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Abstract

Introduction: Perioral tissue loss commonly requires surgical reconstruction. Autologous tissue transfer result in
poor functional and aesthetic outcomes and allogenous transplantation of tissue requires lifelong
immunosuppression. There is a clinical need for a cell scaffold, which could be seeded with the patients own cells to
create an immunogenically inert perioral tissue replacement. Decellularized human lip may provide the answer.

Methodology: To the authors knowledge this was the first time human lip has been decellularized. Four existing
protocols shown to be successful at removing cells from either muscle or dermis were used to decellularize human
lip in an attempt to identify an optimal protocol.

Results: Three of the four protocols proved to be successful at achieving decellularization of the lip, as
histological investigation of these samples showed complete loss of cellular structures for the entire construct. A
non-detergent based protocol using osmotic shock and enzymatic processes best preserved the extracellular matrix.
It was able to maintain the micro-architecture of collagen and elastin, and retain important signaling molecules such
as glycosaminoglycans.

Conclusion: This decellularized scaffold developed here may be the first step towards an exciting new treatment
for perioral tissue loss.
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Introduction
The human lip is a complex structure, essential for communication

and in the function of the oral sphincter during swallowing and
imbibition. During surgical reconstruction of the lip, restoring the
cosmetic appearance, as well as the functional integrity is important.
Even a millimetre step in the alignment is noticeable at conversational
distances, having a significant impact on self-esteem and quality of life
[1].

Perioral tissue loss has many causes including neoplasm, trauma
and congenital deformities. Conventional techniques for perioral
reconstruction such as direct closure, local flaps and distant free flaps,
are adequate for small areas of tissue loss but for larger defects they
often give unsatisfactory results [2-5]. Surgeons acknowledge that once
lost, the central part of the upper lip cannot be fully restored by any
conventional surgical technique [6]. Allogenous face transplantation
provides an alternative treatment option [7], however it has its
drawbacks. Finding suitable donors can be a long process and
recipients are required to take lifelong immunosuppression, which
causes significant morbidity [8].

A tissue engineered construct capable of mimicking the functional
and aesthetic traits of the human lip, whilst also being
immunogenically compatible with the host, would provide a major
breakthrough in facial surgery and benefit a vast number of patients

clinically. Decellularization of human lip has the potential to create
such a scaffold.

Decellularized natural scaffolds are already used clinically for the
reconstruction of dermis, cardiac valves and the urinary bladder
[9-12]. Promising work is also underway to develop acellular scaffolds
for dynamic organs such as the heart and skeletal muscle [13-16]. To
the authors knowledge no attempts have been made to date to
decellularize the human lip. Decellularization of the entire lip would
require a protocol capable of removing cells from skeletal muscle and
the surrounding soft tissue including the dermis of the skin, vermillion
and mucosa.

The bulk of the lip is made up of Orbicularis oris a complex skeletal
muscle. It muscle fibres have a unique orientation and are suspended
from the surrounding muscles without any bony attachments.
Decellularized muscle seeded with myoblasts has been shown to be
capable of generating a contractile force on electrical stimulation [17].
However decellularization of muscle has so far been limited to very
small muscles or fragments of muscle and in vivo successes are limited
to small animal models [18-22].

There are already a number of commercially available acellular
dermal scaffolds. These products have found many uses in clinical
applications such as burns dressing [9], abdominal wall repair, breast
surgery facial reconstruction and intra-oral mucosa reconstruction
[23-28]. Decellularization of dermis first involve the removal of the
epidermis, which can be achieved by using a hypertonic saline solution
or an enzymatic method [10,29,30]. The remaining dermis is
decellularized using either detergent or enzymatic methods. The
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resulting scaffolds have been repeatedly shown to be non-
immunogenic and capable of supporting cell proliferation.

Methodology

Overview of Study Design
As this was the first attempt at decellularization of the lip, samples

were subject to four existing protocols, in an attempt to identify an
optimal method for decellularizing this complex structure.

Two protocols were based on existing research into
decellularization of skeletal muscle: a protocol by Wang et al. which
has been used to successful decellularization porcine rectus abdominis
muscles and a protocol by Gillies et al. which avoids the use of
detergents relying instead on osmotic shock and enzymatic methods
only for removal of cells from the tibialis anterior muscle in mice
[14,16].

The remaining two protocols were based on existing research into
the decellularization of dermis: a protocol by Livesey et al. and Walter
et al. used on porcine skin and cadaveric skin respectively and a
protocol based on Chen et al. used to decellularize porcine dermis
[10,29,30].

The protocols were all initially designed for smaller structures then
the slices of human lip used in this study, therefore if after the first
cycle the protocol had not achieved complete decellularization of the
tissue, then a second cycle of the protocol was be carried out.

Tissue Harvest
All experiments were carried out in accordance with the Human

Tissue Act (2004). Samples were obtained from fresh frozen humans
cadavers and stored at minus 80°C. The tissue was thawed at room
temperature and hair from the upper lip was removed using Veet® hair
removal cream. The upper lip was then harvested along its anatomical
surface markings, from 4 individuals (3 male and 1 female), with an
age range between 63 and 75. The lips were sliced into 5 mm thick
cross-sectional slices, transverse to the muscle fibres using a sharp
scalpel. The slices used for the experiment were taken from the portion
of the lip immediately lateral to the philtral ridge (within 2 cm of this
landmark). These slices were then divided into 5 groups (A, B, C, D
and control). Groups A, B, C and D were each subject to a separate
decellularization protocol, detailed below. The control group was
frozen at minus 20°C until processing.

All further steps were carried out at room temperature and under
agitation unless otherwise stated. After decellularization the sampled
were stored at minus 20cC prior to analysis.

Protocol A
Samples were frozen at minus 80°C and thawed rapidly at 37°C for

3 cycles and washed in distilled water for 2 days. These samples were
treated with 0.5M sodium chloride for 4 hours, followed by 1 M
sodium chloride for 4 hours, and washed in distilled overnight. The
hypotonic/hypertonic solution steps were repeated once. The samples
were treated with 0.25% trypsin/EDTA at 37°C for 2 hours; washed in
distilled water for 1 hour; treated with 1% Triton X-100 for 5 days (one
change every day); DNase at 37°C for 3 hours; washed in distilled
water for 2 days and rinsed in PBS for 1 day [16].

Protocol B
Samples were thawed rapidly at 37°C and incubated in 50nM

Iatunculin B in high-glucose Dulbecco’s modified Eagle’s medium for
2 hours at 37°C; 0.6M potassium chloride for 2 hours; 1.0M potassium
iodide for 2 hours and washed in distilled water overnight, before the
potassium chloride and potassium iodide steps were repeated. Tissue
was incubated with DNase I (1kU/mL) for 2 hours and washed in
distilled water for 2 days (daily water change). Samples were washed
twice with distilled water for 15 minutes between each step [14]. After
one cycle it was evident on histological examination that
decellularization was not achieved. Therefore the protocol was
repeated.

Protocol C
Samples were frozen at minus 80°C and thawed rapidly at 37°C in

saline. They were then treated with 1M sodium chloride for 24 hours
at 37°C; 0.5% SDS for 1 hour and washed extensively with PBS.
Samples were also washed twice with distilled water for 15mins each
between each step. After one cycle it was evident on histological
examination that decellularization was not achieved. Therefore the
protocol was repeated.

Protocol D
Samples thawed rapidly at 37°C and incubated with 0.25% trypsin

solution for 42 hours with a solution change at 18hours. Samples were
then washed with 0.1% sodium dodecyl sulphate (SDS) at room temp
for 12 hours, followed by Dipase I 560U/l for 12 hours and SDS 0.1%
again for 12 hours. Between each step the samples were washed in two
changes of PBS for 15 minutes each [30].

Histology and Fluorescence Studies
Samples were fixed in formalin for 24 hours and paraffin-embedded

following standard protocol. The middle one third of each sample was
used to produce 5 μm sections manually using a microtome. Samples
were stained using standardised protocols for hematoxylin and eosin
stain (H&E); millers and picro-sirius red stain; alcian blue with
periodic acid–schiff stain; and DAPI for florescence studies.

Results

Removal of Cells
To assess the effectiveness of each decellularization protocol at

removing cells, the samples were stained with H&E to reveal any
remaining nuclei (Figure 1 and Figure 2). Each tissue type in the lip
was looked at in detail to check for remaining cells. No nuclei were
visible for samples treated with protocol A and D suggesting complete
decellularization had been achieved.

Samples treated with protocol B showed significant reduction in
nuclei however a few nuclei were still evident (Figure 3). This may
represent satellite cells that are more resistant to decellularization[14].
Dark staining was also visible on the peripheries of the dermis in these
samples. For this reason the protocol was repeated and after the
second cycle (protocol B2) no nucleic structures were visible in any
part of the tissue.
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Figure 1: H&E staining of the skin (Original magnification x10):
Control-visible nuclei in all skin layers; Protocol A-no visible
nuclei; Protocol B-no visible nuclei, however nonspecific
haematoxylin staining in epidermis; B2 (second cycle B)-no nuclei;
Protocol C-visible nuclei in all layers; Protocol C2 (second cycle C)-
nuclei number reduced still visible; Protocol D-No nuclei visible
0.Srmn 0.5mm.

Figure 2: H&E staining of muscle (Original magnification x10)
Control-visible nuclei; Protocol A-no visible nuclei; Protocol B-
Occasional visible nuclei; B2 (second cycle B)-no nuclei; Protocol
C-visible nuclei; Protocol C2 (second cycle C)-visible nuclei;
Protocol D-No nuclei visible

These findings were confirmed with DAPI studies (Figure 3 and 4).
Samples treated with protocol B2 and D showed no fluoresces in the
entire structure. Protocol B showed minor areas of florescence mainly
in the periphery but no evidence of discrete nuclei. Interestingly even
though no nuclei were present on H&E staining after protocol A, on
DAPI staining for nucleic structures there was significant florescence

visible throughout the tissue. However, this florescence was not
contained within discrete nuclei as demonstrated by higher
magnifications images (Figure 3). This may represent incomplete
clearance of cellular matter following cell lysis or may represent
artefact.

Figure 3: DAPI of skin (main images original magnification x10,
insert images x40): Control-visible nuclei, insert demonstrates
discrete appearance of nuclei. Protocol A-no discrete nuclei,
however non-specific fluorescence throughout tissue; Protocol B-
Occasional nuclei; B2 (second cycle B)-no nuclei; Protocol C and
C2 (second cycle C)-nuclei visible; Protocol D-No nuclei visible.

Figure 4: DAPI staining of muscle (Original magnification x10)
Control-visible nuclei; Protocol A-no visible nuclei, non-specific
fluorescence pattern; Protocol B-Occasional visible nuclei; B2
(second cycle B)-no nuclei; Protocol C-visible nuclei; Protocol C2
(second cycle C)-visible nuclei; Protocol D-No nuclei visible
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Nuclei were evident throughout the samples treated with protocol
C, even after it was repeated (C2). This protocol was not successful at
achieving decellularization.

Decellularized ECM Composition and Structure of Skin
Samples were stained with Millers and Picro-sirius Red stains to

assess the microstructure of the ECM. The resulting images show
collagen as red, elastin as purple and nuclei as dark blue/black.
Looking at the epidermis, protocol A and D were successful at
achieving compete removal of this cellular layer. Protocol B showed
some disruption to the epidermis and B2 showed further areas of
disruption with large portions completely removed (Figure 5).
Protocol C and C2 showed complete detachment of the epidermis
however as it was not physically removed from the surface the
remnants are still visible in the slides.

Figure 5: Areas of disruption with large portions completely
removed

There was some degree of disruption to the ECM of the dermis and
hypodermis with all protocols. Protocol A resulted in almost complete
loss of elastin content and disruption collagen microstructure.
Protocol D also resulted in significant loss of elastin from the skin,
however the collagen content and microstructure appeared better
preserved. Protocol B2 maintained much the elastin structure and
collagen content was generally well maintained but its microstructure
somewhat disrupted. As protocols B, C and C2 did not achieve
complete decellularization they will not be discussed further.

Protocol B2 appeared to have a minor effect on GAG content whilst
both protocols A and D caused significant removal of GAGs from the
skin (Figure 6).

Decellularized ECM Composition and Structure of Mucosa
and Vermillion

Protocols A, B, B2 and D resulted in de-epithelialisation of the
mucosa. The underlying collagen matrix of their dermis was severely
disrupted with protocol A with a significant loss of elastin content.
However the microstructure was remained relatively well preserved
with protocols B2 and D (Figure 7). The GAG appeared to be most

disrupted in the mucosa by protocol D, with less detrimental effects
caused by A and B2.

Figure 6: Removal of GAGs from the skin.

Figure 7: Microstructure well preserved with protocols B2 and D.

Decellularized ECM Composition and Structure of Muscle
The collagen and elastin content and ECM architecture of skeletal

muscle was severely affected by protocol A, with large holes in the
tissue as demonstrated in Figure 8. There was less disruption to these
structures with protocol B2 and D in which the microstructure of the
ECM was relatively well maintained. The GAGs again were largely
removed by protocol A but better preserved by protocol B2 and D.

Macroscopic Appearance of Tissue
Protocols A and D resulted in expansion of the tissue, loss of shape

and a flaccid consistency. Protocol B2 maintained its macroscopic size
and shape better than the other two successful protocols (Figure 9).
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Figure 8: Protocol A, with large holes in the tissue.

Figure 9: Protocol B2 maintained its macroscopic size and shape.

Summary of Results
Protocol A was successful at achieving complete decellularization of

the lip; however it caused severe disruption to the architecture of the
ECM, in particular a significant loss of elastin and GAGs, and damage
to the collagen architecture, resulting in a flaccid misshaped tissue.
Protocol B was not successful at achieving decellularization after one
cycle but after repeating the protocol there was no evidence of nucleic
structures remaining. The ECM was well preserved, indeed better than
any of the other protocols with a good retention of collagen, elastin
and GAGs. The macroscopic structure maintained its shape and
consistency better the other protocols. Protocol C did not achieve
decellularization even after 2 cycles. Finally protocol D achieved
complete decellularization, however like protocol A resulted in a
significant decrease in elastin and GAGs, a slightly better preserved
collagen architecture but macroscopic appearance was again of a
flaccid misshaped tissue.

Discussion
The present study describes four decellularization methods for

slices of human lip; two protocols based on existing studies for dermis
and two on studies for decellularization of skeletal muscle. The
effectiveness of each protocol in achieving complete decellularization
was assessed, as was the extent of damage to the native ECM, looking
in particular at the content and microstructure of collagen, elastin and
GAGs. Protocols A and D achieved decellularization after one cycle.

Protocol B required 2 cycles to remove all cellular material and
protocol C was unsuccessful even after 2 cycles.

Protocol A was based on a study by Wang et al. for the
decellularization of slices of porcine rectus abdominis muscle using
freeze/thaw, osmotic shock, trypsin and Triton X-100. The protocol
appeared to be successful at removing all nucleic structures form the
tissue suggesting complete decellularization. However there was
evidence of DAPI uptake throughout the remaining ECM, which did
not appear to be contained within nuclei. This may be due to
incomplete clearance of DNA released from the lysed cells. It could
also be due to artefact uptake generated by either the decellularization
process or fixation process. To differentiate between these
explanations the next step would be to quantitatively measure the
DNA content remaining in the tissue using a PicoGreen assay
technique [39].

However even if as the lack of nuclei suggests the tissue was indeed
decellularized, the remaining ECM was severely disrupted. There was
almost a completely loss of elastin from the tissue and large holes
visible within the collagen matrix, especially in the ECM of the skeletal
muscle. GAG content was also significantly reduced. These finding
would suggest that cells cultured on this scaffold would not benefit
from optimal mechanical and chemical signals for differentiation and
proliferation.Additionally the macroscopic appearance revealed a
flaccid misshapen structure, which would make surgical handling of
the tissue difficult and impractical for clinical use.

Protocol D based on a process developed by Chen et al. involved
removal if epidermis using trypsin, followed by decellularization with
trypsin, SDS and Dipase. The resultant acellular scaffold showed no
evidence of residual cellular material within the tissue. The epithelium
was completely removed. Being the shortest of the three successful
protocols makes it appealing for use commercially. However the
resultant ECM did show areas of significant disruption, especially
within the skeletal muscle. Additionally while the microstructure of
collagen was well preserved in the dermis, there was a significant loss
of elastin and the macroscopic appearance was again of a flaccid
misshapen structure which would not provide practical handling
qualities for surgical use.

Protocol B was the most successful overall. It was based on a
decellularization process developed by Gillies et al. that avoids the use
of harsh detergents and relies instead on osmotic shock and enzymatic
processes. After two cycles the protocol produced a decellularized
tissue that had a well maintained macroscopic appearance. The ECM
of the scaffold was well preserved maintaining much of its collagen,
elastin and GAG structure. There were some areas of damaged to the
ECM particularly in the skeletal muscle, however out of three
successful protocols, protocol B2 had the most well preserved
microstructure. Further assessment of its mechanical properties
should be carried out with formal mechanical testing to confirm these
findings.

After once cycle of protocol B there was almost complete
decellularization of the lip but there were a number of scattered nuclei
still visible in the muscle. These are likely to represent satellite cells
which have a greater resistance to decellularization [14]. This could be
confirmed by staining for the satellite cell marker PAX 7 [40]. The
reason this protocol did not achieve complete decellularization after
one cycle may be simply due to the fact that it was designed for much
smaller muscles: tibialis anterior from mice [14] and cricoarytniod
muscles from rabbits [33]. However a contributing factor may have
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been insufficient volumes of solutions used in this experiment,
especially as this protocol relies so heavily on osmotic shock. It is
possible that the 5mls of hypotonic solution used became saturated
with solutes and was prevented from achieving its maximum effect.

An additional drawback to this protocol is that the epidermis
remained attached in small segments of the skin. Complete removal of
this water resistant layer will become increasingly important when
decellularizing larger sections of lip to allow access of reagents into the
deeper tissue. To overcome this problem the protocol can easily be
combined with a de-epithelializing first step, such as hypertonic saline
as demonstrated in protocol C. An alternative to using hypertonic
saline would be to use trypsin as utilised in protocol D. However as
discussed in the introduction (section 1.2.2) trypsin causes disruption
to ECM proteins especially laminin, fibronectin and elastin. This is
evident in the current experiment, where both protocols which used
trypsin (protocol A and C) resulted in almost complete loss of elastic
and destruction on the ECM microstructure as a result.

Now that a successful protocol has been identified for the
decellularization of human lip it must be refined and tested. Further
studies should involve quantitative analysis of the effect of this
protocol on ECM components and formal testing of its mechanical
properties. The microstructure of the scaffold should be further
characterised with either scanning electron microscopy (SEM) or
transmission electron microscopy (TEM) to get a detailed 3-
dimentional image of the ECM. Once scaffold preparation has been
optimised in-vitro cytocompatibility testing should be carried out, to
assess the ability of the scaffold to support cell culture.

Conclusion
The present study shows for the first time that the human lip can be

decellularized as a complete construct, preserving the natural structure
of the lip and the unique composition of the ECM. The study has
identified that a non-detergent, non-trypsin based protocol, combined
with a de-epithelializing first step provides the optimal method for
removing all cellular matter form the tissue, whilst also preserving the
major components of the ECM. The acellular scaffold produced may
be the first step towards an exciting new treatment for perioral tissue
loss. Further experiments are now required to assess the mechanical
properties, 3D architecture and cytocompatibility of this scaffold.
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