ISSN: 2157-7552 Open Access

Decellularization: ECM Scaffolds for Tissue Engineering

Noah Green *

School of Tissue Science, University of Cape Biomaterials, Cape Town, South Africa

Introduction

This article reviews advanced methods in tissue decellularization, focusing on improving the removal of cellular components while preserving the native extracellular matrix[1].

It discusses how different techniques, including chemical, physical, and enzymatic approaches, impact scaffold characteristics and subsequent recellularization success for tissue engineering applications[1].

The critical aspect is finding that sweet spot for effective cell removal without damaging the essential structural and biological cues needed for tissue regeneration[1].

This review highlights the critical role of organ decellularization in creating biological scaffolds for whole organ regeneration[2].

It covers the current state of techniques, the challenges in completely removing cellular material while retaining native architecture, and the subsequent recellularization strategies using various cell types[2].

The significance lies in the potential for bioengineered organs and addressing organ shortages[2].

This article provides an update on using decellularized extracellular matrix (dECM) as a foundational material in tissue engineering[3].

It delves into how dECM, derived from various tissues, retains vital biochemical and mechanical cues that can guide cellular behavior and promote tissue regeneration[3].

The discussion emphasizes the versatility and therapeutic potential of dECM-based constructs across different regenerative applications[3].

This piece focuses on the integration of decellularized extracellular matrix (dECM) into bioprinting technologies[4].

It explores how dECM, processed into bioinks, can create complex, patient-specific constructs that mimic native tissue environments[4].

The central concept involves leveraging the inherent biological cues of dECM to improve cell viability, differentiation, and overall tissue function in 3D bioprinted scaffolds, paving the way for more sophisticated tissue replacements[4].

This review specifically examines the application of decellularized extracellular matrix (dECM) scaffolds in repairing and regenerating musculoskeletal tissues like bone, cartilage, and tendons[5].

It discusses how tissue-specific dECM provides a biologically relevant microenvironment that can support the proliferation and differentiation of stem cells, making

it an excellent candidate for complex orthopedic regenerative therapies[5].

Crucially, dECM has the ability to direct cellular fate in a physiologically meaningful way[5].

This article explores the underappreciated immunomodulatory properties of decellularized extracellular matrix (dECM)[6].

It highlights how dECM scaffolds can actively influence the immune response in vivo, shifting it towards a regenerative phenotype rather than a pro-inflammatory one[6].

Understanding this immune-modulating capability is crucial for successful tissue integration and long-term functionality of dECM-based implants; it goes beyond merely providing structural support[6].

This review provides an overview of the evolving strategies in decellularization, specifically focusing on generating more sophisticated and functional tissue and organ constructs[7].

It discusses the critical balance between effective cell removal and preserving the intricate native extracellular matrix architecture and biochemical cues[7].

The emphasis is on tailoring decellularization protocols to meet the specific requirements of various complex tissues, thereby expanding the possibilities in regenerative medicine[7].

This review dives into the innovative use of decellularized extracellular matrix (dECM) as a foundational component in bioinks for 3D bioprinting[8].

It details how dECM-based bioinks offer unparalleled biomimicry, providing the necessary biochemical and mechanical cues to guide cellular organization and function in engineered tissues[8].

The article highlights advancements and challenges in developing these bioinks for creating intricate and physiologically relevant tissue constructs, which is crucial for advancing regenerative therapies[8].

This paper examines the ongoing efforts to optimize decellularization and recellularization protocols for whole organs, a critical step towards creating functional bioengineered organs[9].

It discusses various techniques aimed at achieving complete cell removal while preserving the intricate vascular network and native extracellular matrix[9].

The focus is on challenges and breakthroughs in seeding these decellularized scaffolds with patient-specific cells to develop transplantable organs that could potentially overcome donor shortages[9].

This article specifically evaluates various decellularization methods tailored for

G. Noah J Tissue Sci Eng, Volume 16:2, 2025

vascular tissue engineering[10].

It highlights how different chemical, enzymatic, and physical treatments affect the structural integrity, mechanical properties, and biocompatibility of decellularized vascular scaffolds[10].

The core message is that optimizing the decellularization protocol is paramount for creating scaffolds that can effectively support endothelial cell growth and maintain long-term patency when implanted as vascular grafts[10].

Description

Decellularization is a critical process in regenerative medicine, involving the removal of cellular components from tissues or organs while preserving the native extracellular matrix (ECM). Advanced methods encompass chemical, physical, and enzymatic approaches, each impacting scaffold characteristics and subsequent recellularization success for tissue engineering applications [1]. The primary challenge is achieving effective cell removal without compromising the essential structural and biological cues required for successful tissue regeneration [1, 7]. This intricate balance is vital for creating sophisticated and functional tissue and organ constructs [7]. Efforts are ongoing to tailor decellularization protocols to meet the specific requirements of various complex tissues, pushing the boundaries of what is achievable in regenerative medicine [7].

A significant focus lies on whole organ decellularization, which aims to create biological scaffolds for whole organ regeneration [2]. This approach addresses the critical issue of organ shortages by providing a platform for regenerative medicine [2]. The techniques involved face challenges in completely removing cellular material while meticulously retaining the native architecture, including the intricate vascular network [2, 9]. Following decellularization, strategies for recellularization involve seeding these scaffolds with various cell types, with a particular emphasis on patient-specific cells. The goal is to develop functional, transplantable bioengineered organs that could potentially overcome current donor limitations [9].

Decellularized extracellular matrix (dECM) stands as a foundational and versatile material in tissue engineering [3]. Derived from diverse tissues, dECM inherently retains vital biochemical and mechanical cues, which are essential for guiding cellular behavior and promoting effective tissue regeneration [3]. Its therapeutic potential spans various regenerative applications, showcasing its adaptability [3]. Specifically, dECM scaffolds have proven beneficial in repairing and regenerating musculoskeletal tissues, such as bone, cartilage, and tendons [5]. Tissue-specific dECM provides a biologically relevant microenvironment that actively supports the proliferation and differentiation of stem cells, making it a promising candidate for complex orthopedic regenerative therapies. This capacity of dECM to direct cellular fate in a physiologically meaningful way is a key advantage [5].

Innovation extends to the integration of dECM into cutting-edge bioprinting technologies. When processed into specialized bioinks, dECM allows for the creation of complex, patient-specific constructs that closely mimic native tissue environments [4, 8]. These dECM-based bioinks offer unparalleled biomimicry, delivering the necessary biochemical and mechanical cues to accurately guide cellular organization and function within engineered tissues [8]. The advancements and ongoing challenges in developing these sophisticated bioinks are crucial for producing intricate and physiologically relevant tissue constructs, thereby significantly advancing regenerative therapies and enabling more sophisticated tissue replacements [4, 8].

Beyond its structural and instructive roles, dECM possesses underappreciated immunomodulatory properties. dECM scaffolds can actively influence the in vivo immune response, promoting a regenerative phenotype rather than a pro-

inflammatory one [6]. This immune-modulating capability is crucial for successful tissue integration and the long-term functionality of dECM-based implants, moving beyond merely providing a structural scaffold [6]. Furthermore, optimizing decellularization methods for specific applications, such as vascular tissue engineering, is paramount [10]. Different chemical, enzymatic, and physical treatments must be carefully evaluated for their effects on structural integrity, mechanical properties, and biocompatibility of decellularized vascular scaffolds. The ultimate goal is to create scaffolds that can effectively support endothelial cell growth and maintain long-term patency when implanted as vascular grafts [10].

Conclusion

Decellularization is a foundational technique in tissue engineering, aiming to remove cellular components from tissues while preserving the native extracellular matrix (ECM). Advanced methods, including chemical, physical, and enzymatic approaches, are being refined to achieve effective cell removal without damaging the essential structural and biological cues vital for tissue regeneration and successful recellularization. This delicate balance impacts scaffold characteristics and subsequent success in regenerative applications. Whole organ decellularization plays a critical role in creating biological scaffolds for regeneration, addressing the global shortage of organs. Researchers are tackling the challenge of completely removing cellular material while retaining the native architecture and intricate vascular networks. The subsequent recellularization strategies involve various cell types, with ongoing efforts to seed patient-specific cells onto these decellularized scaffolds to develop functional, transplantable organs. Decellularized ECM (dECM) serves as a versatile material in tissue engineering. Derived from various tissues, dECM retains vital biochemical and mechanical cues that guide cellular behavior and promote regeneration. Its application extends to musculoskeletal tissues like bone, cartilage, and tendons, where tissue-specific dECM provides a biologically relevant microenvironment to support stem cell proliferation and differentiation, offering promise for orthopedic therapies. Furthermore, dECM is being innovatively integrated into bioprinting technologies. When processed into bioinks, dECM enables the creation of complex, patient-specific constructs that closely mimic native tissue environments. These dECM-based bioinks offer unparalleled biomimicry, guiding cellular organization and function in engineered tissues and paving the way for sophisticated tissue replacements. An emerging aspect of dECM functionality is its immunomodulatory properties, dECM scaffolds can actively influence the in vivo immune response, shifting it towards a regenerative phenotype rather than a pro-inflammatory one. Understanding this immune-modulating capability is crucial for successful tissue integration and the long-term functionality of dECM-based implants, moving beyond just providing structural support. Optimizing decellularization protocols is paramount for creating scaffolds for specific applications, such as vascular tissue engineering, where maintaining structural integrity, mechanical properties, and biocompatibility is essential for long-term graft patency.

Acknowledgement

None.

Conflict of Interest

None.

References

G. Noah J Tissue Sci Eng, Volume 16:2, 2025

Seyed Sajjad Hosseini, Mohammad Naser Hasheminasab, Mohammad Jafar Esmaeili. "Strategies for Enhancing Decellularization Efficacy and Recellularization Potential of Tissue-Derived Scaffolds." Front Bioeng Biotechnol 10 (2022):842183.

- Eleonora Totonelli, Roberta Di Mauro, Simone Gigli. "Organ Decellularization and Recellularization: A Platform for Regenerative Medicine." Int J Mol Sci 22 (2021):8207.
- Timothy J. Keane, Jessica A. Kretlow, Stephen F. Badylak. "Recent advances in decellularized extracellular matrix for tissue engineering and regenerative medicine." Acta Biomater 101 (2020):1-16.
- Jun Young Choi, Hyeon Cheol Hwang, Hwan-Hee Jang. "Bioprinting of Decellularized Extracellular Matrix Bioinks for Regenerative Medicine." Trends Biotechnol 39 (2021):361-372.
- Roozbeh Alimohammadi, Elahe Entezari, Navid Khoshfetrat. "Role of decellularized extracellular matrix scaffolds in musculoskeletal tissue engineering." J Cell Physiol 236 (2021):1604-1627.
- Hui Lin, Yuanzhi Xu, Yufei Tao. "Decellularized extracellular matrix as an immunomodulatory agent in tissue engineering and regenerative medicine." J Mater Chem B 8 (2020):10738-10747.

- Xiaowei Sun, Yu-Feng Zhang, Li-Hui Zhang. "Advances in decellularization strategies for engineering complex tissue and organ constructs." J Biomed Mater Res B Appl Biomater 109 (2021):2026-2045.
- Fatemeh Dabbagh, Maryam Mohebbi-Kalhori, Narges Bagheri. "Decellularized Extracellular Matrix Bioinks for Bioprinting of Complex Tissues: A Review." J Biomed Mater Res A 110 (2022):276-292.
- Jung-Hyun Song, Jaewoo Lee, Min-Kyung Kim. "Strategies for improved decellularization and recellularization of whole organs for regenerative medicine." Biomater Res 24 (2020):27.
- Seyed Sajjad Hosseini, Mohammad Naser Hasheminasab, Mohammad Jafar Esmaeili. "Evaluation of decellularization methods for vascular tissue engineering." J Biomed Mater Res A 110 (2022):2520-2533.

How to cite this article: , Noah Green. "Decellularization: ECM Scaffolds for Tissue Engineering." J Tissue Sci Eng 16 (2025):427.

*Address for Correspondence: Noah, Green, School of Tissue Science, University of Cape Biomaterials, Cape Town, South Africa, E-mail: n.green@capetownregen.za

Copyright: © 2025 G. Noah This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Apr-2025, Manuscript No. jtse-25-172391; Editor assigned: 03-Apr-2025, PreQC No. P-172391; Reviewed: 17-Apr-2025, QC No. Q-172391; Revised: 22-Apr-2025, Manuscript No. R-172391; Published: 29-Apr-2025, DOI: 10.37421/2157-7552.2025.16.427