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Commentary
Cancer cell signalling is complex and involves multiple interacting

signals that concertedly drive disease progression in ways we do not
understand. These signalling interactions occur not only in
transformed cells but also between diverse cells in the tumour mass,
leading to more aggressive and harder to treat cancers [1-7].
Fundamental questions about how these signalling events are initiated
and integrated in cancer cells to achieve these effects remain largely
unanswered. Addressing these questions will not only broaden our
understanding of cancer biology but It also has the potential of
highlighting signalling vulnerability that can be leveraged for
designing effective therapies.

Oncogenic Ras mutations are prevalent in cancers and give rise to
aggressive cancers via an intricate signalling network [8,9]. Animal
models have been instrumental in dissecting signalling dynamics in
development and diseases. Genetic studies in fruit flies and worms led
to the characterization of the evolutionarily conserved Ras mitogen
activated protein kinases (Ras/MAPK) signalling cascade during
normal development [10-17]. Interestingly, targeting components of
the Ras/MAPK signalling cascade in oncogenic Ras cancer cells only
shows a modest suppressive effect on overgrowth, indicating that
oncogenic Ras signalling does not merely amplify RAS/MAPK signals
but rather it elicits signalling modalities that are distinct from normal
Ras signalling.

We have been using a Drosophila tumour model to better
understand the molecular underpinnings of oncogenic Ras-mediated
tumour overgrowth and metastasis. This effort has led to the
unexpected discovery of cell-intrinsic as well as cell-cell signalling
interactions [2,7,18,19]. In [18], we address two long standing and
puzzling observations highlighting the complexity of oncogenic Ras
signalling: on the one hand, oncogenic Ras signalling requires its
upstream receptor, Epidermal Growth Factor Receptor (EGFR) to exert
its cancer promoting effect cancers [20-23], which could not be
explained with our understanding of canonical EGFR/Ras signalling.
How can the action of an activated molecule require the function of its
upstream receptor? On the other hand, EGFR/Ras and Hedgehog (Hh)
signalling are co-activated and cooperate in cancers [24-27]. Molecular
mechanisms explaining why EGFR is required or how Hh is activated
to cooperate with oncogenic Ras were unclear. Excitingly, we found
that oncogenic Ras stimulates the transcription and secretion of EGF
to recruit EGFR function. Surprisingly, rather than signalling via the
known canonical EGFR signalling pathway, EGFR acts via the small G-

protein and vesicle trafficking regulator ADP-Ribosylation Factor 6
(ARF6). ARF6 routes and stabilizes Hh on signalling competent
endosomes to protect Hh from entering the degradation pathway. This
ARF6-dependent control of Hh trafficking triggers Hh activation,
which in turn synergizes with oncogenic Ras signalling to cause robust
tumour overgrowth. Consistent with this mechanism, inhibition of
EGFR or ARF6 causes Hh protein to be routed to the degradation
pathway. In addition, depleting EGF or blocking EGFR function
suppresses oncogenic Ras tumour overgrowth. More importantly,
ARF6 or Hh knockdown prevents oncogenic Ras-mediated overgrowth
in both fly and human cells. Notably, partial reduction of Hh protein
levels was sufficient to significantly suppress oncogenic Ras-mediated
tumour overgrowth, arguing for synergy between Hh and oncogenic
Ras signalling. Taken together, this work provides the first unifying
mechanism that explains both, the surprising role for EGFR in
oncogenic Ras-mediated overgrowth and the oncogenic cooperation
between EGFR/Ras and Hh signalling.

EGFR’s role in oncogenic Ras signalling is likely tissue and/or
context-dependent because its inhibition shows variable effects in
different cancer types [20,23,28]. Oncogenic Ras signalling recruitment
of EGFR function is intriguing not only because it defies our previous
understanding of the EGFR/Ras signalling cascade but more
importantly because it represents a mechanism for oncogenic Ras to
engage ARF6 and control the cellular trafficking of pro-growth ligands
in order to facilitate oncogenic synergy. EGFR’s regulation of ARF6
likely affects the cellular trafficking of several other ligands and thus
impacts multiple pathways. Consistent with this, ARF6 also controls
the cellular transport of β-catenin and of the G protein subunit α q
(GNAQ) to drive melanomas [29]. Therefore, ARF6 represents a
molecular switch for the activation of diverse signals, which in turn
cooperate with oncogenic Ras to promote tumourigenesis.
Consequently, ARF6-targeted therapies offer a simpler strategy for
modulating several cancer-relevant pathways all at once.

In addition to intracellular transport, oncogenic Ras signalling
controls the secretion machinery to cell-intrinsically suppress tumour
cell apoptosis and to elicit tumour-host cells signalling interactions
that accelerate tumour overgrowth. We previously showed that on the
one hand oncogenic Ras stimulates the secretion machinery to
facilitate cellular clearance of the apoptotic ligand Tumour Necrosis
Factor (TNF) and thus avert apoptosis. On the other hand, tumour-
derived TNF triggers JNK (Janus NH2-terminal Kinase) signalling in
the surrounding wild-type cells, which in turn stimulates the secretion
of JAK/STAT (Janus kinase/Signal transducers and activators of
transcription) ligands in the tumour milieu. This leads to the activation
of JAK-STAT signalling in Ras tumour cells and results in robust
tumour overgrowth2. The secretion machinery is conserved and its

Xu and Chabu, J Cancer Clin Trials 2017, 2:4

Commentary Open Access

J Cancer Clin Trials, an open access journal Volume 2 • Issue 4 • 1000137

Journal of Cancer Clinical TrialsJo
ur

na
l o

f Cancer Clinical Trials



deregulation has been implicated in various human cancers types,
including Ras cancers [30-34], suggesting a broadly relevant
mechanism for promoting cancer progression and highlighting a
potential opportunity for therapy strategies.

In summary, together with our previous work, the focus study
demonstrates that oncogenic Ras signalling achieves its characteristic
complexity partly by controlling intracellular trafficking and cellular
secretion. More broadly, the above studies collectively illustrate how
one oncogenic mutation can, independent of any additional genetic
lesions, trigger and incorporate other oncogenic signals in cancer cells.
This has implications for how gene mutational status data are
interpreted in cancer diagnostics or in cancer molecular
characterization studies.
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