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Introduction
Complex human diseases, such as cancers, cardiovascular diseases, 

and respiratory diseases, have caused huge public health concerns 
and economic burdens [1,2]. It is believed that both environmental 
factors, such as smoking exposure, nutrient intake, physical exercise, 
and genomic factors contribute to the development of complex human 
diseases [3]. We refer genomic factors to any molecular factors related 
to genes, such as genotype, mRNA expression, DNA methylation, 
microRNA expression, metabolites, proteins, etc. Cutting-edge 
technologies, e.g., genotyping and next-generation whole genome 
sequencing, greatly facilitate the investigations of the associations of 
genomic factors to complex human diseases so that researchers can 
unbiasedly detect disease-associated factors. In addition to uncovering 
the underlying molecular mechanisms, researchers expect that the 
disease-associated genomic factors could also help diagnose disease, 
personalize treatment, and develop new medicines [4].

Several machine learning methods, such as support vector machine 
[5] (SVM), random forest [6], and k-nearest neighbors [7] have been 
successfully applied in disease prediction based on clinical data [8-
10]. For genomic data generated by high-throughput technologies 
(Figure 1), the major challenge in disease prediction is the “curse of 
dimensionality” [11-13], which refers to the scenario where the number 
of genomic factors is far larger than the number of samples, resulting in 
model over-fitting and computational inefficiency. Model over-fitting 
is the phenomenon that a model fits a particular set of data too closely 
or exactly to fitting additional data or future observations reliably.

A reasonable approach [14,15] to handle the curse of dimensionality 
is to first apply feature selection techniques to select key features relevant 
to the disease of interest, and then to predict the disease status based 
on these key features (Figure 2). In genomic data analysis, a feature 
can be a gene transcript or a (non) linear combination of several gene 
transcripts. Traditional feature selection techniques include forward 
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Abstract
Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step 

in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied 
performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the 
rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional 
and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough 
performance in several areas including image recognition, natural language processing, and speech recognition. However, 
the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this 
article, we performed a review on the four relevant articles that we found through our thorough literature search. All four 
articles first used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied 
the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. 
These deep learning approaches outperformed existing prediction methods, such as prediction based on transcript-wise 
screening and prediction based on principal component analysis. The limitations of the current deep learning approach 
and possible improvements were also discussed.

Figure 1: An illustration of gene expression data. In the above figure, each row 
represents 1 gene transcript and each column represents one sample (one 
person). The (i,j) cell records the expression level of the i-th gene transcript 
for the j-th sample. Gene expression data typically have high dimensionality 
(20,000-50,000 gene transcripts) and small sample size (<1000), resulting in 
the “curse of dimensionality problem”.
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variable selection, backward variable deletion, stepwise variable 
selection, transcript-wise tests, or principal component analysis. 
These methods have limited performance in genomic data analysis. 
Forward variable selection, backward variable deletion, and stepwise 
variable selection are time-consuming. Hence, they are not suitable 
for whole genome-wide analysis. Transcript-wise tests ignore the fact 
that many omics variables are correlated and therefore carry redundant 
information regarding prediction. Ignoring the redundancy would 
result in the selected transcripts are non-reproducible in independent 
cohorts [13,16,17]. In addition, contributions of different genomic risk 
factors might vary; however, transcript-wise tests implicitly assign equal 
weights to all selected transcripts. Principal component analysis (PCA) 
explicitly assigns different weights to different transcripts. However, 
PCA produces a linear combination of transcripts and ignores the 
possible non-linear relationship between transcripts.

Recently, deep learning methods have made breakthrough progress 
in image/video recognition [18], natural language processing [19], and 
robotics [20,21]. Through a stacked and hierarchical learning system, 
deep learning methods could efficiently capture complex relationships 
between high-dimensional features, either spatial or consequential 
[22].

In bioinformatics, deep learning methods have fruitful and 
innovative applications in medical image classification [23,24], 
predicting DNA- and RNA-binding proteins sequences [25], and DNA 
sequence noncoding variants effects predicting [26]. However, using 
deep learning methods to predict disease status is not a well-researched 
area.

Many investigators in genomic data analysis fields might hear 
about deep learning and would like to learn more about it and how it 
could be used to predict disease status based on genomic data. In this 
review, we will first introduce the main components of deep learning 
and the most frequently used deep learning feature extraction methods 
in genomic data analysis. We will then review the papers that used deep 
learning to predict complex human diseases based on genomic data. 
The limitations of the current deep learning approach and possible 
improvements will also be discussed.

Survey Methodology
To thoroughly search recent literature on deep learning applications 

in disease prediction, we carefully reviewed previous works, searched 

popular sites: Google Scholar, PubMed, IEEE Xplore, and PMC, and 
examined related online blogs and tutorials, such as GitHub (http://
github.com/), Kaggle ( http://www.kaggle.com/), and Cross Validated 
(https://stats.stackexchange.com/). We identified four papers [13,27-
29] published between January 2013 and December 2017, which 
applied deep learning methods in disease prediction using genomic 
data.

Before we review the details of the four studies, we first introduce 
in the following sections the main components of deep learning and 
the most frequently used deep learning feature extraction methods in 
genomic data analysis.;

Neural Networks (ANNs) and Deep Learning Methods 
in Predicting Disease

The main component of all deep learning algorithms is Artificial 
Neural Networks (ANNs). Understanding how ANNs are constructed 
and trained is the first step to understand deep learning methods.

Artificial neural networks (ANNs)

Artificial neural networks are computing systems that are inspired 
by the biological neural networks constituting brains. Typically, an 
ANN is a network of nodes with multilayers: one input layer, one output 
layer, and several hidden internal layers. Within a layer, nodes are not 
connected, while between the layers nodes are fully connected (Figures 
3 and 4). Each node can store a value. For instance, in Figure 3 Zi is the 
value stored in the i-th node. Each edge can have a weight. For example, 
the weight wji indicates the amount of information passing to the node 
i in the given layer from the node j in the previous layer. The value of a 
node on a given layer, except for the input layer, is a function of a bias 
(i.e., threshold; e.g., bi for the i-th node) and the weighted average values 
of all nodes on the previous layer. The function is called an activation 
function. For instance, 1 1 Y =  if ( )1 1 * * 0i i ni nb w Z w Z+ +…+ >  and 


1 0Y =  otherwise, where n is the number of nodes in the previous layer 
and Zj is the value for the j-th node in the previous layer. Usually, 
activation functions, such as sigmoid, rectified linear unit (ReLU) [30], 
and hyperbolic tangent (Tanh), are non-linear.

Training ANNs

To estimate the optimal values of the biases and edge weights, a 
training data set and a validation set are needed, in which the values 

Figure 2: An illustration of building prediction models using genomic datasets. The idea is to first reduce the dimensionality of the input features and then 
feed the low dimensionality features into prediction model/classifiers. Dimensionality reduction techniques typically include transcript-wise testing, principal 
component analysis (PCA), and auto-encoders.

http://github.com/)
http://github.com/)
http://www.kaggle.com/)
https://stats.stackexchange.com/
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of the nodes in the output layers are known. The idea is to find a set of 
biases and edge weights that minimize the difference between the true 
values and predicted values of nodes in the output layer. The difference 
is a function of the biases and edge weights and is usually called loss 
function.

Gradient descent is an optimization method for updating the 
parameters of a neural network to minimize the loss function (Figure 5). 
It uses the fact that optimal parameters are achieved when the gradient 
of the loss function with respect to the parameters are zero. However, 
finding parameters that are the solution to zero gradient equation is a 
nontrivial task for complex networks with a large number of parameters. 
An alternative method to solving the gradient equation is, starting with 
an initial point, to iteratively update each parameter proportional to 
the negative of the gradient of the loss function with respect to the 
parameter, and continue this procedure until the amount of change 
of parameters is below a predefined threshold. An important part of 
this method is to calculate the gradient of loss function with respect 
to every parameter in the network. Backpropagation is an algorithm 
for efficiently calculating the gradient for each parameter, using the 

chain rule: For the simple network in Figure 3, ( ) ( )
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where Loss(w) is the loss function. This implies that once we know the 

gradients at some layer, we can easily calculate the gradients for the 
layer before it.

Deep learning and deep neural networks (DNNs)

ANNs with only one or two hidden layers have a shallow architecture, 
which contains only two levels of data-dependent computational 
elements and can be very inefficient regarding the number of hidden 
nodes, and in terms of required training examples [11]. In contrast, 
deep neural networks are ANNs with more than two hidden layers. 
This deep architecture can compactly represent a large number of 
computational elements via the composition of many nonlinearities 
[11]. Deep learning methods are defined as computational models that 
are composed of multiple processing layers to learn representations of 
data with multiple levels of abstraction [22].

The performance of deep learning relies on the methods to train 
the parameters in DNNs. Intuitively, we can train the parameters by 
minimizing the prediction error rates (the loss function) by applying 
gradient descent. However, empirical experiments showed that this 
supervised approach has poor performance for DNNs [11,31], in the 
regime where the number of input features is comparable to (or even 
far larger than) the number of training samples, which is the case in 
genomic datasets. In contrast, unsupervised learning at each stage of 
a deep network proposed by the seminal works of Hinton et al. [32] 
and Hinton and Salakhutdinov [33] pretrains each hidden layer as 
the encoder of an auto-encoder trying to reconstruct the output of 
the previous layer. Hence, combining unsupervised approach with 
the supervised approach, such as fine-tuning all the parameters of 
the ANN using backpropagation and gradient descent on a global 
supervised cost function, can significantly improve the performance of 
deep learning methods for data-sparse datasets [11,31].

Auto-encoder (AE)

An auto-encoder is a type of ANN that aims to find a new 
representation of input nodes (e.g., gene transcripts in genomic data 
analysis) in an unsupervised manner, from which the input can be 
reconstructed without too much loss of information [31]. Like ANN, 
an auto-encoder has one input layer, one output layer, and one or 
multiple hidden layers (Figure 6). Suppose X is the original data in 

Figure 3: An illustration of a simple ANN: This simple feed-forward ANN has 
four input nodes and one output node. On the edges, w1–w4 represent the 
weights of the input nodes. The value Y1for the output node is computed as 
 ( )1 1 1 2 2 3 3 4 4 ƒ * * *  *Y b Z w Z w Z w Z w= + + + + , where b is the bias term, and ƒ 

is the activation function.

Figure 4: An illustration of a multiple-layer ANN. This multiple-layer ANN 
has one input layer, two hidden layers, and one output layer, with each layer 
connected to the previous layer. The activation function ƒ is applied to each 
node on the hidden layer and the output layer.

Figure 5: Gradient Descent Training. The x-axis is the weight w and the y-axis 
is the loss function Loss (w). In Gradient Descent optimization, learning rate 
represents how much the edge weights are adjusted in each step before 
the global minimum is achieved. Learning rate could also be seen as the 
“step size” in the learning process. With a higher learning rate, the gradients 
are adjusted by a greater amount each step. With a lower learning rate, the 
gradients are adjusted by a smaller amount each step.
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a p-dimensional space. An auto-encoder would first project X to a 
q-dimensional space Y=g1(X), where g1 is a non-linear projection 
function. Then it transforms Y back to the p-dimensional space 
Z=g2(Y), where g2 is also a non-linear projection function. The optimal 
projection Y* minimizes the loss function loss[X, g2(Y)] that measures 
the differences between X and Z=g2 (Y). Note that since q is different 
from p, both the projection function g1 and the projection function g2 
are not one-to-one mapping functions. Hence, the inverse functions 
g1

-1 and g2
-1 do not exist.

Similar to training ANNs, backpropagation and gradient descent 
can be applied to train an auto-encoder, in which the output layer has 
the dimension as the original data Z=g2(Y)=g2(g1(X)).

The nodes Y=g1(X) within the hidden layer are the representations 
of original features. The hidden layer is “under-complete” if the 
number (q) of nodes in the hidden layer is smaller than that (p) in the 
input layer (q<p). In most cases, auto-encoder outperforms Principal 
Component Analysis in processing high dimensional complex datasets 
because auto-encoder performs both linear and non-linear projections, 
while PCA performs only linear projection. Auto-encoders have been 
successfully used to efficiently extract meaningful features in disease 
diagnosis based on high-throughput genomic data [27,34].

Sparse auto-encoder (SpAE)

Performing backpropagation and gradient descent could be 
inefficient if there are too many free nodes with complex dependencies 
in each layer [35,36]. Sparse auto-encoder is developed to restrict 
the number of hidden nodes to be activated by introducing sparsity-
constraints on the hidden units (Figure 7). Sparse auto-encoder have 
been proved to have favorable performance in image recognition [37] 
and speech emotion recognition [38], due to its efficiency in extracting 
meaningful features from high-dimensional data.

Stacked auto-encoder (StAE)

A stacked auto-encoder [11,39,40] is a multi-layer auto-encoder, 
each hidden layer of which is a representation of the previous layer 
obtained by an auto-encoder with one hidden layer (Figure 8). The training 
of stacked auto-encoders is often completed by applying the greedy layer-
wise pre-training approach [11]. Given extremely high-dimensional input 
data, a stacked auto-encoder could extract features layer by layer and 
finally forms a better representation to be passed into classifiers.

Denoising auto-encoder (DAE)

A basic auto-encoder could successfully retain much of the 
information from the inputs in new features within the hidden layer. 
However, Vincent et al. [40] demonstrated that simply retaining 
information from the inputs does not guarantee that the extracted 

Figure 6: Illustration of a basic auto-encoder. This auto-encoder has 2 hidden 
units. X is the inputs, X̂=Y  is the reconstructed inputs in the output layer, h is 
the hidden layer.  The dimension of the original input data is reduced from p=4 
to q=2. The optimal representation in the q-dimensional space is obtained by 
minimizing the difference between the inputs X and the reconstructed inputs 
Y.

Figure 7: Illustration of a sparse auto-encoder: A sparse auto-encoder 
restricts the number of hidden layers activated by adding a sparsity term to 
the loss function. The sparsity term set the expected activation value of the 
hidden nodes to a small constant so that most of the hidden nodes’ activations 
are near zero. Hence, very few hidden nodes are activated in a sparse auto-
encoder. 

Figure 8: Illustration of stacked auto-encoder and greedy layer-wise pre-
training: The stacked auto-encoder has 2 hidden layers h1 and h2. Under the 
greedy layer-wise pre-training, hidden layer h1 is first trained in the same way 
as training a simple 1-layer auto-encoder by minimizing ( )ˆ1 X,X . The function 
g(1) that maps X to h1 is learned from the first layer training, which is shown 
in (a). Then nodes values on h1 are passed to the second layer h2 to train 
the function g(2) that maps h1 to h2 by minimizing ( )1 1l h ,  h , which is shown in 
(b). After pre-training all hidden layers, an output unit Y, which serves as a 
classifier, could be wired on top of the hidden layers to make predictions. The 
whole architecture could be fine-tuned together using backpropagation and 
labeled data, which is shown in (c).
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features are “good features”, which could achieve high-performance in 
supervised learning tasks. Denoising auto-encoder has been proposed 
to overcome this challenge by generating a noisy representation based 
on the inputs, such as setting values to 0 for a small proportion of input 
nodes or adding a noise term with a Gaussian distribution, and then 
feeding the noisy term into the auto-encoder (Figure 9). With the 
introduction of the noise term to the original inputs, denoising auto-
encoders construct more robust feature representations and thereby 
could generalize better to unseen examples and datasets.

Stacked denoising auto-encoder (SDAE) and stacked sparse 
auto-encoder (SSAE)

An SDAE is a multi-layer auto-encoder, each hidden layer of 
which is a representation of the previous layer obtained by a denoising 
auto-encoder with one hidden layer. For example, when pre-train the 
2 hidden layers h1 and h2 in Figure 8, one could add a noise term to 
the pre-training inputs X and h1 to construct SDAE. Vincent et al. 
[40] showed that the features extracted by SDAE are stable and robust 
under noisy inputs, by achieving the best classification results under 
9 out of 10 image databases. These features could efficiently capture 
useful information in the input distribution and have yield equivalent 
or better classification performance over most of the image data 
processing benchmarks. Similar to SDAE, an SSAE is obtained when 
the number of hidden units to be activated is restricted on each hidden 
layer of a stacked auto-encoder. Xu et al. [41] applied SSAE on Breast 
Cancer detection using image data. The study shows that SSAE out-
performed 9 other state of the art cancer detection strategies and 
improved F-measure to 84.49%.

Deep Learning Applications in Disease Prediction
Previous works of disease prediction in genomic data Analysis 
using non-deep learning approach

Plenty of methods have been proposed in disease prediction using 
genomic data (e.g., [42-47]). Due to the large number of predictors (i.e., 
gene transcripts), the main approach in disease detection/prediction 
is to first obtain a subset of gene transcripts (e.g., a few top gene 
transcripts in transcript-wise tests) or a subset of representations of gene 
transcripts (e.g., a few top principal components), and then to predict 
disease status based on the selected transcripts or representations using 
machine learning algorithms.

Furey et al. [42] used SVMs to classify cancer tissue samples using 
gene expression datasets. The study showed that SVMs are able to 
classify tissue and cell types based on gene expression data and have 
similar performances to other machine learning methods. Khan et al. 
[43] was among the first to adopt basic ANNs (ANNs without hidden 
layers) to classify cancer samples and to identify relevant genes. In their 
study, the 10 top PCA components were used as inputs to the ANN 
to classify the small, round blue-cell tumors (SRBCT) to four distinct 
diagnostic categories. All 63 samples in the training set and all 25 
samples in the independent testing set were correctly classified based 
on the 96 selected genes. Pal et al. [44] proposed to combine modified 
perceptron network and relational fuzzy clustering algorithms [48] 
to select a gene subset used for cancer subgroup classification. They 
applied their method to the SRBCT dataset analyzed by Khan et al. 
[43] and identified 7 genes that can accurately classify the samples 
in both training set and testing set. Chang et al. [45] used an ANN 
with one hidden layer coupled with an additive step-wise approach 
for predicting colorectal cancer (CRC) using microRNAs (miRNAs). 
Three miRNAs were identified with a median accuracy 100% by using 
an extensive Monte Carlo cross-validation strategy. Sharma et al. [15] 
proposed a top-r feature selection technique that repeatedly divides and 
merge gene expression data to select the gene subset minimizing the 
loss of information. The selected genes are then tested on three tumor 
datasets and achieved higher accuracies than other feature selection 
methods, such as transcript-wise tests. Nanni et al. [46] examined the 
SVM classification performance using multiple feature reduction and 
data transformation approaches, including neighborhood preserving 
embedding, orthogonal wavelet coefficients, and texture descriptors. 
The study showed that a combination of different feature extraction 
methods could enhance genomic classification performance. For 
instance, the two combined methods achieved the highest average 
area under ROC curves (AUC) (AUC=92.18% for the WF method and 
92.07% for the FUS method), while the AUC values for the 8 individual 
feature extraction methods were ranged from 79.24% to 91.85%. 
Jordan and Do [47] reviewed the studies that predict disease using full 
genomic information. Their review focused on polygenic risk scores 
(PRS), which is the most common method of integrating information 
from across the genome into a single estimate of genetic risk. A PRS is a 
weighted average of the genetic status at each associated risk locus. The 
weighting of each locus is usually the regression coefficient of genome-
wide association study (GWAS) association for the locus. Jordan and 
Do [47] mentioned that the power of most PRSs to predict disease risk 
has been very low due to several reasons, such as small sample size, 
genetic ancestry, heterogeneity of risk factors and causation.

The main limitations of these previous works [13] include (1) 
ignoring potential non-linear relationships among the features; (2) 
ignoring the contribution of features with weak signals to distinguish 
diseases; and (3) over-simplifying the complex prediction problem, 
such as using single-layer ANNs.

Deep learning applications in disease prediction

Through a thorough literature search, we identified four papers 
[13,27-29] published between January 2013 and December 2017, which 
applied deep learning methods in disease prediction using genomic 
data (Table 1). The details of the four studies will be discussed below.

Fakoor et al. [13] is among the first to apply deep learning methods 
to extract key features from gene microarray data in predicting 
cancers. Fakoor et al. [13] compared three auto-encoders methods: 
a sparse auto-encoder with one hidden layer, a stacked auto-encoder 
with 2 hidden layers, and a stacked auto-encoder with fine-tuning. 

Figure 9: Illustration of a denoising auto-encoder. A denoising auto-encoder 
first transforms original inputs into noisy inputs. However, the loss in each 
step of the training process is still computed by the difference between the 
reconstructed representations in the output layer and the original inputs in 
the input layer.
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They first applied PCA to eliminate the effects of redundant and noisy 
dimensions, then applied the three auto-encoders methods to further 
extract non-linearly-correlated discriminating features based on the 
top principal components combined with some randomly selected 
original features, and finally used softmax regression to do classification 
based on the low-dimensional representations (Table 2). Thirteen gene 
microarray datasets were used to compare the performances of deep 
learning methods and two traditional prediction methods: Softmax 
based on the top principal components (PCA+Softmax) or SVM with 
Gaussian kernel based on the top principal components (PCA+SVM). 
The range of sample sizes of the 13 datasets is 20-1,047; the range of 
the numbers of features is 2,000-54,613. Ten-fold cross-validation 
was applied to estimate the average and standard deviation of the 
prediction accuracies and compared the average Accuracy (ACC) of 
the three deep-learning methods with the maximum of the accuracy 
of the two traditional methods. For 8 of the 13 genomic datasets, at 
least one of the three deep learning methods has significantly higher 
average accuracy than the maximum accuracy of PCA+Softmax and 
PCA+SVM. The median [min, max] increase of average ACC is 1.5% 
[0.7%, 8.3%]. The sample sizes of the 8 datasets range from 20 to 1,047. 
However, stacked auto-encoder without fine-tuning usually had much 
worse accuracy than the traditional methods. The stacked auto-encoder 
with fine-tuning achieved the best accuracy in six datasets with ACC 
ranging from 76.67% to 95.15%, while the single-layer sparse auto-
encoder perform the best in 5 datasets with ACC ranging from 46.76% 
to 91.50%.

Tan et al. [27] used denoising auto-encoders to learn compact and 
efficient representations in predicting disease status. Tan et al. [27] used 
the Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC) cohort as the training set (1,424 samples) and the testing 
set (712 samples) and the cohort from The Cancer Genome Atlas 

(TCGA) as the independent evaluation set (547 samples). The DAE 
used in Tan et al. [27] has four layers: an input layer, a corrupted input 
layer, a hidden layer, and a reconstructed input layer. Each node in the 
hidden layer was used to predict disease status (e.g., tumor vs. non-
tumor, or ER+ vs. ER-) depending on whether the node value for a 
sample in the evaluation set is greater than the optimal threshold that 
was obtained based on the discovery set and testing set. Tan et al. [27] 
showed that each of the top three hidden nodes in the discovery set 
could also have high prediction accuracy (>0.9) in the evaluation set 
when they used their method to predict tumor status (tumor sample vs. 
non-tumor sample).

Danaee et al. [28] used SDAE to transform high dimensional, 
noisy RNA-seq gene expression data to lower dimensional, meaningful 
representations, based on which they applied different machine 
learning methods to classify breast cancer samples from the healthy 
control samples. They also identified a set of “Deeply Connected Genes” 
(DCGs) that have strongly propagated influence on the reduced-
dimension SDAE-encoding. Inspired by the classic study that applies 
SDAE to extract features in image data [40] Danaee et al. [28] built an 
SDAE model with four stacked layers of dimensions of 15,000, 10,000, 
2,000, and 500, to obtain representations of genomic features to be fed 
into classifiers. An RNA-seq from TCGA is used to train and validate 
the model in the study. The dataset contains1,210 samples, including 
1,097 breast cancer samples and 113 healthy samples. Danaee et al. [28] 
compared their prediction method with prediction methods based on 
PCA, Kernel PCA (KPCA, a non-linear PCA), the 206 differentially 
expressed genes (DIFFEXP0.05) that were significant at an FDR of 
0.05 in gene-wised tests, and top 500 most significant differentially 
expressed genes (DIFFEXP500). Three classifiers, including a single-
layer ANN, SVM, and SVM-RBF (SVM with a radial basis function 
kernel), were used to do the prediction based on extracted features. Like 

Author: Year Training Testing Method Methods 
compared

classifier CV Performance
Type N P Type N p

Fakoor [13] 13 array-type 
datasets

20-1047 2000-
54675

NA NA NA PCA+SpAE; 
PCA+StAE; 
PCA+StAEf 

PCA (1) softmax 
regression;
(2) SVM with 
Gaussian 
kernel

10-fold ACC ± SE: (33.7% 
± 0.038%)-(97.5% ± 
0.079%)

Tan [27] METABRIC array 
type

2136 2520 TCGA array 
type

547 2520 DAE NA Sigmoid 
activation

10-fold ACC: 75%-99.6%

Danaee [28] TCGA RNAseq 1210 NA NA NA NA StDAE PCA; KPCA; 
DE

ANN; SVM; 
SVM-RBF

5-fold ACC: 96.95%-98.26; 
Sen: 97.21%-98.73%; 
Spec: 95.29%-99.11%; 
Prec: 95.42%-99.17%; 
F-measure: 0.970-0.983

Singh et al. 
[29]

36 array type 
datasets from 
GEMLeR

1545 54676 NA NA NA SSAE KNN; SVM-
RFE

Softmax 
regression; 
random forest; 
linear SVM; 
SVM-RBF

10-fold AUC: 80%-100%; ACC: 
76%-100%

N: number of samples; p: number of features; CV: cross-validation; SpAE: sparse auto-encoder; StAE: stacked auto-encoder; StAEf: stacked auto-encoder with fine-tuning; 
DAE: denoising auto-encoder; SDAE: stacked denoising auto-encoder; SSAE: stacked denoising auto-encoder; DE: differential expression analysis; ACC: accuracy; SE: 
standard error; AUC: area under ROC curve; Sen: sensitivity; Spec: specificity; NA: missing

Table 1: Summary of the four studies that applied deep learning to predict disease status in the genomic research.

Method Description
Regular auto-encoder (AE) Find low-dimensional representation of input using an unsupervised approach (i.e., no outcome information is used)
Sparse AE (SpAE) Restrict the number of hidden nodes to be activated to avoid too many free nodes with complex dependencies in each layer
Stacked AE (StAE) Each hidden layer is a low-dimensional representation of the previous layer obtained by AE
Denoising AE (DAE) Introduce noises to input to make AE more robust to noises
Stacked denoising AE (SDAE) Combine stacked AE and DAE (i.e., introduce noises to input in a stacked AE)
Stacked sparse AE (SSAE) Combine stacked AE and SpAE (i.e., introduce sparse restriction on the stacked AE hidden layers).

Table 2: A summary of different auto-encoders.
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Tan et al. [27], Danaee et al. [28] used a training set and a testing set to 
train classifiers and used a validation set to evaluate the performance 
of the prediction methods. The classification result shows that the low-
dimensional representations by SDAE outperformed other four sets 
of extracted features. For example, SDAE+SVM-RBF had accuracy 
(98.26%), sensitivity (97.61%), specificity (99.11%), precision (99.17%), 
and F-score [49] (0.983). Furthermore, Danaee et al. [28] showed that 
DCGs had slightly lower prediction accuracy than SDAE-extracted 
low-dimensional representations, but much higher prediction accuracy 
than the other methods.

Singh et al. [29] applied a stacked sparse auto-encoder (SSAE) to 
extract features to predict disease status for each of 36 datasets from 
the Gene Expression Machine Learning Repository (GEMLeR) [50]. 
The SSAE used by Singh et al. [29] has three hidden layers. The input 
layer contains top 800 features selected based on Individual Training 
Error Reduction (ITER) ranking. The three hidden layers have 
700, 600, and 500 nodes, respectively. The three classifiers, Softmax 
Regression, kernel SVM, and Random Forest, were applied to the 500 
extracted features to perform binary classification. Singh et al., [29] 
applied 10-cross-validation to estimate the classification accuracy and 
area under the ROC curve (AUC). Compared with the benchmark 
classification results taken from the GEMLeR website [50], the deep 
learning approach achieved slightly higher performance: ACC > 90.8% 
for 35 datasets (ACC>83.7% for all 36 datasets), and AUC>90.2% for 
34 datasets (AUC >79.6 for all 36 datasets).

Software packages for deep-learning-based feature extraction

Since deep learning algorithms usually are complicated, it is 
important to have open-source software packages available so that 
investigators can directly use these packages to their genomic data 
analysis. Both Tan et al. [27]  and Danaee et al. [28] used Theano 
software that provides the implementation of auto-encoder algorithms. 
Fakoor et al. [13] and Singh et al. [29] did not mention the software 
packages that they used for auto-encoding.

Several software packages/libraries are available to build auto-
encoder models and fine-tune model parameters. For example, Scikit_
learn, Theano, Keras, and TensorFlow are Python packages. h2o, kerasR, 
and autoencoder are R packages. MATLAB has a Machine Learning 
Toolbox providing a set of functions for the easy implementation of 
deep learning methods. Wikipedia provides a table of deep learning 
software (https://en.wikipedia.org/wiki/Comparison_of_deep_learning_
software).

Discussion
In this article, we aimed to review all papers that applied the 

deep learning approach to predict disease status based on genomic 
data, which first obtains low-dimensional representations of high-
dimensional genomic features, and then inputs these representations 
to the state-of-art classifiers that have excellent performance in low-
dimensional classification problems. We found only 4 such papers, 
indicating that it is still in its infancy to predict disease status using 
deep learning on genomic data. However, the results of these 4 papers 
showed that the deep learning approach could extract useful genomic 
features from high-throughput whole genome data for prediction 
purpose with high accuracy.

Compared with commonly-used dimension-reduction methods, 
such as PCA and transcript-wise testing, the deep learning approach 
could have better performance in terms of a variety of accuracy 
measurements: ACC, AUC, sensitivity, specificity, precision, and 

F-score. Especially, it is impressive that transcript-wise testing, which 
is currently the most popular approach to identify disease-associated 
transcripts, performed poorly compared with PCA or auto-encoders 
[28]. However, whether the performance of the deep learning approach 
is significantly better than the commonly used approaches was not 
investigated in the 4 papers, among which only Fakoor et al. [13] 
provided standard errors for the estimated ACC. However, Fakoor 
et al. [13] did not provide some key details, such as the number of 
principal components used and the number of randomly selected raw 
features. They also did not provide p-values for testing if the mean ACC 
obtained using a deep learning approach is significantly better than that 
by using the PCA approach. Moreover, Fakoor et al. [13] showed that 
not all auto-encoders could outperform PCA. For example, Table 1 of 
Fakoor et al. [13] showed that for the first dataset, mean ACC (standard 
error) is 74.36% (0.062%) by using PCA+sparse auto-encoder, 51.35% 
(0.019%) by using PCA+stacked auto-encoder, while PCA approach 
had mean ACC 94.04% (SE 0.03%), although PCA+stacked auto-
encoder with fine tuning (95.15% (0.047%)) performed better than 
PCA.

Different auto-encoders were used in the 4 papers, such as sparse 
auto-encoder, stacked auto-encoder, stacked auto-encoder with fine-
tuning, denoising auto-encoder, stacked denoising auto-encoder, and 
stacked sparse auto-encoder. Except Fakoor et al. [13], the other three 
papers did not compare the auto-encoders used in the paper with other 
auto-encoders. Table 1 of Fakoor et al. [13] showed that PCA+stacked 
auto-encoder performed worse than PCA+sparse auto-encoder and 
PCA+stacked auto-encoder with fine-tuning in 12 of the 13 datasets. 
However, neither PCA+sparse auto-encoder nor PCA+stacked 
auto-encoder with fine-tuning could outperform each other in all 13 
datasets. For a fair comparison, it could be beneficial for future studies 
to compare the deep learning methods mentioned above using the 
same datasets.

All four papers mentioned the number of hidden layers and the 
number of nodes in each hidden layer used for the auto-encoders. 
However, no justifications and guidance were given on why choosing 
those specific numbers of hidden layers and those specific numbers of 
nodes in each hidden layer. This is probably one of the main reasons 
why deep learning has not been widely used in the genomic research 
area. There are some existing methods to choose the number of layers 
and nodes, such as (1) starting from a small neural network and adding 
layers and nodes until the error stops decreasing, and (2) starting 
from a big neural network and remove layer and nodes until the error 
increases significantly [51]. Optimization methods such as grid search 
and random search are also proposed and discussed [52] to optimize 
the parameters in model training. However, these methods are still 
not well studied in genomic data analysis and could not eliminate the 
risks of over-fitting and under-fitting. Future research is still needed 
in choosing and optimizing deep learning parameters, especially in 
genomic data analysis.

Another possible reason why deep learning has not been widely 
used in the genomic research area is the lack of software packages that 
implement deep learning algorithms for genomic data analysis. Many 
investigators in genomic research area use the R language and use 
packages in Bioconductor, a repository of R packages specifically for 
genomic data analysis. Although there are a couple of R packages, such 
as keras and kerasR, connecting R to the Keras deep learning library, 
there is lack of examples and tutorials on how to use them to analyze 
genomic data and to visualize the low-dimensional representations 
that are obtained by auto-encoders.
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It is a non-trivial task to interpret the low-dimensional 
representations (features) of the original expression data obtained by 
auto-encoders because the representations are non-linear functions of 
gene transcripts and the hidden layers in deep learning algorithms are 
like “black box” [53]. Among the 4 papers that we reviewed, Tan et al. 
[27] and Danaee et al. [28] suggested interpreting the representations 
based on the transcripts having strongly propagated influence on the 
reduced-dimension auto-encoding. However, no details were given on 
how to select these transcripts, except that these transcripts have high 
edge weights.

To evaluate classification performance, several measurements were 
used in the four papers that we reviewed, including accuracy (ACC), 
area under the ROC curve (AUC), sensitivity, specificity, precision, 
and F-measure. We call a dataset is imbalanced if the number of cases/
positive samples is much different from that of controls/negative 
samples. When the dataset is imbalanced, using ACC could be biased. 
For example, given a dataset with 99% true negative samples and 1% true 
positive samples, a classifier could achieve 99% ACC even if it wrongly 
classifies all the true positive samples to the negative group. Fakoor 
et al. [13] only used ACC as the performance metric, while several 
genomic datasets analyzed in Fakoor et al. [13] are imbalanced. Tan et 
al. [27] also only used ACC to evaluate the performances of different 
prediction methods, while both the training and testing datasets are 
highly imbalanced. For imbalanced data, other performance metrics 
can be used, such as AUC, F-measure, and G-measure [49,54], which 
are less sensitive to the case/control imbalance.

Over-fitting is a big issue in prediction. Using the same data set 
to both train the prediction model and evaluate the performance of 
the prediction model usually causes over-estimation of the prediction 
accuracy. Ideally, a testing set from a population independent of the 
training population is required in evaluating prediction accuracy. 
However, genomic data are usually expensive to collect. Hence, it is 
usually hard to obtain independent testing set in genomic research. 
Thanks to the policy of the National Institute of Health of the United 
States, numerous genomic datasets are now publicly available in the 
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), 
an online repository of genomic datasets. Other public genomic 
repositories are also available, such as TCGA (https://cancergenome.
nih.gov) and GTEx (https://www.gtexportal.org/home/). Hence, 
nowadays it is relatively easy to obtain an independent testing set for 
most complex human diseases. Among the 4 papers that we reviewed, 
only Tan et al. [27] used an independent testing set. The other 3 papers 
used K-fold cross-validation technique to alleviate the over-fitting 
issue.

Genomic data usually contain many sources of technical noise, 
such as batch effects due to that large samples have to be handled in 
multiple batches due to capacity limits of machines. Several methods, 
such as ComBat [55], have been proposed to remove the effects of 
technical batches before downstream data analysis. We can apply 
ComBat to the training set and the testing set, separately. Suppose 
after removing technical noises we build and validate a prediction 
model based on the training set and the testing set, with excellent 
prediction accuracy. Now a new subject’s genomic data are obtained. 
Can we apply the prediction model to this new subject? The answer 
probably is “no”, since we do not know how to remove technical noises 
for only one new sample. One possible solution is to collect genomic 
data for a batch of subjects together. Then we can apply the prediction 
model to subjects in this batch after removing possible batch effects. A 
possibly better solution is to improve technology to reduce technical 

noises. With the advancements in sequencing technology and a rapid 
decline in sequencing costs, DNA sequencing has gained remarkable 
popularity among biomedical researchers. Compared to microarrays, 
DNA sequencing data is believed to deliver faster, more complete, and 
more scientifically accurate genomic analysis [56].

The four deep-learning papers identified in this review compared 
the performances of deep learning approaches with PCA approach and 
transcript-wise test approach. There are many more advanced feature 
selection methods in the literature, such as the stable feature selection 
method [16] and the Boruta algorithm [17]. More comprehensive 
comparisons are warranted.

Recently, the authors [29] improved their results using deep transfer 
learning [57]. Moreover, semi-supervised learning and reinforcement 
learning are receiving a lot of attention to image recognition, gaming, 
and robotics [58-60]. How to apply the frontier deep learning 
innovations to genomic data analysis could be an interesting future 
research topic [61].

Finally, we would like to mention a few related review articles on 
deep learning. All these reviews are pretty broad and do not focus 
on prediction of disease status using genomic data. Ching et al. [61] 
examined applications of deep learning to a variety of biomedical 
problems, including patient classification. They only briefly mentioned 
disease prediction based on autoencoders and cited Tan et al. [27]. Miotto 
et al. [62] reviewed the application of deep learning in the healthcare 
domain and cited Fakoor et al. [13]. Mamoshina et al. [63] reviewed 
the application of deep learning in biomedicine. Angermueller et al. 
[64] reviewed the application of deep learning in regulatory genomics 
and cellular imaging. To the best of our knowledge, our review is the 
first focusing on the prediction of disease status based on deep learning, 
which is an important component in personalized medicine.

Conclusion
In summary, this review showed that applying deep learning to 

find a low-dimensional representation for high-throughput genomic 
data is a promising future trend in disease prediction based on high-
dimensional genomic data. The low-dimensional representation 
obtained by deep learning could capture both linear and non-linear 
relationship among the transcripts. Deep learning is a new technology 
for most scientists in genetics. Scientists in genetics should collaborate 
to understand how deep learning could help predict disease status 
using genomic data, hence to move this field forward.
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