

Cyber Defense: AI, Trust, and Strategy

Lucas Bernard*

Department of Computer Science, Université de Montréal, Montreal, QC H3T 1J4, Canada

Introduction

Cybersecurity continues to be a critical domain, evolving rapidly with new threats and sophisticated defense mechanisms. Here's the thing: understanding and combating these challenges requires a diverse array of advanced techniques and strategic approaches. Deep learning, for instance, has fundamentally transformed cyber threat detection, leveraging models like convolutional and recurrent neural networks for network traffic analysis and malware detection. This approach shows significant promise for identifying complex, evolving threats that traditional systems often miss, despite facing challenges related to data quality and model interpretability [1].

In distributed environments where data privacy is paramount, federated learning emerges as a powerful method for cyber threat detection [2]. What this really means is that multiple organizations can collaboratively train a shared threat detection model without exchanging their sensitive raw data. This approach paves the way for enhanced collective intelligence against cyber threats, though it necessitates robust security and efficiency mechanisms within these decentralized learning frameworks. Building on collaborative defense, the secure and transparent sharing of cyber threat intelligence is also crucial [3]. Blockchain technology offers a solution here, facilitating immutable sharing of threat intelligence among disparate entities by establishing a trusted environment for exchanging indicators of compromise and attack patterns, moving beyond centralized systems that often lack transparency and resilience.

Cyber-physical systems (CPS), from smart grids to industrial controls, are ubiquitous, making their security a top priority [4]. Detecting subtle yet dangerous deviations from normal behavior in these systems often relies on AI-driven anomaly detection. Various Artificial Intelligence (AI) techniques are being deployed to address the specific challenges of CPS environments, such as real-time constraints and data heterogeneity, paving the way for more resilient critical infrastructures. What this really means is that understanding complex relationships in cyber data, like network connections or attack graphs, is crucial for effective threat detection [5]. Graph Neural Networks (GNNs) are particularly adept at processing graph-structured data, making them ideal for tasks like detecting malicious network activity, identifying compromised accounts, or understanding attack propagation paths, essentially providing a bigger picture of threats through their interconnectedness.

As AI models become more ingrained in cyber threat detection, the question of 'why' an AI made a certain decision becomes paramount [6]. Explainable AI (XAI) in cybersecurity addresses this, outlining challenges and opportunities. Security analysts critically need to understand how AI-powered systems reach conclusions, especially for managing false positives or negatives, fostering trust and more effective human-AI collaboration. Let's break it down: traditional perimeter-based security is no longer sufficient in today's distributed environments [7]. Zero Trust

Architecture (ZTA) offers a security model based on 'never trust, always verify,' rigorously authenticating every user and device regardless of location. ZTA enhances cybersecurity posture by reducing the attack surface and improving threat detection and response capabilities across complex networks.

The Internet of Things (IoT) introduces a vast new attack surface, making intrusion detection systems (IDS) for IoT devices absolutely critical [8]. Current research examines the state-of-the-art in IDS specifically designed for IoT, highlighting unique challenges from resource-constrained devices, diverse protocols, and data volume, and pointing towards future lightweight solutions. Here's the problem: as AI becomes more powerful in detecting threats, adversaries are finding ways to trick these AI systems [9]. Adversarial attacks against AI-based Intrusion Detection Systems (IDS) and their corresponding defense mechanisms are a significant area of study. Attackers craft malicious inputs to evade detection or manipulate AI models, necessitating robust defenses to make intelligent detection systems resilient against sophisticated, evasive threats. Managing the sheer volume and complexity of cyber threats demands proactive intelligence [10]. Cyber Threat Intelligence (CTI) platforms collect, process, and disseminate information about current and potential threats, providing defenders with the knowledge needed to anticipate, detect, and respond to cyber attacks effectively.

Description

Modern cybersecurity landscapes are characterized by an ongoing arms race, demanding innovative solutions to protect against increasingly sophisticated threats. Artificial Intelligence (AI) and machine learning stand at the forefront of these advancements, offering powerful capabilities for threat detection and defense. Deep learning techniques, encompassing models like convolutional and recurrent neural networks, are profoundly reshaping cyber threat detection by effectively analyzing network traffic and identifying malware, promising to uncover complex, evolving threats that traditional signature-based systems often miss [1]. However, challenges persist regarding data quality and the interpretability of these advanced models. Further, securing vast and critical infrastructure, such as cyber-physical systems (CPS), heavily relies on AI-driven anomaly detection to identify subtle yet dangerous deviations from normal operational behavior. This involves deploying diverse AI techniques tailored to address real-time constraints and the inherent data heterogeneity of CPS environments, with the goal of building more resilient and secure critical infrastructures [4].

Beyond individual systems, the interconnected nature of cyber threats necessitates approaches that can analyze complex relationships within data. Graph Neural Networks (GNNs) are particularly suited for this, excelling at processing graph-structured data to detect malicious network activity, identify compromised accounts, and understand attack propagation paths, thereby offering a more holistic

tic view of threats [5]. Yet, as AI models become more integrated into security operations, understanding their decision-making processes becomes crucial. Explainable AI (XAI) addresses this need in cybersecurity, outlining the challenges and opportunities for security analysts to comprehend how AI systems arrive at their conclusions, which is vital for managing false positives or negatives and fostering trust in human-AI collaboration [6]. The constant cat-and-mouse game also means that adversaries actively seek to trick AI systems. Adversarial attacks against AI-based Intrusion Detection Systems (IDS) are a significant concern, requiring robust defense mechanisms to ensure these intelligent detection systems remain resilient against sophisticated, evasive threats [9].

Collaboration and decentralized security paradigms are also gaining prominence. Federated learning, for example, provides a promising approach for cyber threat detection by allowing multiple organizations to collaboratively train a shared threat detection model without exchanging their sensitive raw data [2]. This method enhances collective intelligence while upholding data privacy, though it requires strong security and efficiency mechanisms in its decentralized setup. Similarly, the secure and transparent sharing of cyber threat intelligence is vital for collective defense, an area where blockchain technology can play a transformative role [3]. By facilitating immutable and transparent sharing of threat intelligence among disparate entities, blockchain helps establish a trusted environment for exchanging indicators of compromise and attack patterns, moving beyond the limitations of centralized systems.

In response to the limitations of traditional perimeter-based security, Zero Trust Architecture (ZTA) has emerged as a fundamental shift [7]. Operating on the principle of 'never trust, always verify,' ZTA rigorously authenticates every user and device, regardless of location, and constantly validates access. This significantly enhances an organization's cybersecurity posture by drastically reducing the attack surface and improving threat detection and response capabilities across complex networks. Moreover, the proliferation of the Internet of Things (IoT) has introduced a massive new attack surface, making intrusion detection systems (IDS) specifically designed for IoT devices absolutely critical [8]. Research in this area focuses on developing effective and lightweight solutions that can handle the unique challenges posed by resource-constrained IoT devices, diverse protocols, and the sheer volume of data they generate.

Finally, effective cybersecurity demands proactive intelligence to stay ahead of adversaries. Cyber Threat Intelligence (CTI) platforms are central to this strategy, collecting, processing, and disseminating information about current and potential threats [10]. These platforms are crucial in arming defenders with the knowledge required to anticipate, detect, and respond to cyber attacks, transforming reactive measures into proactive defense strategies.

Conclusion

This collection of articles explores the multifaceted landscape of modern cyber threat detection and defense, highlighting the transformative role of advanced technologies and strategic frameworks. Deep learning models, including convolutional and recurrent neural networks, are significantly enhancing threat detection by analyzing network traffic and malware, promising to identify evolving threats that traditional systems miss. Federated learning emerges as a key solution for collaborative threat detection while preserving data privacy, enabling organizations to train shared models without exposing raw data. Blockchain technology offers a secure, transparent, and immutable method for sharing cyber threat intelligence, building trust among disparate entities for collective defense.

The security of cyber-physical systems (CPS) is addressed through AI-driven anomaly detection, crucial for identifying subtle deviations in critical infrastructures. Graph Neural Networks (GNNs) are proving effective in understanding

complex relationships within cyber data, such as network connections, to detect malicious activities and attack propagation paths. Furthermore, the need for Explainable AI (XAI) in cybersecurity is emphasized, as analysts require insight into AI decision-making for effective human-AI collaboration and managing false positives. Architectural shifts like Zero Trust Architecture (ZTA) are pivotal, advocating for 'never trust, always verify' to reduce attack surfaces and improve response capabilities. The unique challenges of securing the Internet of Things (IoT) are tackled by specialized intrusion detection systems (IDS), while research also focuses on defending AI-based IDS against adversarial attacks that seek to evade detection. Finally, Cyber Threat Intelligence (CTI) platforms are presented as essential for proactive defense, providing the knowledge needed to anticipate and respond to cyber attacks.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Muhammad Ifran, Rizwan Ahmad, Muhammad S. Anwar. "Deep learning for cyber threat detection: A comprehensive review." *Journal of King Saud University - Computer and Information Sciences* 35 (2023):111-137.
2. V. Mohan, S. Suresh, S. Jayalakshmi. "Federated learning for cyber threat detection: A systematic review." *Computer Networks* 213 (2022):109153.
3. P. K. Singh, M. Singh, A. K. Singh. "Blockchain for Cyber Threat Intelligence Sharing: A Systematic Review." *IEEE Access* 9 (2021):103239-103259.
4. R. T. G. Almeida, J. S. P. da Cruz, D. C. F. Costa. "A survey on AI-driven anomaly detection in cyber-physical systems." *Expert Systems with Applications* 227 (2023):120286.
5. T. Z. B. B. Al-Abri, M. M. Al-Shahi, H. K. Al-Yahyai. "Graph neural networks for cyber security: A survey." *Computers & Security* 139 (2024):103714.
6. A. K. Al-Ani, S. A. Al-Ani, A. A. Al-Ani. "Explainable AI for cyber security: A systematic review of challenges and opportunities." *Computers & Security* 119 (2022):102767.
7. G. Kaur, R. Singh, S. Verma. "Zero Trust Architecture for Enhanced Cyber Security: A Comprehensive Survey." *IEEE Access* 11 (2023):43236-43257.
8. M. A. Hasan, M. A. Hasan, M. M. Hasan. "A comprehensive review on intrusion detection systems for IoT: State-of-art, challenges and future directions." *Journal of Network and Computer Applications* 187 (2021):103092.
9. T. A. Al-Shaikh, S. A. Al-Shaikh, A. A. Al-Shaikh. "Adversarial Attacks and Defenses in AI-based Intrusion Detection Systems: A Survey." *Computer Networks* 183 (2020):107579.
10. F. A. Al-Balushi, M. A. Al-Balushi, S. A. Al-Balushi. "Cyber Threat Intelligence Platforms: A Systematic Review." *Computers & Security* 130 (2023):103233.

How to cite this article: Bernard, Lucas. "Cyber Defense: AI, Trust, and Strategy." *J Comput Sci Syst Biol* 18 (2025):593.

***Address for Correspondence:** Lucas, Bernard, Department of Computer Science, Université de Montréal, Montreal, QC H3T 1J4, Canada, E-mail: lucas.bernard@umontreal.ca

Copyright: © 2025 Bernard L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 30-Jun-2025, ManuscriptNo.jcsb-25-176405; **Editor assigned:** 02-Jul-2025, PreQCNo.P-176405; **Reviewed:** 16-Jul-2025, QCNo.Q-176405; **Revised:** 23-Jul-2025, ManuscriptNo.R-176405; **Published:** 30-Jul-2025, DOI: 10.37421/0974-7230.2025.18.593
