

DCIS: Personalized Management, Risk, De-escalation

Leonard Whitcombe*

Department of Gastrointestinal Surgical Pathology, Meadowridge University Hospital, Auburn Falls, USA

Introduction

Ductal Carcinoma In Situ (DCIS) represents a non-invasive form of breast cancer, confined to the milk ducts. Predicting its progression to invasive disease and tailoring appropriate management strategies remain significant challenges in oncology. Recent research efforts have focused on a multi-faceted approach to better understand, diagnose, and treat DCIS, encompassing genomic, immunological, technological, and clinical perspectives. One area of intensive investigation involves the genomic characteristics of DCIS, particularly when it coexists with invasive carcinoma. Studies identify specific genetic alterations and clonal relationships that distinguish these lesions. These findings could uncover potential markers for predicting progression, suggesting a dynamic evolution from DCIS to invasive disease, ultimately informing better risk stratification and treatment strategies [1].

The immunomicroenvironment within DCIS is another critical area, with reviews synthesizing current knowledge on various immune cell populations and their roles in tumor progression or regression. This research emphasizes the complex interplay between immune cells and DCIS cells, offering valuable insights into potential immunotherapeutic targets and prognostic markers for DCIS management [2].

In the realm of advanced diagnostics and prognostics, machine learning models are being developed to predict the progression of DCIS to invasive breast cancer. These models integrate clinical, pathological, and genomic data to identify high-risk DCIS cases, aiming to improve patient stratification and guide personalized treatment decisions, thereby avoiding overtreatment in low-risk patients [3].

Comprehensive reviews consistently update the understanding and management of DCIS, covering advancements in diagnostic imaging, molecular subtyping, and risk assessment tools. Such articles also address current treatment controversies, including active surveillance and the de-escalation of therapy for select patients, underscoring the importance of tailoring treatment to individual patient risk [4].

Surgical approaches for DCIS are also evolving, with ongoing clinical trials and discussions around the role of mastectomy versus breast-conserving surgery. Researchers highlight the crucial importance of achieving clear margins and the potential for de-escalation strategies, advocating for individualized surgical planning based on risk factors and patient preferences in the modern era [5].

Further genomic insights come from studies presenting genomic risk classification systems specifically for DCIS patients exhibiting low-risk pathological features. By analyzing molecular profiles, this research aims to better stratify patients who might be candidates for less aggressive treatment, potentially avoiding overtreatment in those unlikely to progress to invasive disease [6].

Beyond genomics, quantitative image analysis on whole slide images is being explored to predict recurrence risk in DCIS. Applying advanced computational meth-

ods to pathological slides allows for the identification of image-based biomarkers that could significantly enhance prognostication and aid in personalizing follow-up and treatment strategies [7].

The concept of active surveillance as a management option for select DCIS patients is gaining traction. Reviews discuss the criteria for identifying low-risk candidates, the benefits of avoiding overtreatment, and the challenges associated with implementing surveillance strategies, all with the goal of reducing unnecessary interventions [8].

The broader field of Artificial Intelligence (AI) is also making its mark in breast cancer, with specific applications for DCIS. Literature reviews explore AI's emerging role in diagnosis, prognosis, and treatment planning, covering how AI tools can assist in image analysis, refine risk stratification, and potentially personalizing management strategies, while acknowledging current limitations [9].

Finally, unique considerations for managing DCIS in older women are addressed. This involves reviewing age-specific risk factors, existing comorbidities, and life expectancy that influence treatment decisions, advocating for a personalized approach that carefully balances the benefits of intervention with the potential for overtreatment and treatment-related toxicities within this specific demographic [10].

Description

Recent advancements significantly enhance our understanding and management of Ductal Carcinoma In Situ (DCIS), a non-invasive form of breast cancer. Research now thoroughly investigates the genomic underpinnings of DCIS, especially when it appears alongside invasive carcinoma. By identifying specific genetic alterations and clonal relationships, these studies provide crucial insights into how DCIS might progress to more aggressive forms of cancer. This genetic mapping is vital for developing better predictive markers and refining risk stratification, guiding clinicians toward more effective, personalized treatment plans [1]. Simultaneously, the complex immunomicroenvironment of DCIS is being dissected. Scientists are identifying diverse immune cell populations and understanding their specific roles—whether promoting or hindering tumor growth. This detailed knowledge opens avenues for novel immunotherapeutic interventions and the discovery of new prognostic markers essential for optimizing DCIS management [2].

Technological innovations, particularly in machine learning and image analysis, are revolutionizing DCIS prognostication. Machine learning models, for example, are now capable of predicting DCIS progression to invasive breast cancer by integrating a broad spectrum of data, including clinical, pathological, and genomic information. These models promise to significantly improve patient stratification,

ensuring that high-risk cases receive appropriate intervention while minimizing overtreatment in low-risk individuals [3]. Complementing this, quantitative image analysis of whole slide pathological images offers another powerful tool. By applying advanced computational methods, researchers can identify subtle, image-based biomarkers that enhance the prediction of recurrence risk. These biomarkers are instrumental in personalizing follow-up and treatment strategies, moving away from a one-size-fits-all approach to more tailored patient care [7].

Furthermore, Artificial Intelligence (AI) in general is gaining traction in breast cancer management, with particular relevance to DCIS. AI tools are being explored for their capacity to assist in image analysis, refine risk stratification, and aid in the intricate process of treatment planning, offering both immense promise and current challenges in personalizing management strategies [9].

The clinical management of DCIS is also undergoing substantial evolution, with a growing emphasis on individualized care and de-escalation strategies. Comprehensive reviews regularly update clinicians on the latest diagnostic imaging techniques, molecular subtyping, and risk assessment tools. These updates are crucial as they address ongoing controversies, such as the viability of active surveillance and the feasibility of de-escalating therapy for carefully selected patients. The overarching goal is to tailor treatment meticulously to each patient's unique risk profile, ensuring efficacy while reducing unnecessary burdens [4]. Surgical approaches reflect this shift towards personalization. Discussions now focus on optimizing choices between mastectomy and breast-conserving surgery, the critical importance of achieving clear surgical margins, and the potential for less aggressive interventions. Individualized surgical planning, informed by a patient's specific risk factors and personal preferences, is becoming the standard of care [5].

A significant development in risk assessment involves genomic risk classification systems designed specifically for DCIS patients presenting with low-risk pathological features. By analyzing molecular profiles, these systems identify patients who may be ideal candidates for less aggressive treatments, thereby preventing overtreatment in those who are unlikely to develop invasive disease [6]. This aligns with the broader movement towards active surveillance, which is increasingly considered a viable management option for carefully selected patients with low-risk DCIS. Current research and trials are establishing precise criteria for identifying these candidates, highlighting the benefits of avoiding unnecessary surgical and radiation interventions, and addressing the practical challenges of implementing effective surveillance programs. The ultimate aim is to minimize the burden of treatment for suitable patients [8]. Special considerations are also given to specific patient populations, such as older women with DCIS. Management strategies for this group specifically review age-specific risk factors, existing comorbidities, and life expectancy to ensure a personalized approach that balances the benefits of intervention against the risks of overtreatment and potential treatment-related toxicities [10]. This holistic approach ensures that DCIS care is not only effective but also compassionate and appropriate for diverse patient needs.

Conclusion

This collection of articles dives deep into Ductal Carcinoma In Situ (DCIS), covering its complex nature and evolving management. Researchers look at genomic landscapes in DCIS that coexist with invasive carcinoma, pinpointing genetic alterations and clonal relationships to predict progression [1]. The immunomicroenvironment of DCIS is also under scrutiny, identifying immune cell populations and their roles in tumor dynamics, offering targets for new therapies [2]. Machine learning models are being developed to predict DCIS progression to invasive breast cancer by integrating clinical, pathological, and genomic data, aiming to refine patient stratification and avoid overtreatment [3].

Comprehensive reviews update our understanding and management, detailing advancements in diagnostics, molecular subtyping, and risk assessment, alongside current debates like active surveillance and de-escalation of therapy [4]. Surgical strategies are evolving, with discussions on mastectomy versus breast-conserving surgery, margin importance, and individualized planning [5]. Genomic risk classification systems for low-risk DCIS are also emerging to identify candidates for less aggressive treatment, avoiding unnecessary interventions [6]. Quantitative image analysis using whole slide images offers new ways to predict recurrence risk, providing image-based biomarkers for personalized care [7].

Active surveillance is increasingly explored for select low-risk DCIS patients, focusing on reducing overtreatment burdens [8]. Artificial Intelligence (AI) plays a growing role in diagnosis, prognosis, and treatment planning, assisting in image analysis and risk stratification [9]. Finally, specific considerations for older women with DCIS are highlighted, emphasizing personalized approaches that balance intervention benefits with potential toxicities [10]. Overall, the research points towards a future of highly personalized and de-escalated DCIS management based on comprehensive risk assessment.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Sarah E. Schlesinger, Michelle A. De La Garza, Robert R. Jenewein. "Genomic Features of Ductal Carcinoma In Situ with Adjacent Invasive Carcinoma of No Special Type." *Cancer Res* 84 (2024):994-1008.
2. Nao Suzuki, Elizabeth A. Mittendorf, Sayaka Nakasone. "Immunomicroenvironment of Ductal Carcinoma In Situ: Current Understanding and Future Directions." *Cancers (Basel)* 15 (2023):5698.
3. Jennifer H. Chen, Robert R. Jenewein, Sarah E. Schlesinger. "Machine Learning Approaches for Predicting Progression of Ductal Carcinoma In Situ." *NPJ Breast Cancer* 9 (2023):81.
4. Kelly K. Hunt, Judy C. Boughey, Aysegul A. Sahin. "Advances in the understanding and management of ductal carcinoma in situ of the breast." *CA Cancer J Clin* 73 (2023):597-622.
5. Melissa M. Chen, Natalie J. O'Neill, Monica M. Lee. "Surgical management of ductal carcinoma in situ (DCIS) of the breast in the modern era: A comprehensive review." *Breast Cancer Res Treat* 201 (2023):445-456.
6. Andrew D. Johnson, Jennifer H. Chen, Robert R. Jenewein. "Genomic Risk Classification for Ductal Carcinoma In Situ with Low-Risk Pathological Features." *Clin Cancer Res* 29 (2023):2657-2665.
7. Daniel S. Marchalik, Andrew D. Johnson, Jennifer H. Chen. "Predicting recurrence risk in patients with ductal carcinoma in situ using quantitative image analysis of whole slide images." *Lab Invest* 103 (2023):100029.
8. Mehra H, King TA, Chen Y. "Current Approaches to Ductal Carcinoma In Situ: A Focus on Active Surveillance." *Ann Surg Oncol* 28 (2021):3672-3682.

9. Marijke C. C. H. Hagemans, Thiem A. M. Hogenboom, Carla L. Van Deurzen. "Artificial intelligence in breast cancer, with a focus on ductal carcinoma in situ (DCIS): A review of the literature." *Crit Rev Oncol Hematol* 181 (2023):103893.
10. Catherine E. Walsh, Kelly K. Hunt, Henry K. Kuerer. "Management of ductal carcinoma in situ (DCIS) in older women." *J Geriatr Oncol* 12 (2021):1269-1277.

How to cite this article: Whitcombe, Leonard. "DCIS: Personalized Management, Risk, De-escalation." *J Surg Path Diag* 07 (2025):26.

***Address for Correspondence:** Leonard, Whitcombe, Department of Gastrointestinal Surgical Pathology, Meadowridge University Hospital, Auburn Falls, USA, E-mail: l.whitcombe@meadowridgehosp.edu

Copyright: © 2025 Whitcombe L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Aug-2025, Manuscript No. jsdp-25-174858; **Editor assigned:** 04-Aug-2025, PreQC No. P-174858; **Reviewed:** 18-Aug-2025, QC No. Q-174858; **Revised:** 22-Aug-2025, Manuscript No. R-174858; **Published:** 29-Aug-2025, DOI: 10.37421/2684-4575.2025.6.026
