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Introduction
The decipherment of human thought from brain activity, without 

recourse to speech or action, is one of the most attractive and challenging 
frontiers of modern science. In particular, silent speech recognition 
systems (SSRSs) enable speech communication to be needed when 
an audible acoustic signal is unavailable [1]. In addition to “physical” 
SSRSs [2-5], in the “electrical” ones, articulation may be inferred 
from actuator muscle signals or predicted using command signals 
obtained directly from the brain. Especially, the latter could be speech 
prosthesis for individuals with severe communication impairments. 
Electrocorticography (ECoG) recorded during speech production 
attempts have increasingly yielded the decoding of phonemes and 
words [6,7] and artificial speech synthesizers [8,9]. However, the SSRSs 
using non-invasively recorded brain activity, such as scalp-recorded 
EEGs [10-14], functional magnetic resonance imaging (fMRI) [15] and 
functional near infrared spectroscopy (fNIRS) [16], had been still in the 
experimental stage, and limited almost to vowel recognition. Therefore, 
we propose a new scheme for a speaker-dependent SSRS using single-
trial scalp-recorded EEGs for silent vowel recognition, and generalize to 
consonant one in Japanese. The scheme consists of two phases (learning 
and decoding ones). In order to exemplify this scheme, we carried out 
two experiments (Experiments I and II).

Materials and Methods
Subjects, tasks and electrical recordings

Ten healthy student volunteers (two females and eight males; mean 
age: 23.7 ± 1.42 years) participated in Experiment I, whose procedures 

were approved by the Ethics Committee for Human Subject Research, 
Faculty of Computer Science and Systems Engineering, Kyushu 
Institute of Technology. Informed consents were obtained from all the 
students in writing for the procedures prior to the experiment. All the 
subjects were right-handed according to the Edinburgh inventory [17]. 
The subjects were requested to speak “rock”, “paper” or “scissors” (/
gu:/, /pa:/ or /tʃɔki/ in English pronunciation of Japanese, respectively) 
into a microphone (MS-STM87SV, ELECOM CO., LTD., Japan) in the 
learning phase or to silently speak it in the decoding phase, according 
to visual cues. After the subjects gazed for 3 s a point presented at the 
center of a monitor 62 cm away from the subjects, a line drawing of a 
hand indicating “rock”, “paper” or “scissors” was presented for the next 
3 s. Only the fixation point was presented for the next 3 s. Then, when 
the point disappeared, the subjects overtly or covertly spoke “rock”, 
“paper” or “scissors” corresponding to the line drawing presented 
just before (Figure 1). The line drawings were randomly presented 
ten times for each janken. Nineteen active electrodes (AP-C100-0155, 
DIGITEX LAB. CO., LTD., Japan) were affixed to the scalp according 
to the International 10-20 system. Additive six channels were included 
for electromyograms (EMGs) and electrooculograms (EOGs), so that 
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Independent EEG sources obtained by ICA are dipolar [24]. ECDL 
was applied to the reconstructed EEGs, namely the projection of each 
of the rest ICs on the scalp surface by the deflation procedure, using 
“SynaCenterPro” (PC-based commercial software for multiple ECDL) 
(NEC corporation). This software estimates unconstrained dipoles at 
any timepoint [25], using the three-layered concentric sphere head 
model by the nonlinear optimization methods [26]. An unconstrained 
dipole was estimated at any timepoint with maximal peak or trough in 
the EEGs reconstructed by the deflation procedure for each IC. 

Here, we searched for appropriate and reliable dipole solutions, by 
selecting localization results only with goodness of fit (GOF) of more 
than 90% and with the simplified confidence limits (CLs) of less than 1 
mm, by restricting to the results with no drastic change in the brain sites 
where the unconstrained dipoles are located at least twenty successive 
instants including the peak or trough, and by excluding the ECDL 
results localized to the cerebral ventricles and the corpus callosum.

Anatomical labeling of the brain where ECDs were located, using 
the Japanese brain atlas for a single subject, was automatically carried 
out in the following: each subject’s MRI was transformed into the atlas, 
then the estimated ECDs were projected onto the atlas by this non-
linear transformation, and finally anatomical labels on the atlas were 

face, mouth and eye movements were monitored. The EEGs recorded 
at each electrode were fed to an amplifier (Polymate AP1132, DIGITEX 
LAB. CO., LTD., Japan) with 10000 gain and a notch filter of 60 Hz. 
The amplified EEGs were sampled at a rate of 1 kHz during an epoch 
of 3 s preceding and 3 s following each stimulus presentation. The on-
line A/D converted EEG data was immediately stored on a hard disk 
in a personal computer (Figure 2). Note that speech signals collected 
by the microphone were digitalized and, if necessary, down sampled 
by Audacity (a free software for recording and editing sounds: http://
audacity.sourceforge.net/), and transformed into spectrograms by 
WaveSurfer (a free audio and video software: http://www.speech.kth.
se/wavesurfer/). 

Six healthy student volunteers at the age of 23 to 27 (one female) 
participated in Experiment II, where a landscape photograph being 
associated with “spring”, “summer”, “autumn” or “winter” was 
presented. Task paradigm and time-scheduling of speech signals, EEGs 
and EMGs were the same as in Experiment I, except for 13-ch EEG 
recordings (F3, F5, F4, F6, F7, F8, FC3, FCz, FC4, C3, Cz, C4, POz). 

Grand averages

The grand average for the actual janken was obtained by the 
summation time-locked to the EMG onsets of the speech signals, 
and one for the silent tasks time-locked to average EMG onset of the 
signals for each task and subject. About 900 epochs were used for these 
grand averages, because three sessions were carried out, each of which 
included 10 trials for each janken. In the latter task, the EEGs were 
eliminated from the averaging if the subjects overtly spoke by mistake.

ICA and ECDL

In the learning phase (Figure 3), independent component analysis 
(ICA) was applied to the single trial EEGs obtained. ICALAB: http://
www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/; was used to 
apply the fast fixed-point ICA algorithm to the 19-ch EEGs, together 
with a MATLAB toolbox [18]. Then, independent components (ICs) 
were extracted so that their equivalent current dipole source localization 
(ECDL) solutions were localized to the primary motor and premotor 
cortices, supplementary motor area (SMA) and/or Broca’s area (BA) 
(Figure 4), with reference to the previous neuroimaging studies during 
overt articulation related to speech production [19-23].

Figure 1: Task paradigm and time-scheduling of speech signal, EEG and 
EMG recordings.

Figure 2: Experimental system for the measurements of EEGs, EOGs, EMGs 
and electrode.

Figure 3: Learning phase in our SSRS.

http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
: http:/www.speech.kth.se/wavesurfer/
: http:/www.speech.kth.se/wavesurfer/
http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/
http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/
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determined [27]. Less electrode configurations in Experiment II were 
selected so that it would be easier to obtain BA-ICs, on the basis of the 
recent finding [28].

Kalman filter

Next, according to the hypothesis, assumed in Directions Into 
Velocities of Articulators (DIVA) model [8,29], that neurons in the left 
ventral premotor cortex present intended speech sounds in terms of 
formant frequency trajectories and projections from these neurons to 
the primary motor cortex transform the intended formant trajectories 
into motor commands to the speech articulators, the relationship 
between the extracted ICs and spectrograms of the speech signals was 
described by a Kalman filter. The filter was given by

1t t tx Ax w−= +

 ( )ijA a= ,

where the parameters A, C, w and v were those to be estimated [30], 
where xt is the two-dimensional vector consisting of the first (F1) and 
second (F2) formant frequencies, yt is the one-dimensional vector 
representing one IC, the matrix A describes the relationship between 
past and future formant frequencies, C describes the expectation of the 
reconstructed EEGs given a set of formant frequencies and the error 
terms wt and vt are white Gaussian random variables. 

In the decoding phase (Figure 5), the inputs to the Kalman filter 
specified in the learning phase were the ICs whose dipole solutions were 
located at the premotor cortex, SMA and/or Broca’s area, according 
to the previous neuroimaging studies related to silent speech [19,31-
34], and the filter estimated spectrograms for the silent speeches using 
the so-called Kalman filter algorithm [35]. The 0 ms on the EEGs was 
defined to be average EMG onset in the learning phase for each subject 
(Figure 5).

HMM construction

The above SSRS for silent janken was constructed in terms of 
vowel recognition. Therefore, for example, spring (“haru” in English 
pronunciation of Japanese) and summer (“natsu” in English one) 
could not be discriminated by the SSRS, because the vowel transitions 
are the same. In order to cope with this problem, Experiment II was 
designated. In the learning phase for Experiment II, speech signals 
were transformed into vowel and consonant sequences, and these 
transitions were learned by hidden Markov model (HMM), in addition 
to spectrograms. In the decoding phase, the inputs to the HMM are 
spectrograms estimated from the Kalman filter specified in the learning 
phase. Which season was silently spoken was determined by the 
maximal likelihood amo ng each HMM output in the following. 

For example, the present “spring”-HMM is the left-to-right one 
shown in Figure 6, and is characterized by the following: (i) N is the 
number of states in the model; (ii) M is the number of output vowel 
and consonant; (iii) ( )ijA a= , the transition matrix of the underlying 
Markov chain, where aij is the probability of making a transition from 
state i to state j; (iv) ( )j tb x  is the probability of outputting digitalized 
speech signal xt in state ( )  =( ),  = 1,2,.;  ..... ,ij v i Nπ π  the initial state 
probability vector. Figure 6 exemplifies N=5 and M=4. In the learning 
phase, each vowel and consonant occurrence is segmented into N states. 
This segmentation is achieved by finding the optimum state sequence, 
via the Viterbi algorithm with ( )j tb x  modeled by Gaussian mixture 
densities, in addition to the initialization of πi and aij. Parameters in the 
densities are estimated from spectrograms for ten actual speech trials 
after K-means clustering [36]. That is, for i=1, 2,…, N,

{ { }
log (t 0)

'( ) max '( 1) log ( ) ( )

i

ji j tj
f i,t f i,t - a b y t = 1,2,.....,T

π =

= +

Figure 4: A representative ECDL result for one IC extracted from one single trial EGGs, where one dipole (Blue arrow) was localized to the Broca’s area.
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are calculated, then a maximum log-likelihood

max ' ( ,T)
iiq F

L f i
∈

= L 

is obtained [36], where F is a set of final states. Thus, the HMM parameters 
were initialized by the Viterbi algorithm and then re-estimated by the 
Baum-Welch algorithm. These procedures were carried out by HTK (a 
portable toolkit for building and manipulating HMMs in C: http://htk.
eng.cam.ac.uk/). In the decoding phase, a silently spoken season was 
assumed to be maximal among each season-HMM likelihood value for 
the predicted spectrogram from the Kalman filter.

Results
Grand averages

Figure 7 shows the grand averages for the actual and silent janken 
tasks. This figure reveals similar BP-like component both for the actual 

and silent speeches, while motor potential (MP)-like ones [37] for only 
the actual one. Therefore, for both the tasks, we should pay attention to 
Bereitschaftspotential (BP)-like components [38]. 

Correlation coefficients

We statistically examined the hypothesis in the DIVA model for 
our SSRS. From the correlation coefficients, with the minimal P-values, 
for all the tasks by all the subjects, between each formant frequency 
and the IC, it followed that significant correlations were found for 
both F1 (r=0.62~0.88, p ≤ 6.00 × 10-15 for “rock”; r=0.64~0.94, p ≤ 7.64 
× 10-13 “paper”; r=0.54~0.95, p ≤ 3.27 × 10-13 for “scissors”) and F2 
(r=0.65~0.92, p ≤ 7.55 × 10-15 for “rock”; r=0.60~0.98, p ≤ 2.83 × 10-11 
for “paper”; r=0.68~0.92, p ≤ 7.88 × 10-15 for “scissors”) except for one 
subject (DK) (Table 1), thus confirming the hypothesis. The Kalman 
filter parameters were calculated by using one pair of the ICs and the 
spectrogram, whose correlation coefficient had the minimal P-value.

Figure 5: Decoding phase in the present SSRS.

Figure 6: Representation of the present left-to-right HMM with six states.

http://htk.eng.cam.ac.uk/
http://htk.eng.cam.ac.uk/
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Estimated spectrograms for the silent janken

As the training performance, in case of one subject, diagonal parts 
of Figure 8 show the predicted spectrograms in the F1-F2 plane for 
the silent “rock”, “paper” and “scissors” with ellipsoidal distributions 
of five Japanese vowels [39]. In case of “rock” (/gu:/) and “paper” (/
pa:/), when the formant frequency trajectories reach the /u/ and /a/ 
regions, respectively, the predictions were considered to be correct, 
while, in case of “scissors” (/tʃɔki/), the trajectory was regarded as right 
if it passed through the region /o (ɔ)/ then the distribution /i/. In terms 
of Japanese pronunciation, a main difference between “scissors” and 
the others is that the former has two different vowels, and the latter 
one. To incorporate this difference in the Kalman filter algorithm, the 
initial values of the covariance matrix [35] were set to be variances of 
F1 and F2 and their covariance. Figure 9 plots all the spectrograms 
for each janken in the F1-F2 plane, including the covariance matrices. 
Note that the covariance for “scissors” was much larger than those for 
“rock” and “paper”. The diagonal parts of Figure 8 shows the outputs 
from the Kalman filter algorithm with the initial values (V) depicted in 
Figure 9, and all indicates the correct predictions. The same tendencies 
as in Figure 8 were obtained for all the rest subjects. The rest of Figure 
8 exemplifies the misapplication of our predictors. For example, the 
“rock” predictor correctly estimated only for the silent “rock” EEGs.

Generalization to silent consonant recognition

Table 2 shows a confusion matrix for the silent “season” tasks in 
terms of HMM log-likelihood values. For example, at the first row (Silent 
“spring” EEG), for the estimated silent “spring” spectrograms, the log-
likelihood of the “spring”-HMM was higher than those of the other-
HMMs. The other rows demonstrate the same tendency. Therefore, if 
higher log-likelihood values are accepted, it could be demonstrated that 
these HMMs work well. As a preliminary result, the accuracy was 86% 
(“spring”), 29% (“summer”), 43% (“autumn”) and 100% (“winter”) for 
one subject. 

Discussion and Future Outlook
In order to decode silent speeches from single trial EEGs, we used 

Kalman filters for the vowel recognition, and HMMs for continuous 
speech one including consonants. The performance of the present 
Kalman filters might be improved in the following.

Three-dimensional kalman filter

By constructing three-dimensional Kalman filter, that is, involving 
F3, we obtained more discriminative results for the silent “rock” and 
“paper” tasks (Figure 10 (A) and (B), respectively).

Figure 7: Grand averages of the 19-ch EEGs recorded during the actual (Blue line) and silent (Red one) janken tasks.

Table 1: Correlation coefficients between each formant frequency (F1 and F2) and the IC, where the width of a time window is 300 ms, and the starting time for the 
calculations. IC1 or IC2 depicts the starting time (in ms) in the IC for the calculation of correlation coefficients (r), with the minimal P-values, between the IC and F1 or F2, 
where, in this table, 0 ms is defined to be 400 ms before the EMG onset. FF1 or FF2 represents the starting time (in ms) in the F1 or F2 for the calculation.

Rock Paper Scissors
Subjects IC1 FF1 R IC2 FF2 r Subjects IC1 FF1 R IC2 FF2 r Subjects IC1 FF1 R IC2 FF2 r

DK 97 172 0.82 290 91 0.77 DK 161 175 0.85 189 143 0.85 DK 245 192 0.78 236 134 0.68
HT 271 249 0.76 264 156 0.84 HT 75 77 0.81 21 1 0.86 HT 270 257 0.81 251 251 0.88
ST 185 185 0.81 197 15 0.92 ST 297 47 0.91 205 286 0.94 ST 213 98 0.95 226 229 0.92
MS 246 62 0.75 212 207 0.78 MS 258 19 0.94 281 42 0.98 MS 118 20 0.81 204 204 0.79
KY 106 43 0.83 75 50 0.79 KY 98 61 0.88 96 231 0.94 KY 190 292 0.81 116 116 0.79
TS 183 12 0.80 233 205 0.83 TS 50 277 0.86 59 213 0.83 TS 261 34 0.79 251 251 0.82
KM 273 54 0.88 152 205 0.83 KM 208 274 0.88 143 143 0.77 KM 226 300 0.88 122 122 0.74
SS 166 301 0.62 268 301 0.69 SS 140 167 0.64 4 24 0.60 SS 174 259 0.65 35 35 0.66
HI 65 112 0.71 278 100 0.65 HI 30 7 0.79 23 265 0.77 HI 84 192 0.54 84 84 0.56
KT 149 169 0.78 1 165 0.79 KT 158 301 0.88 100 104 0.78 KT 160 11 0.86 132 132 0.70
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Figure 8: A confusion matrix of the three silent janken predictors for one subject.

Table 2: A confusion matrix for the silent “season”-HMMs.

Silent “Spring” EEG Silent “Summer” EEG Silent “Autumn” EEG Silent “Winter” EEG
“Sring”- HMM -2844 -5749 -4663 -6441

“Summer”- HMM -2878 -4246 -4246 -6064
“Autumn”- HMM -3377 -5429 -4204 -6055
“Winter”- HMM -3310 -5940 -5609 -5510

Figure 9: Spectrograms in the F1-F2 plane, obtained from the speech signals during the actual janken tasks: (A) “rock”; (B) “paper”; (C) “scissors”. Each 
task includes 30 trials.
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from speech signal database (e.g., Speech Resources Consotium: http://
research.nii.ac.jp/src/en/).

Future research

Since Japanese has syllable-timed rhythm [42], the present method 
could be easily generalized to all the pairs of hiraganas. However, 
because the present results are limited to the training performance, 

Figure 10: Spectrograms (Black points) predicted from the three-dimensional 
Kalman filter for the EEGs recorded during the silent janken tasks: (A) “rock”; 
(B) “paper”.

Kalman filter using two ICs

Intrinsically, vowels and consonants are known to be processed by 
distinct neural mechanisms [40]. For example, vowels and consonants 
increased activation in right middle temporal and frontal areas, 
respectively [41]. Tentatively, we constructed a Kalman filter with one 
IC whose dipole solution was located at the temporal area, in addition 
to the frontal-area-dopole IC, in the learning phase, and then the silent 
“haru” spectrogram was estimated in the learning phase. Figure 11 (A), 
(B) and (C) show spectrograms obtained by the Kalman filter with 
only one IC, that with the above two ICs and that with two ICs whose 
dipoles were localized to the other areas, respectively. Figure 11 (B) 
revealed the best performance.

Practical problem

In practice, it is unknown during which silent task EEGs were 
recorded. So, using all the estimated spectrograms that were obtained 
by all the KFs with such EEGs, all the HMMS outputted log-likelihoods. 
Table 3 shows a confusion matrix for one trial by one subject. This table 
indicates that the present method worked well.

Even if EEGs would be able to be recorded when a subject attempted 
to voice, speech signals might not be measured. In this case, we could 
obtain the speech signal by a person physically fitted to the subject 

Figure 11: Spectrograms obtained from the Kalman filter with only one 
IC (A) that with two ICs corresponding to Broca’s (B) Wernicke’s areas 
and (C) that with two ICs whose dipoles were located at the other areas.

Table 3: A confusion matrix for the “spring”- and “summer”-HMMs with respect to 
log-likelihoods in case of unknown silent speech EEGs.

“spring”-KF “summer”-KF
“spring”-

HMM “
“summer”-

HMM
“spring”-

HMM
“summer”-

HMM
silent “spring”-EEG -3033.3 -3136.1 -3196.4 -3160.6

silent “summer”-EEG -5819.5 -4916.0 -5018.0 -4718.4

http://research.nii.ac.jp/src/en/
http://research.nii.ac.jp/src/en/
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proper testing of our method must be done in future. Moreover, there 
are several parameters affecting the present algorithm, such as EEG 
intervals which ECDL is applied to, EMG onset, speech signal features, 
and so on. For example, it is hoped to generalize the present framework 
to continuous silent speech recognition using cepstra.
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