it the ability to 
produce a toxin against its enemy (or enemies) in a “rock-paper-scissors” 
relationship. Next, we form a model of five competitors competing 
for five nutrients and give each competitor a defense by giving each 
competitor the ability to produce a toxin against its enemy (or enemies) 
resulting in a “rock-paper-scissors-lizard-Spock” relationship. The 
simulations we obtained for five competitors mirror those obtained for 
three competitors and indicate that giving competitors a defense may 
stabilize some unstable biological relationships.

Background of a model of “rock-paper-scissors” in the 
chemostat

To formulate a continuous model of a biological “rock-paper-
scissors-lizard-Spock” relationship in the chemostat, we start with 
the basic models introduced by Smith and Waltman [4], that are 
summarized next and then the competition models and, specifically, 
the model when one competitor produces a toxin studied by Hsu and 
Waltman in [13]. The model we state here is developed and analyzed 
analytically in [22]. We restate the model and our approach here is 
strictly numerical to help motivate the development of the model of 
“rock-paper-scissors-lizard-Spock” in the subsequent sections [22].

We restate these models of competition and then of “rock-paper-
scissors” in the chemostat that are developed in [22] to motivate the 
model of a “rock-paper-scissors-lizard-Spock” in the chemostat where 
the competitors are given a mechanism (such as a toxin) to defend 
themselves against their competitors.

We begin with the standard model for two competing organisms in 
the chemostat. Let S(t) denote the concentration of a nutrient at time 
t, and x1(t) and x2(t) denote the concentration of the two competing 
microorganisms. The basic model for competition in the chemostat 
between two competitors takes the form (note that ' d dt= = ).
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where S(0) is the input concentration of the nutrient j, D is the 
washout rate, mi, the maximal growth rates, ai, the Michaelis-Menten 
constants and ni, i=1, 2, the yield constants. This is usually called the 
Monod Model or the model with Michaelis-Menten dynamics. Refer to 
Smith and Waltman [4], for extensive details.

When scaled, Equation 1 for two competitors in the chemostat as 
stated in [4] becomes
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The scaled competition models in the chemostat for when one 
competitor produces a toxin at a constant rate are studied in by Hsu 
and Waltman in [13]
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In Equations 2 and 3, k represents the fraction of nutrient 
compensation of the x2 organism allocated to the production of the 
toxin. P(t) represents the concentration of the toxin present. We assume 
that that interaction between the toxin and the affected microorganism 
is of mass-action form, -γPx1. In both equations, S(t) denotes the 
concentration of the nutrient in the chemostat. In the first equation, 
x1(t) and x2(t) denote the concentration (or density) of the competitors. 
In the second equation, x1(t) denotes the density of the toxin sensitive 
organism and x2(t) denotes the density of the toxin producing 
organism. P(t) denotes the density of the concentration of the toxin in 
the chemostat.

Using the same notation as used with Equation 3, the model 
studied by Li [5], for three species competing for three essential (or 
complementary) nutrients in the chemostat is
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In Equation 4, D represents the ow rate of the chemostat, (0)
jS  is 

the initial concentration of nutrient j, cji is the content of nutrient j in 
species i. Because we are assuming that all three nutrients are essential, 
the growth rate of species i is determined by the nutrient that is most 
limiting: 

µi (S1,S2,S3)=min (f1i(S1), f2i(S2), f3i(S3)) (5)
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where fji(Sj) is the growth rate of the species i when nutrient with 
density Sj is limiting. As described previously, we take 

j

( ) =
+ 
ji j

ji j
ji

m S
f S

a S
                   (6)

where the mji are the maximal growth rates and aji are the Michaelis-
Menten constants, as in Hsu and Waltman [13], in Equations 2 and 3 
that were described earlier.

Stabilizing an Unstable System with Three Competitors 
Competing for Three Essential Nutrients

Li’s [5] primary result essentially says that Equation 4 has limit 
cycles that result when competitor x1 is the better competitor for 
nutrient S2 and the weaker competitor for nutrient S1 but if x1 becomes 
limited by S3, x2 is the better competitor for nutrient S3 and the weaker 
competitor for nutrient S2 but becomes limited by S1, and x3 is the better 
competitor for nutrient S1 and the weaker competitor for nutrient S3 
but becomes limited by S2. Hulsman and Weissing [6], numerically 
illustrate the theorem in [6].

To be consistent with notation with [22] and [23], let Si(t), 1 ≤ i 
≤3, denote the concentration of the three nutrients at time t, x1(t) 
the concentration of the organism susceptible to the toxin secreted 
by the organism with concentration x3(t), x2(t) the concentration of 
the organism susceptible to the toxin secreted by the organism with 
concentration x1(t), x3(t) the concentration of the organism susceptible 
to the toxin secreted by the organism with concentration x2(t). The 
concentrations of the toxin producing organisms are given by Pi(t) (for 
xi). An underlying assumption is that the chemostat is well-stirred so 
the nutrient is equally available to all competitors.

After incorporating toxin production in the same way as Hsu and 
Waltman in [13], Equation 4 becomes 

3
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In Equation 7, (0)
jS is the input concentration of the nutrient, D is 

the washout rate and, as before cji is the content of nutrient j in species 
i. (0)

jS and D are usually controlled by the experimenter although in 
real life situations such as studying how Escherichia coli interact in a 
(human) digestive system might not be controllable by the individual 
involved. The Equations 7 are usually called the Monod Model or the 
model with Michaelis-Menten dynamics as mentioned previously [4]. 
For the purposes, here ki represents the fraction of potential growth 
devoted to producing the toxin. If one had chosen to not start with a 
standard chemostat model, another sensible choice would have been 
starting with the May-Leonard competition equations as in Hsu and 
Roeger [9]. 

The interaction between the allelopathic agent (toxin producing 
organism) and the sensitive organism have been taken to be of mass 
action form, γiPixj. This is common in modeling when an interaction 
depends on the concentrations. 

The case for non-constant k 

Both Karolyi et al. [3], and Reichenbach et al. [8] mention that 

interaction between the organisms was considered or observed. In 
particular, this would imply that the organisms have some ability to 
sense those around them. Through mechanisms known as “quorum 
sensing” bacteria are able to control the expression of their genes in 
response to density of other bacteria in their environment. Quorum 
sensing mechanisms have been demonstrated to play a role in the 
control of gene expression associated with diverse activities like 
bioluminescence, in massing to form biofilms, and the expression of 
the gene code for characters responsible for the pathogenicity of these 
organisms. For example, Sandoz et al. [24], describe a situation in which 
mutations of the bacteria Pseudomonas aeruginosa use quorum sensing 
to “cheat” and coexist with non-mutated strains of the bacteria. In a 
review on quorum sensing, Bassler [25] provides a large bibliography 
and reading list on this fascinating subject. In her review, she states that 
“Recent studies show that quorum sensing modulates both intra- and 
inter- species cell-cell communication.” In discussing a particular case 
she notes that “the capacity to respond to both intra- and inter-species 
signals could allow Harveyi to know not only its own cell density, but 
also the relative frequency of bacteria of its type in mixed populations.”

Thus, if a bacterium has the ability to sense the current state 
of its habitat and the presence of other bacteria, we believe that it is 
reasonable to conclude that ki is not constant but rather ki=ki (x1, x2, 
x3) is a function of xi. The problem is magnified so that little rigorous 
analytical results can be obtained for a general ki (x1, x2, x3) and so it 
is necessary to consider special cases. We note first that there are two 
undesirable cases. If ki=0, no agent (toxin producing competitor) is 
produced and the weaker competitor becomes extinct. Similarly, if ki=1, 
all uptake is devoted to toxin production and none to growth, so again 
the competing organism cannot survive. ki (x1, x2, x3) must fall between 
these extremes of 0 (no toxin produced) and 1 (the growth rate of the 
organism is then 0 and the organism faces extinction).

My enemy’s enemy is my friend

In a rock-paper-scissors relationship, a given organism is affected 
by both the organism affected by its toxin as well as by the organism 
that produces a toxin against the organism. For this choice of ki, we 
consider “my enemy’s enemy is my friend” to be a natural strategy to 
consider. However, a given organism might want to detect the densities 
of both competitors. To take this into consideration in the competition 
model, the toxin producing organism, say x1, might produce its toxin 
against the x2 organism at a rate inversely proportional to the density 
of the x3 organism because the (enemy of x1) x3 organism produces a 
toxin against the x1 organism. Thus, when the x1 organism decreases its 
toxin production against the x2 organism, the x2 organism (friend of x1) 
is allowed to devote more of its resources to producing its toxin against 
the x3 organism (enemy of x1), which then benefits the x1 organism 
by lowering the x3 population and less toxin is produced against the 
x1 organism. On the other hand, when the x2 population (density) 
is high but the x3 population (density) is low, x1 devotes more of its 
resources to producing its toxin against (its enemy) the x2 organism. We 
illustrate the enemy/friend relationship in Table 1. We then continue a 

xi Friends Enemies

x1 x2 x3

x2 x3 x1

x3 x1 x2

Table 1: Relationships between x1, x2, and x3 in the context of a “rock-paper-
scissors” relationship. Observe that in a “rock-paper-scissors” relationship, if xi is 
xj’s “friend” then xj is xi’s “enemy”. Friendship is not transitive in the “rock-paper 
scissors” relationship.
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similar process for the other organisms. Paradoxically, x2 is a friend of 
x1 because x2 produces a toxin against x1 enemy x3 who produces a toxin 
against x1, even though x1 produces a toxin against x2. The same analogy 
carries over for x2 and x3.

We try to choose simple choices of ki (x1, x2, x3) that take this into 
consideration. In our discussion, we choose 

1 2

1 2 3

( ) =1 1 2 3
xk x , x , x

x x
α

β + +

3 1
3

3 1 2

( ) =1 2 3
x

k x , x , x
x x

α
β + +

                      (8)                                                                     
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3

3 1 2
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x

k x , x , x
x x

α
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With ki=ki (x1, x2, x3) given by Equation 8, Equation 7 becomes,
3

(0)
j j j 1 2 3 i
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i
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(0) 0, (0) 0, (0) 0, 1,2,3i i ix S P i> ≥ ≥ =

Equation 9 looks the same as Equation 7 but we keep in mind that 
the ki (x1, x2, x3) now are given by Equation 8.

Stabilizing an Unstable System with Five Competitors 
Competing for five Essential Nutrients
Rock-Paper-Scissors-Lizard-Spock

Some believe that the game of “rock-paper-scissors” has biases that 
might determine the winner of the game. A generalization of the game 
is “rock-paper-scissors-lizard-Spock”, with rules that follow next. In the 
following, let x1 denote the density of rock, x2 the density of paper, x3 
the density of scissors, x4 the density of lizard, and x5 the density of 
Spock. Also, let Pi denote the toxin (or inhibitor) by organism xi. Refer 
to Figure 1 in the explanations that follow.

The rules of rock-paper-scissors-lizard-Spock are listed as follows. 
The corresponding toxin production effects are listed in the context of 
our notation as well (Table 2).

(1) Scissors (x3) cut paper (x2). (x3’s toxin, P3, has a negative effect 
on the growth rate of x2.)

(2) Paper (x2) covers rock (x1). (x2’s toxin, P2, has a negative effect on 
the growth rate of x1.)

(3) Rock (x1) crushes lizard (x4). (x1’s toxin, P1, has a negative effect 
on the growth rate of x4.)

(4) Lizard (x4) poisons Spock (x5). (x4’s toxin, P4, has a negative 
effect on the growth rate of x5.)

(5) Spock (x5) smashes (or melts) scissors (x3). (x5’s toxin, P5, has a 
negative effect on the growth rate of x3.)

(6) Scissors (x3) decapitate lizard (x4). (x3’s toxin, P3, has a negative 
effect on the growth rate of x4.)

(7) Lizard (x4) eats paper (x2). (x4’s toxin, P4, has a negative effect on 
the growth rate of x2.)

(8) Paper (x2) disproves Spock (x5). (x2’s toxin, P2, has a negative 

effect on the growth rate of x5.)

(9) Spock (x5) vaporizes rock (x1). (x5’s toxin, P5, has a negative 
effect on the growth rate of x1.)

(10) Rock (x1) crushes scissors (x3). (x1’s toxin, P1, has a negative 
effect on the growth rate of x3.)

When you examine the rules of “rock-paper-scissors-lizard-Spock” 
carefully, some will say that it has some of the same flaws as “rock-
paper-scissors” because the hand sign used in the game for “Spock” 
is difficult for many to implement quickly. The rules of rock-paper-
scissors-lizard-Spock are summarized by Sheldon Cooper (played by 
Jim Parsons) on the popular American television show The Big Bang 
Theory [26]. Refer to Figure 2 and direct your browser to “https://www.
youtube.com/watch?v=_PUEoDYpUyQ” to see the complete YouTube 
video.

Using Figure 1, we adjust Table 1 to mirror the “rock-paper-scissors-
lizard-Spock” relationship. Observe that “rock-paper-scissors-lizard-
Spock” has the same friend paradox as “rock-paper-scissors” in that a 
given organisms “friends” are those who it produces a toxin against. 
That is, if xj is organism xi’s friend, then xi is organism xj’s enemy.

For five species competing for five essential nutrients, system (4) is 
adjusted to 

5
(0)

j j j 1 2 3 4 5 i
1

S '(t) = D (S -S (t))- (S ,S ,S ,S ,S ) , 1, 2,3, 4,5ji i
i

c x j
=

µ =∑

1 1 2 3 4 5'(t) (t)[( ( , , , ,S ) D], i 1, 2,3, 4,5i ix x S S S S= µ − =           

Figure 1: The figure illustrates the relationships between the competitors in 
“rock-paper-scissors-lizard-Spock.

xi Friends Enemies

x1 x3, x4 x2, x5

x2 x1, x5 x3, x4

x3 x2, x4 x1, x5

x4 x2, x5 x1, x3

x5 x1, x3 x2, x4

Table 2: Relationships between x1, x2, x3, x4, and x5 in the context of a “rock-paper-
scissors-lizard-Spock” relationship. Observe that in a “rock-paper-scissors-lizard-
Spock” relationship, if xi is xj’s “friend” then xj is xi’s “enemy”. Friendship is not 
transitive in the “rock-paper scissors-lizard-Spock” relationship.
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                  (10)
(0) 0, (0) 0, , 1, 2,3, 4,5i ix S i j> ≥ =

The constants have the same interpretation as in system (4); µi (S1, 
S2, S3, S4, S5) is

µi (S1, S2, S3, S4, S5)=min (f1i(S1), f2i(S2), f3i(S3), f4i(S4), f5i(S5))

In the absence of toxin production, Figure 3 show that Equation 10 
can exhibit chaotic behaviour. In Figure 3, the values of the parameters 
used are D= .25,

S1
(0)=6, S2

(0) =10, S3
(0) =14, S4

(0) =4, S5
(0) =9, mij=1,

.04.04.07.04.04

.08.08.08 .1 .08
.1 .1 .1 .1 .14

.05.03.03.03.03

.07.09.07.07.07

ijC

 
 
 
 =
 
 
 
 

                (12)                                                                                    

and

.39.34.3.24.23

.39.34.3.27.22

.39.34.3.27.22

.39.34.3.24.22

.39.34.3.22.20

ija

 
 
 
 =
 
 
 
 

                    (13)

        We incorporate a constant toxin production into Equation 10 in 
the same way as Hsu and Waltman in [13]. Assuming constant toxin 
production, Equation 10 is adjusted to

3
(0)

j j j 1 2 3 4 5 i
1

S '(t) = D (S -S (t))- (S ,S ,S ,S ,S ) , 1, 2,3, 4,5ji i
i

c x j
=

µ =∑

1 1 1 1 1 2 3 4 5 12 2 15 5'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

3 3 3 3 1 2 3 4 5 31 1 35 5'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ                (14)                  

3 3 3 3 1 2 3 4 5 31 1 35 5'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

5 5 5 5 1 2 3 4 5 52 2 54 4'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

5 5 5 5 1 2 3 4 5 52 2 54 4'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

(0) 0, (0) 0, (0) 0, 1,2,3,4,5i i ix S P i> ≥ ≥ =

(0) 0, (0) 0, (0) 0, 1,2,3,4,5i i ix S P i> ≥ ≥ =

where the ki are constants.

Our computations indicate that Equation 14 can exhibit a wide 
range of behavior even assuming constant toxin production. For 
example, using the same parameter values as used in Figure 3, in Figure 
4 we use constant toxin production as given in Equation 15. 

k1 k2 k3 k4 k5

(a) .05 .05 .05 .05 .05
(b) .2 .1 .1 .1 .1
(c) .05 .1 .05 .1 .2
(d) .2 .1 .1 .1 .1

                                      (15)

and the γij values are given by Equation 16

 
γ12, γ15 γ23, γ24 γ31, γ35 γ41, γ43 γ52, γ54

(a) .2, .1 .1, .2 .2, .1 .1, .2 .2, .1
(b) .1, .1 .1, .1 .1, .1 .1, .1 .1, .1

Figure 2: Sheldon (played by Jim Parsons) explains “rock-paper-scissors-lizard-Spock” on The Big Bang Theory.
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Figure 3: The simulations indicate that a “rock-paper-scissors-lizard-Spock” relationship can result in chaos (or complex limit cycles) where all species coexist.

Figure 4: The figure illustrates typical results we obtained with our simulations. In (a), observe that two species coexist and the remaining become extinct. In 
(b), all species exist in the form of an apparent “small” limit cycle. (c) Two different species coexist and the remaining become extinct but different species than 
in (a). (d) The species coexist in the form of an apparent limit cycle.
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(c) .1, .1 .2, .2 .1, .1 .2, .2 .1, .1
(d) .1, .1 .2, .2 .1, .1 .1, .1 .1, .1
                 (16)

In Figure 4, observe that constant toxin production can eliminate 
the chaotic behavior observed in Figure 3.

Non-constant k

For non-constant k, in the same manner as before, we try to choose 
simple choices of ki=ki (x1, x2, x3, x4, x5). Following the same approach as 
with Equation 8, we choose 

13 3 14 4
1

1 2 3 4 5

x x
k

x x x x
α +α

=
β + + + +

21 1 25 5
2

2 1 3 4 5

x x
k

x x x x
α +α

=
β + + + +       

                  
(17)

32 2 34 4
3

3 1 2 4 5

x x
k

x x x x
α +α

=
β + + + +

42 2 45 5
4

4 1 2 3 5

x x
k

x x x x
α +α

=
β + + + +

51 1 53 3
5

5 1 2 3 4

x x
k

x x x x
α +α

=
β + + + +

With ki given by 8, Equation 14 becomes
3

(0)
j j j 1 2 3 4 5 i

1
S '(t) = D (S -S (t))- (S ,S ,S ,S ,S ) , 1, 2,3, 4,5ji i

i
c x j

=

µ =∑
2 2 2 2 1 2 3 4 5 23 3 24 4'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

2 2 2 2 1 2 3 4 5 23 3 24 4'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ               (18)

3 3 3 3 1 2 3 4 5 31 1 35 5'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

4 4 4 4 1 2 3 4 5 41 1 43 3'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

5 5 5 5 1 2 3 4 5 52 2 54 4'(t) (t)[(1 k ) ( , , , , ) D ]x x S S S S S P P= − µ − − γ − γ

j 1 2 3 4 5 j jP '(t) ( , , , , ) DP , j 1,2,3,4,5j jk S S S S S x= µ − =

(0) 0, (0) 0, (0) 0, 1,2,3,4,5i i ix S P i> ≥ ≥ =

where we keep in mind that ki=ki (x1, x2, x3, x4, x5). The choice of 
non-constant k results in significantly more complicated algebra and 
calculus computations.

An example

For our second model of quorum sensing and using Equations 18, 
we choose parameter values that are identical to those used in the first 
two examples to observe the similarities and differences between the 
three models. First, we set

(D, S1
(0), S2

(0), S3
(0), S4

(0), S5
(0))=(.25, 6, 10, 14, 4, 9) and mij=1. The cij values 

are given by Equation 12 and the aik values are given by Equation 13.

For our basic model of variable toxin production, the αij and βi 
values used to create Figures 5 and 6 are given in Equation 19.

α13, α14, β1 α21, α25, β2 α21, α25, β2 α21, α25, β2 α21, α25, β2

(a) .025, .025, .005 .075, .025, .005 .1, .25, .005 .05, .05, .005 .25, .1, .005

(b) .04, .01, .005 .4, .6, .005 .025, .025, .005 .03, .02, .05 .02, .03, .005

(c) .09, .01, .005 .04, .06, .005 .05, .05, .005 .03, .02, .005 .02, .03, .005

(d) .05, .05, .005 .25, .05, .005 .05, .05, .005 .05, .05, .005 .05, .05, .005

.25, .05, .005 .25, .05, .005 .25, .05, .005 .25, .05, .005 .25, .05, .005

A More General Choice for ki
Of course, one can conceive of many other strategies that could be 

investigated. For example, Equations 8 and 17 are specific cases of a 
more general strategy that takes the form

11 1 12 2 13 3
1 1 2 3

1 11 1 12 2 13 3

( , , )
x x x

k x x x
x x x

α +α +α
=
β +β +β +β

21 1 22 2 23 3
2 1 2 3

2 21 1 22 2 23 3

( , , )
x x x

k x x x
x x x

α +α +α
=
β +β +β +β               

(20)

31 1 32 2 33 3
3 1 2 3

3 31 1 32 2 33 3

( , , )
x x x

k x x x
x x x

α +α +α
=
β +β +β +β

that will be discussed in a future study. Incorporating Equation 
20 into Equation 18 and examining various combinations and 
interpretations of the parameter values might result in an interesting 
study. For example, if the density of one of the organisms xi is large, a 
competitor with density xj may increase its toxin production because it 
is already losing the competition and facing extinction.

Conclusion
In this paper, we have numerically analyzed a fiffteen-dimensional 

nonlinear system of differential equations that models a “rock-paper-
scissors-lizard-Spock” relationship. In previous models with fewer 
competitors or different assumptions, a reduction process was able to be 
carried out to reduce the dimension of the system. In the cases studied 
here, reducing the dimension of the studied systems is not possible 
because of the interpretation of the toxin producing agent, k=ki, that is 
allowed to produce a toxin (inhibitor) against its competitors.

We have considered several extreme cases of the “cost” of the 
metabolic load of producing a toxin against a competitor. We examined 
the case when k=ki is constant and then two cases when k=ki was not 
constant. To see the coexistence that is biologically documented, we 
used a non-constant k, which indicates that when coexistence occurs 
in such situations, quorum sensing is involved in the biological 
relationship.

Our main results indicate that giving a competitor a defense might 
help stabilize an unstable system. It would be interesting if one could 
logically extend this result to other unstable competitive systems, such 
as social or societal ones. Of course, our assumptions are not exhaustive, 
but might indicate that in a real biological “rocks-papers-scissors” or 
“rocks-papers-scissors-lizard-Spock” situation the actual metabolic 
cost of producing a toxin is quite minimal. An interesting biological 
analysis might study the value of k=ki, which we theorize is quite small, 
and examine the impact of the k=ki value, if there is any tangible impact 
on such biological relationships.

Next interesting steps might be to investigate the results seen by 
Kerr et al. [1], where they observed multiple mutations after several 
generations. Although incorporating genetics and non-constant k into 
the equations developed here would probably only result in numerical 
results, such results could have meaningful biological significance. 
Another interesting study would be to adjust the May-Leonard 
competition equations as in Hsu and Roeger [9], repeat the analysis, 
and analyze any unexpected results. The authors of this paper think 
that studying the situation when there are multiple nutrients that 
the competitors are competing for would be particularly interesting, 
especially if the availability of the nutrients was dependent on seasons 
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Figure 5: With variable toxin production, typical simulations indicated that one species survives (dominates) and the remaining become extinct. (a) x2 dominates. 
(b) x1 dominates. (c) x4 dominates. (d) x3 dominates.

Figure 6: Stable coexistence can occur with variable toxin production in a “rock-paper-scissors-lizard-Spock” competitive relationship. In this case, x2 and x4 coexist.
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or possibly even random. Perhaps, in those situations the models would 
show the complexity described by other authors.

Computational Notes
In our calculations, we used Mathematica Version 10 (www.wolfram.

com) [27]. Primarily, we used Mathematica’s graphing capabilities and 
its numerical methods for solving systems of ordinary differential 
equations. Mathematica’s primary function for numerically solving 
(systems of) differential equations is NDSolve. Detailed information 
regarding NDSolve can be obtained from the Wolfram website. 
Alternatively, if you have access to Mathematica, enter the command 
?NDSolve. In a broad sense, NDSolve uses a variety of numerical 
methods to attempt to solve (systems of) differential equations. Because 
our simulations are over “large” intervals,

We increased the accuracy goal and adjusted other NDSolve options 
to help assure that the results we illustrate here are (numerically) 
meaningful.

Our approach is quite general so other choices of the coefficient 
functions could be investigated with relative small changes in the 
Mathematica notebooks used in the calculations and plots here. 
Finally, we note that the positive constant in the denominator keeps the 
function differentiable at the origin. A smaller constant mimics stricter 
ratio dependence. In our cases kij (0, 0, 0)=0: We also chose αj so that 
0<kij<1.
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