Current Status and Unusual Mechanism of Multi-resistance in Mycobacterium tuberculosis

Asit Kumar Chakraborty
Department of Biotechnology and Biochemistry, Genetic Engineering Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, India

Abstract

TB is a deadly disease and MDR-TB is spreading even DOTS drug regime has rigorously maintained with at least ten new drugs like isoniazid, capreomycin, dapsone, linezolid, pyrazinamide, ethambutol and bedaquiline apart from traditional drugs like rifampicin, streptomycin, amikacin and clarithromycin. Rifampicin inhibits RNA polymerase and mutations in rpo gene codons give resistance. Streptomycin inhibits protein synthesis and mutation of ribosomal proteins and rRNA genes give resistance but no strAB or mphA1-9 mdr genes reported in Mycobacterium. Bedaquiline kills M. tuberculosis by inhibition of the membrane-bound F,F2-ATP synthase complex. Ciprofloxacin and ofloxacin were replaced by moxifloxacin that binds to DNA gyrase inhibiting DNA replication and/or transcription and mutations of gyrA at position 90 and 94 and gyrB at position 74, 88 and 91 give resistance. Kanamycin and amikacin inhibit protein synthesis and mutation of rrs gene gives resistance. However, aac2'-Ic type acetylating enzymes have also been suggested for multi-resistance. Ethambutol interferes with the biosynthesis of arabinogalactan in the cell wall and embB gene mutation at position 506 gives resistance. Emrβ methyl transferase adds methyl group to 23S rRNA at A1605 giving resistance to azithromycin and clarithromycin where capreomycin or viomycin peptide antibiotics may be effective drug. Ethionamide is a derivative of isonicotinic acid inhibits mycolic acid synthesis disrupting membrane function. Ethionamide resistance were linked due to mutations in etfA, ethA, ethR and inhA genes. Isoniazid is also a pro-drug and katG gene (S315T) mutation was reported for its resistance. Pyrazinamide after conversion to pyrazinonic acid disrupts membrane function inhibiting ATP synthesis and pncA or rpsA gene mutation likely gives resistance. Cycloserine is a peptidoglycan synthesis inhibitor competing D-Alanine ligase. We find beta-lactamase (BlaC) and penicillin binding protein (penA) as well as well studied emrB and qacB drug efflux proteins by genome wide search. But no 50-500 kb MDR plasmid carrying five or more mdr genes as found in most Enterobacteriaceae, have not sequenced in M. tuberculosis. We conclude that search for Mycobacterium plasmids must be accelerated pointing multi-resistance. Surely, phage therapy and gene medicines also have got momentum to overcome multi-resistance and antibiotics void.

Keywords: MDR-TB; DOT drugs; Ethambutol; Ethionamide; Bedaquiline; Dapsone; Mycolic acid; katG; blaC; penA; QacA; ermB

Introduction

TB is caused by Mycobacterium tuberculosis and have many related species like M. africanaum, M. bovis., M. chimaera, M. celatum, M. smegmatis, M. branderi, M. kansasi,M. abscessus, M. fortumum, M. oryxis, M. mungi, M. kansasii, M. gordonae, M. xenopi, M. marinum and M. pinnipedii. It is a serious disease where lungs’ severely deformation occurs and such patients have short life. M. ovium, M. leprae, M. colombiense, M. indicus pranii and M. intercellulare do not affect lung. Robert Koch’s discovered the tubercle bacillus in 1882 and was a major event in the history of medicine to conquer the deadly disease which had plagued mankind for centuries of speculation as to the possible infectious nature of tuberculosis [1]. In the past (1850s) one person out of seven were died due to tuberculosis before the discovery of tuberculin test by Koch and TB vaccination protocol. The TB bacilli grow very slow but M. abscessus, M. fortitium, M. canariensis, M. septicum, M. chelonaev, M. boenickel species grow fast [2]. India is a big country and prevalence of TB is also greater than any country. Theobald Smith described Mycobacterium bovis to cause animal TB first and a wide range of animal hosts have been identified and characterized as M. microti, M. pinnipedii, M. mungi, M. caprae, M. oryxis and M. saricattae [3,4]. A very long term treatment (6 months) is required for complete eradication of Mycobacterium tuberculosis from body because the bacilli can invade the cells of tissue, muscle, lung, bone so deeply that drug effective concentration hardly reach to kill the bacteria easily (Figure 1).

Contrary to Escherichia coli, no MDR conjugative plasmid has sequenced in Mycobacterium tuberculosis and thus no conjugation experiment has conducted to confirm acquisition of mdr genes from MDR conjugative Enterobacteriaceae [5,6]. Extensively drug-resistant

*Corresponding author: Asit Kumar Chakraborty, Associate Professor of Biochemistry, Department of Biotechnology and Biochemistry, Genetic Engineering Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, India, Email: chakraak@gmail.com; Tel: +917679154141.

Received January 16, 2019; Accepted March 05, 2019; Published March 20, 2019

Copyright: © 2019 Chakraborty AK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
TB (XDR TB) is a rare type of MDR TB that is resistant to isoniazid and rifampin, plus any fluoroquinolone (ciprofloxacin) and at least one of three injectable second-line drugs (i.e., amikacin, kanamycin, or capreomycin). TB bacilli cannot survive in water resources and it is strictly host specific. Sadly, it was referred by WHO as the disease of India, The Mycobacterium genus comprises more than 70 species, including the major human pathogens responsible for tuberculosis is
Mycobacterium tuberculosis and Mycobacterium leprae whereas most related infections being caused by Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum [7]. I will discuss the Mycobacterium specific drugs, drug resistance genes and their mutations. Mycobacterium has difference in cell wall chemistry (Figure 2) limiting hundreds of β-lactam drugs for TB and leprosy treatment whereas discovery of BlaC beta-lactamase proved that penicillin's could not be a good drug for TB [8,9]. The cell wall consists of the hydrophobic mycolate layer and a peptidoglycan layer held together by a polysaccharide, arabinogalactan which is the drug target and also gives acid fast limiting Gram staining. Although no MDR plasmid has isolated from Mycobacterium, hundred Mycobacteriophages have been isolated and their role in multi-resistance have not focused. Mycobacterium genome is large (>6000, 000 bp) and codes for more than 60000 proteins and bacteriophages may help for genome diversity (Figure 2) [10-13].

Prevalence, Pathogenesis, Diagnosis and Vaccination

Koch's idea using tuberculin protein as vaccination failed but tuberculin injection produced rash was found to be effective diagnosis for TB was developed by Leon Calmette and Charles Mantoux, known as 'tuberculinisation' or tuberculin skin test. Camille Guérin discovered M. bovis, a non-infectious to rabbits but immunogenic and vaccination is protective. It is now known, a hundred years later, that M. bovis BCG is a variant harbouring more than 12 DNA deletions with regard to M. tuberculosis. About 80% of TB affects the lungs, it being an air-borne disease spread by careless acts of sneezing, coughing and spitting in public. The germs can spread via the bloodstream to lodge in any part of the body and manifest it in those sites. TB affects even the bones, commonly those of the spine and known as Bone-TB. The discovery of streptomycin in 1943 by Albert Schatz and his PhD student Selman Waksman (won Nobel Prize in 1952), was the great discovery concerning tuberculosis horror. Rifampicin another anti-tuberculosis drug was discovered in 1965, marketed in Italy in 1968, and approved in the United States in 1971. Thus, there should not be any TB cases as streptomycin and rifampicin therapy drastically reduced death and carries. But that was not the case for long time. Today about 9 million TB cases worldwide and more than half a million women and children have died per year worldwide [14]. This has happened due to appearance of drug resistant Mycobacterium tuberculosis which has chromosomal mutations and MDR plasmids. Major mdr-tuberculosis burden was found in the three big countries Russia (>46000 cases), China (>61000 cases) and India (>66000 cases) [15]. It mostly affects the lung tissues but other organ may also be affected. Among the diagnosis X-ray of the lung shows the heavy dense affected spot indicating progress of the disease. But such patients if not responded to the first line DOTS drugs, it is very hard to survive and usually die within months. Over the next 35 years, multidrug-resistant tuberculosis will kill 75 million people and could cost the global economy a cumulative $6.7 trillion—the equivalent of the European Union's annual output, a UK parliamentary group said recently citing WHO data. The spread of TB cases in India has shown in Figure 3. Green areas are heavily affected in India but even it is the disease of the tropics, it has located worldwide. In 2016, an estimated 6.2% of people with MDR-TB had extensively drug resistant TB (XDR-TB) with as less as 30% therapeutic success (Figure 3) [16,17].

The proper diagnosis is important for any disease to know when the disease has started and how it is progressing in the population. Microbiology has started with pioneering work of Anton Von Leeuwenhoek, Louis Pasteur and Robert Koch (1680-1860). There are no evidences how pathogens exist in host making disease until advancement of molecular biology techniques in 1960s. The vast majority of studies detecting M. tuberculosis DNA sequences have used bone as the material whereas a few works used lung tissue. The oldest evidence for human tuberculosis was found in a Neolithic infant and woman in a 9000 years old settlement in the Eastern Mediterranean [18]. Typical clinical signs of tuberculosis were reported earlier by a Roman physician (500 BC) with typical coughing associated with fever during the night with sweats. The military tuberculosis, as described by Thomas Willis 1660s seemed to be more frequent at that time than it is now, probably because it was the era before bacillus Calmette-Guérin (BCG) vaccination. Jean-Antoine Villemin in 1870s first demonstrated the transmissibility of tuberculosis.

In Mantoux screening test (tuberculin sensitivity test), a purified
tuberculin protein derivative is injected into hand which shows red hypersensitivity scar indicating the positive tuberculosis. Tuberculin is a glycerol extract produced from TB bacilli culture filtrate. The time test is a multiple-puncture tuberculin skin test used to aid in the medical diagnosis of tuberculosis and similar to the Heat test, although the Mantoux test is usually used worldwide. However, X-ray of chest was important to see the scar and retractile nodules in the lungs showed in Figure 4. WHO classifies TB diagnosis into bacteriological confirmed TB or clinically diagnosed TB by WHO [19]. A posterior-anterior chest radiograph is used to detect chest abnormalities. Lesions may appear anywhere in the lungs and may differ in size, shape, density and cavity (Figure 4).

We see, Orissa, Andhra Pradesh, Uttar Pradesh and Gujarat have worse hit followed by Madhya Pradesh, West Bengal, Assam, Himachal Pradesh and Kerala. Jammu Kashmir, Maharashtra and Rajasthan states have less TB spread. *Mycobacterium tuberculosis* could be obtained from sputum or blood in blood-agar media in bacteriological test. The presence of acid-fast-bacilli on a sputum smear or other specimen often indicates TB disease but it does not confirm a diagnosis of TB because some acid-fast-bacilli are not *M. tuberculosis*. In molecular biology test, DNA was extracted from sputum or blood and PCR reaction was done using TB specific primers following agarose gel electrophoresis (NAAT). Extended of such studies could be restriction enzyme digest and Sanger di-deoxy DNA sequencing to confirm the gene sequence [20]. On September 30, 1999, the Food and Drug Administration approved a reformulated Amplified *Mycobacterium Tuberculosis* Direct Test (AMTDT) (Gen-Probe, San Diego, California) for detection of *Mycobacterium tuberculosis* in acid-fast bacilli smear-positive and smear-negative respiratory specimens from patients suspected of having tuberculosis [21].

Materials and Methods

Mycobacterium is hard to grow quickly from host site. Egg-based Lowenstein-Jensen medium (LI), American Trudeau Society medium (ATS), Stonebrink medium and agar-based Middlebrook 7H10 (7H10) were used for *Mycobacterium* growth with 80-90% successful. Ziehl-Neelsen stain and auramine phenol stain were used to identify acid-fast bacilli [22].

Importantly, DNA primers TB-1A, 5′-GAA CAA TCC GGA GTT GAC AA-3′ and TB1B, 5′-AGC ACG CTG TCA ATC ATG TA-3′ are used to amplify enough DNA for gel or DNA sequencing to confirm the presence of dormantary TB in patient refractive to X-ray test and blood culture test. However, may primers used in NAAT test are patented. In other methods, the sensitivity of the MTB/RIF RUO assay for smear-negative specimens was 60% for pulmonary and 75% for extra-pulmonary specimens while the IS6110 LDT sensitivities was 40% and 0% respectively [21]. IS6110 encoded transposase gene (TnpA) is unique to *Mycobacterium tuberculosis* complex.

PCR amplification of the *mgcT* virulence gene using specific primers located approximately 80 bp upstream and downstream the *mgcT* gene may be useful for diagnostic. The primers are: *mgcT-F (5′-CGC GTA GGC TCA AAC TGC TG-3′)* and *mgcT-R (5′-CAA TAC CCG GCG GAT CTA CC-3′)*. The forward primer is located at nt. 505859 in H34 strain and at nt. 203986 of CAS strain of *M. tuberculosis* (accession nos. CP019610 and CP028428 respectively). PCR mix was used with 10 ng of chromosomal DNA and each primer at 200 nM in a total volume of 50 μl with 0.2 mM dXTPs and 1.5 mM MgCl₂. The reactions were initiated with a 5 mins denaturation at 95°C and primer extension was then carried out for 40 cycles as follows: denaturation for 30 sec at 95°C, annealing for 30 sec at 50°C, a 1 min extension at 72°C, and finally a 5 mins extension at 72°C. PCR products were visualized by using 1% agarose gel electrophoresis and were purified by using a NucleoSpin extract II kit followed by sequencing [23,24].

Interferon-γ release assays (IGRA) are medical tests used in the diagnosis of some infectious diseases, especially tuberculosis. Interferon-γ (IFN-γ) release assays rely on the fact that T-lymphocytes will release IFN-γ when exposed to specific antigens. QuantiFERON-TB Gold which quantitates the amount of IFN-γ produced in response to the ESAT-6 and CFP-10 antigens from *Mycobacterium tuberculosis*. The T-SPOT.TB, a form of ELISPOT determines the total number of individual T cells expressing IFN-γ. Microscopy sputum test and DST for mdr-TB diagnosis have been introduced and modern detection method like GenXpert has been standardized. 5 high MDR-TB countries, Ethiopia, Myanmar, Kazakhstan, Pakistan & Vietnam have treatment success > 70%. India lunched National TB Institute in 1959 for active research on TB diagnosis and drug discovery according to suggestion originated by ICMR survey in 1955-58 [25]. In 1962 NTP programmed started and 1993-1997 DOTS therapy (RNTCP: Revised National TB Control Programme) in effects every districts with MDR-TB countries, Ethiopia, Myanmar, Kazakhstan, Pakistan & Vietnam have treatment success > 70%. India lunched National TB Institute in 1959 for active research on TB diagnosis and drug discovery according to suggestion originated by ICMR survey in 1955-58 [25]. In 1962 NTP programmed started and 1993-1997 DOTS therapy (RNTCP: Revised National TB Control Programme) in effects every districts with 400000 centres nationwide at free of cost and 27 million TB suspected peoples were tested with 2.46 million TB positives identified and 87% of whom cured by DOTS (Directly Observed Treatment with Political commitment through Diagnosis by microscopy and Adequate supply of free drugs with Accountability) and also saved 80bn$ annually. India lunched in 2007 DOTSpus (PMDT) to cure mdr-TB.

Results

MDR TB statistics and DOTs programme

An estimated 273,000 (95% confidence limits, 185,000 and 414,000) new cases of MDR TB occurred worldwide in 2000, 3.2% of all new TB cases [26]. In Global Tuberculosis Report 2017, India, China and other few countries were reported maximum MDR-TB incidence and mortality [27]. In India total 1936158 cases of TB were reported and TB + HIV peoples were maximum than only TB indicating huge spread of tuberculosis in India is due to unprotected sex of low income workers with infected sex partners. Multidrug-resistant was reported in India (147/1000), China (73/1000), Russia (63/1000) and Indonesia (32/1000) although death rate is much less in Russia indicating Russian are getting better treatment with costly new drugs [28]. Many middle African countries seem to have less MDR-TB and such low incidence
also reported in many highly populated South Asian small countries like Thailand (4.7/1000). It is unclear whether, remote villages were poorly screened in such countries. Mycobacterium tuberculosis MDR strains were detected worldwide with constant increasing trend. It detected in Indonesia [29], China [30,31], Mexico [2] and Africa [32].

TB Datasheets indicated India was the worse country for TB incidence. In Table 1, we showed the 2017 Report and after India, African countries like Congo and Nigeria, then China and Bangladesh where major incidence of TB cases were reported.

Old drugs streptomycin and rifampicin were wonderful for TB control but now useless

Rifampicin is made from the fermentation of soil bacterium Amycolatopsis rifamycinica and streptomycin by Streptomyces griseus [33-35]. IUPAC name of streptomycin is 2-((1R,2R,3S,4R,5S,6S)-3-(diaminomethylideneamino)-4-[(2R,3R,4R,5S)-3{(2S,3S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3(methylamino)oxan-2-yl} oxy-4-formyl-4-hydroxy-5-methyloxolan-2-yl] oxy-2,5,6-trihydroxycyclohexyl) guanidine. IUPAC name of rifampicin is (75S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentalhydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethy-26-[(E)-[4-methyl-1-piperazinyl]limino]-methyl]-6,23-dioxo-8,30-dioxa-24-azatetrayclo[23.3.1.1^6.0^29]triaconta-1(28),2,4,9,19,21,25-(29), 26-octoan-13-yl acetate. The structures of streptomycin and rifampicin were demonstrated in Figure 5.

Streptomycin resistance has occurred by mutation in 16S rRNA as well as ribosomal proteins [36]. Paromomycin and Levofloxacin are promise drugs now under clinical trials against streptomycin and rifampicin resistant Mycobacterium tuberculosis (Clinical Trials ids. NCT0004444 and NCT00007796).

Mutations associated with streptomycin resistance in Mycobacterium tuberculosis have been identified in the rpsL and rrs genes, which encode the ribosomal protein S12 and 16S rRNA [37] respectively (Figure 6). Streptomycin inhibits protein synthesis by disrupting the relationship between these components to form functional ribosome with mRNA, aminoacyl-tRNAs and peptidyl transferase, inhibiting translation of mRNA and protein synthesis in bacteria. The 16S rRNA 530 loop region is part of the aminoacyl-tRNA binding site (A-site) and is involved in the decoding process where residues 526-CCG-524 and 505-GGC-507 plays a crucial role in translation. Thus little changes of this structural assembly generate resistance due to low affinity for streptomycin binding. Among the mutations reported in rpsL, a substitution in codon 43 from lysine to arginine has been the most commonly reported. This mutation produces high-level resistance to streptomycin [35-38]. There remain an important percentage of strains resistant to streptomycin that lack mutations in either of these two genes, suggesting additional mechanisms of resistance [39]. In 16S rRNA (rrs gene, the most common mutations occur around nucleotides 530, 915, 1400 and 1401 (Figure 6) [36,40]. StrA and StrB enzymes phosphorylate streptomycin and such genes are abundant in other MDR Enterobacteriace bacteria but there is no report of such genes in any plasmid of Mycobacterium. AadA1 gene coding for adenyl transferases that adenylate streptomycin has been well described as drug resistance marker as adenylated-streptomycin could not able to bind ribosome. Both aad and aph genes were found rare in Mycobacterium suggesting no MDR plasmid has discovered yet [16].

Many drugs have used but the TB cases are increasing due to multi-resistance. But MDR-TB is less as compare to other bacterial diseases caused by many Enterobacteriaceae (E. coli, S. enterica, K. pneumoniae and A. baumannii). It appeared Mycobacterium spp. is very much host oriented and cannot survive in open water like river and sea limiting its conjugation with abundant MDR Escherichia coli [41]. So, we see poor correlations in plasmid-mediated mdr genes like blaNDM1, blaKPC, blaOXA, blaCTX-M, aacA1, aacC1, aph, cat, tet, sul1, difl, arr, mex, mcr, acr, norA, macAB, penA and tetM. Such discrepancy was reported in Nesteria gonorrhoeae recently by me (Figure 6) [42,43].

Rifampicin is a rifamycin derivative introduced in 1972 as an anti-tuberculosis agent. It is one of the most effective anti-TB antibiotics and together with isoniazid constitutes the basis of the multidrug treatment regimen for TB [34]. The mode of action of rifampicin in M. tuberculosis is by binding to the β-subunit of the RNA polymerase, inhibiting the elongation of messenger RNA [44]. The majority of rifampicin-resistant clinical isolates of M. tuberculosis harbour mutations in the rpoB gene that codes for the β-subunit of the RNA polymerase. Mutant enzyme is refractive to bind rifampicin to inhibit RNA synthesizing activity. In about 96% of M. tuberculosis isolates resistant to rifampicin, hot-spot mutations were reported spanning codons 507-533 of the rpoB gene.

<table>
<thead>
<tr>
<th>Country</th>
<th>MDR-TB Death/1000 infected</th>
<th>Country</th>
<th>MDR-TB Death/1000 infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>423</td>
<td>Korea</td>
<td>11</td>
</tr>
<tr>
<td>China</td>
<td>50</td>
<td>Myanmar</td>
<td>25</td>
</tr>
<tr>
<td>Indonesia</td>
<td>110</td>
<td>Russia</td>
<td>12</td>
</tr>
<tr>
<td>Nigeria</td>
<td>115</td>
<td>South Africa</td>
<td>23</td>
</tr>
<tr>
<td>Congo</td>
<td>53</td>
<td>Thailand</td>
<td>8.6</td>
</tr>
<tr>
<td>Pakistan</td>
<td>44</td>
<td>Vietnam</td>
<td>13</td>
</tr>
<tr>
<td>Kenya</td>
<td>29</td>
<td>Zambia</td>
<td>4.8</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>66</td>
<td>Congo</td>
<td>3.1</td>
</tr>
<tr>
<td>Philippines</td>
<td>22</td>
<td>Zimbabwe</td>
<td>1.2</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>26</td>
<td>Namibia</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 1: Incidence of MDR-TB death in different countries as reported in Global Tuberculosis Report, 2017 (Higher rate of MDR-TB in India than any other country.)

Figure 5: Structure of potent TB drugs Streptomycin and Rifampicin which are now useless.

Figure 6: Detection of 16S rRNA gene mutation in Mycobacterium tuberculosis. M. tuberculosis strains UKR40 and UKR32 16S ribosomal RNA gene (accession nos. MG095516 and MG095509) were aligned with M. tuberculosis strain H37Rv 16S rRNA gene (accession no. CP019613 nt. 3360454-3361988). Mutation regions were only shown here and red nucleotide was mutated, M=A or C; R=A or G.
However, mutations in codons 516, 526 and 531 are the most common with rifampicin resistance in the majority of studies [45]. MarRAB locus is involved in rifampicin resistance in M. Smegmatis [46]. Using the hot spot regions of katG and -15 region inhA, potentially to identify 89% of isoniazid resistance strains and the new assay which targets the rpoB516/526/531, katG315, gyrA94/91/90 and rrs1401 regions have the ability to distinguish 100% for rifampicin and isoniazid resistance strains (Figure 7) [47,48].

Thus all other drugs were tested for TB cure. Sadly, penicillin drugs were not very successfully used for TB management likely due to altered cell wall chemistry of the bacilli. An (E)-4-oxo-2-crotonamide derivative (IIA16) was found to inhibit MDR-TB isolates with a MIC 0.005-0.48 µg/ml [49] and new chemicals asperversiamides A-C could be interesting inhibiting M. marinum [50]. Recently Tükenmez et al. has disclosed tetrahydrodipryidine derivative as a new EPI against MDR-TB [51].

Nobel TB-drugs and mechanisms of multi-drug resistance tuberculosis

Isoniazid was introduced in 1952 as an anti-TB agent and it remains, together with rifampicin, as the basis for the treatment of the disease. Isoniazid is only active against metabolically-active replicating bacilli. Isoniazid is a pro-drug that requires activation by the catalase/peroxidase enzyme KatG, encoded by the katG gene, to exert its effect. Isoniazid acts by inhibiting the synthesis of mycolic acids through the NADH-dependent enoyl-acyl carrier protein (ACP)-reductase, encoded by inhA. Indeed, numerous studies have found mutations in these two genes as the most commonly associated with isoniazid resistance. Among these, the most prevalent gene mutation has been identified as S315T in katG resulting in an isoniazid product deficient in forming the isoniazid-NAD adduct needed to exert its antimicrobial activity. This mutation has been consistently associated with high-level resistance (MIC > 1 µg/mL) to isoniazid and occurs more frequently in MDR strains and compensatory mutations have also determined [52]. The second most common mutation occurs in the promoter region of inhA causing an over expression of InhA or less frequently, a mutation in its active site, which decreases its affinity for the isoniazid-NAD adduct. The most prevalent mutation found is at position -15C/T and is more commonly associated with low level resistance to isoniazid (MIC <1 µg/mL). Mutations in the katG gene in MDR-TB account for 40-90% of INH-resistant strains. A recent study has also found that a silent mutation in mabA conferred isoniazid resistance through up-regulation of inhA in M. tuberculosis (Figure 8) [53].

Ethambutol was first introduced in the treatment of TB in 1966 and is part of the current first-line regimen to treat the disease. Ethambutol is bacteriostatic against multiplying bacilli interfering with the biosynthesis of arabinogalactan in the cell wall. In M. tuberculosis, the genes embCAB, organized as an operon, code for arabinosyl transferase, which is involved in the synthesis of arabinogalactan, producing the accumulation of the intermediate D-arabinofuranosyl-P-decaprenol. The recognized mechanism of resistance to ethambutol has been linked to mutations in the gene embB with mutations at position embB306 as the most prevalent in most of the studies performed [54]. The same authors have more recently reported that mutations in the decaprenyl phosphoryl-β-D-arabinoside (DPA) biosynthetic and utilization pathway genes, Rv3806c and Rv3792, together with mutations in embB and embC accumulate, giving rise to a range of MICs of ethambutol depending on mutation type and number (Figure 9).

Pyrazinamide was introduced into TB treatment in the early 1950s and constitutes now part of the standard first-line regimen to treat the disease [55]. Pyrazinamide is an analogue of nicotinamide and its introduction allowed reducing the length of treatment to six months. It has the characteristic of inhibiting semi-dormant bacilli residing in acidic environments such as found in the TB lesions. Pyrazinamide is also a pro-drug that needs to be converted to its active form, pyrazinoic acid, by the enzyme pyrazinamidase/nicotinamidase coded by the pncA gene [56,57]. The proposed mechanism of action of pyrazinamide involves conversion of pyrazinamide to pyrazinoic acid which disrupts the bacterial membrane potential inhibiting membrane transport. Pyrazinamide would enter the bacterial cell by passive diffusion and after conversion to pyrazinoic acid. Under acid conditions, the acidified pyrazinoic acid would be reabsorbed into the cell and accumulated inside, due to an inefficient efflux pump, resulting in cellular damage. One study has also found that pyrazinoic acid and its n-propyl ester can inhibit the fatty acid synthase type I in replicating M. tuberculosis bacilli. Over expression of rpsA conferred increased resistance to pyrazinamide and pyrazinoic acid was confirmed to be bound to rpsA and likely a second target of pyrazinamide acid [58]. Mutations in the gene pncA remain as the most common finding in pyrazinamide resistant strains. These mutations, however, are scattered throughout the gene but most occur in a 561-bp region in the open reading frame or in an 82-bp region of its putative promoter. Based on the current evidence, the contribution of mutations in rpsA to pyrazinamide resistance
Fluoroquinolones are currently in use as second-line drugs in the treatment of MDR-TB. Both ciprofloxacin and ofloxacin are synthetic derivatives of the parent compound nalidixic acid, discovered as a by-product of the antimalarial chloroquine. Newer-generation quinolones such as moxifloxacin and gatifloxacin are being evaluated in clinical trials and proposed as first-line antibiotics of short term treatment in TB. The mode of action of fluoroquinolones is by inhibiting the DNA gyrase and topoisomerase IV, two critical enzymes for bacterial viability. These proteins are encoded by the genes gyrA and gyrB, respectively. DNA gyrase is a tetramer formed by two α and β subunits, which catalyzes the supercoiling of DNA from relaxed ccc-DNA. The most frequent gyrA and gyrB mutations found are at position 90 and 94 of gyrA but mutations at position 74, 88 and 91 have also been reported [59]. Cross-resistance is assumed to occur between fluoroquinolones although isolated reports have acknowledged the presence of strains resistant to gatifloxacin and moxifloxacin that were still susceptible to ofloxacin. Hybrid fluoroquinoine-flavonoid may be effective to curve XDR-TB [60].

Kanamycin, capreomycin, amikacin and viomycin antibiotics have the same mechanism of action by inhibiting the protein synthesis but while kanamycin and amikacin are aminoglycosides but capreomycin and viomycin are cyclic peptide antibiotics. All four are second-line drugs used in the management of MDR-TB. Kanamycin and amikacin inhibit protein synthesis by alteration at the level of 16S rRNA and ribosome. The most common mutations found are at position 1400 and 1401 of the rrs gene, conferring high-level resistance to kanamycin and amikacin. Capreomycin and viomycin, on the other hand, have a similar structure and bind at the same site in the ribosome, at the interface of the small and large subunits [46]. Mutations in the tlyA gene have also been associated with resistance to capreomycin and viomycin. TlyA is an rRNA methyltransferase specific for 2′-O-methylation of ribose in rRNA [61].

The mode of action of linezolid is by inhibition of an early step in the synthesis of proteins, binding to the 50S ribosomal subunit. A more recent study using next-generation sequencing has also found the mutation T460C in rplC, encoding the 50S ribosomal L3 protein, in in vitro-selected mutants and clinical isolates of M. tuberculosis resistant to linezolid. Previous studies have also found evidence of the possible involvement of efflux pumps in the resistance of M. tuberculosis to linezolid. On December 28, 2012, the U.S. Food and Drug Administration approved Bedaquiline for mdr-TB. Para-Amino Salicylic Acid (PAS) was one of the first anti-tuberculosis drugs used in the treatment of the disease, together with isoniazid and streptomycin. It has been proposed that being an analogue of para-aminobenzoic acid, it must compete with it for di-hydropteroate synthase, interfering in the process of folate synthesis. A study using transposon mutagenesis identified mutations in the thyA gene associated with resistance to PAS that were also detected in clinical isolates resistant to PAS. A recent study has also identified various miss-sense mutations in folic acid encoding dihydrofolate synthase that conferred resistance to PAS in laboratory isolates of M. tuberculosis.

Ethionamide is a derivative ofisonicotinic acid structurally similar to...
isoniazid. It is also a pro-drug requiring activation by a monoxygenase encoded by the ethA gene. It interferes with the mycolic acid synthesis by forming an adduct with NAD that inhibits the enoyl-ACP reductase enzyme. EthA is regulated by the transcriptional repressor EthR and its mutation cause resistance to both isoniazid and ethionamide. Moreover, studies with spontaneous isoniazid and ethionamide-resistant mutants of *M. tuberculosis* found that they map to mshA, encoding an enzyme essential for mycolothiol biosynthesis (Figure 11). Clofazimine (Lamprene) is a riminophenazine compound reported long ago as having anti-TB activity (Figure 8). It is now considered in the group 5 drugs of the WHO for the management of MDR-TB. Clofazimine works by binding to the guanine bases of bacterial DNA, thereby blocking the template function of the DNA and inhibiting bacterial proliferation. Recent studies, however, have signalled the outer membrane as the possible target of clofazimine. Another study found that in *M. tuberculosis* clofazimine is reduced by NADH dehydrogenase and subsequently after spontaneous re-oxidation liberates bactericidal levels of reactive oxygen species (ROS). Resistance to clofazimine has not yet been fully characterized; however, a recent study has found that in spontaneous mutants of the reference strain H37Rv, mutations in the transcriptional regulator Rv0678 caused an up-regulation of MmpL5, a multi-substrate efflux pump, which not only caused resistance to clofazimine but also to bedaquiline.

Also part of the category 5 drugs of second-line anti-TB drugs, linezolid is an oxazolidinone originally approved for clinical use in the treatment of skin infections and nosocomial pneumonia caused by Gram-positive bacteria. Cycloserine is an oral bacteriostatic second-line anti-tuberculosis drug used in MDR-TB treatment regime. It is an analogue of D-alanine that by blocking the activity of D-alanine: D-alanine ligase inhibits the synthesis of peptidoglycan. It can also inhibit D-alanine racemase (AlrA) needed for the conversion of L-alanine to D-alanine. All these enzymes are involved in bacterial peptidoglycan precursor synthesis and thus cell wall synthesis was blocked by those antibiotics. Although the actual target of cycloserine in *M. tuberculosis* is not completely elucidated, in previous studies in *M. smegmatis* it was shown that overexpression of alrA led to resistance to cycloserine in recombinant mutants. More recently, it has also been shown that a point mutation in cycA, which encodes a D-alanine transporter, was partially responsible for resistance to cycloserine in *M. bovis* BCG. Thioacetazone is an old drug that was used in the treatment of TB due to its favourable in vitro activity against *M. tuberculosis* and it's very low cost. It has toxicity problems, however, especially in patients co-infected with HIV. It belongs to the group 5 drugs of the WHO and acts by inhibiting mycolic acid synthesis.

Mycobacterium is intrinsically resistant to most commonly used antibiotics. Although high resistance reported worldwide but no MDR conjugal plasmid containing 5-15 mdr genes have been isolated similar to multidrug-resistant *Escherichia coli* and *Pseudomonas aeruginosa*. This led to conclusion that specific structure and composition of the mycobacterial cell wall may be important as effective permeability barrier but others have implicated chromosomal drug efflux genes as main culprit for natural resistance. Recent reports have suggested that drug resistant mechanisms must be re-investigated as day by day a few drugs are active against *Mycobacterium* increasing STDs in both developed as well as poor countries. Natural macrolides, such as erythromycin as well as semi-synthetic derivatives, such as clarithromycin and azithromycin, are not effective against *Mycobacterium tuberculosis* although few other species may be sensitive [63]. Other macrolide resistance mechanisms involve antibiotic inactivation, active drug efflux, and mutated ribosome components (ribosomal proteins or 23S rRNA where lincomamide and streptogramin resistance have been reported.

Role of blaTEM-like genes in multi-resistant TB: The 1st *mdr* gene isolated was blaTEM as in plasmid pBR322 in 1965. When we searched for blaTEM in plasmids of *Mycobacterium tuberculosis* but no such plasmid was found. It was astonishing but we found few GenBank data as plasmid in other *Mycobacterium* species like *Mycobacterium liflandi* (pMUM002; accession no. EU271968) and *Mycobacterium avium* (pVT2; accession no. AY056023) but no *mdr* genes found. This indicated that life cycle of *Mycobacterium* is totally different than most Enterobacteriaceae like *E. coli*, *B. subtilis*, *S. aureus*, *K. pneumoniae*, *S. enterica* and *P. aeruginosa* where penA and penA genes are highly detected giving resistance to penicillin. Interestingly, we found penP penicillin binding protein in *Mycobacterium* genomes (protein id: BAX25666, CMT52811, KDM97429, CMR96284, CKY34640 and CMN93417). Seq-2 BLAST search for most Beta-lactamase genes from Enterobacteriaceae (*E. coli*, *S. enterica*) etc. did not match blaC beta-lactamase of *Mycobacterium tuberculosis* [8,64,65]. The accession numbers we tested are given in Table 2.

However, blaC enzyme was cloned, sequenced and over expressed and many beta-lactam drugs were tested for hydrolysis and thus it was authentic BlaC enzyme (Protein ids. ARBQ3843, AI21018 and AIR47299) involved in multi-resistance in *Mycobacterium* spp. [66-68]. However, seq-2 BLAST protein sequence analysis revealed that BlaC of *Mycobacterium tuberculosis* was related to class AblaTEM (45%), blCTX-M-9 (50%) and blaKPC (49%) beta-lactamases and had no similarities to MBL metallo-beta-lactamases (IMP, NDM-1, SPM, DHA and GIM) (Table 2). Interestingly, blaTOH (43%) and blaGES (40%) have also similarities with blac beta-lactamase of *Mycobacterium* spp. *Mycobacterium abscessus* and *Mycobacterium tuberculosis* class-A beta-lactamases were well documented [69-73]. Thus, beta-lactam drugs may be effective against TB [74,75]. Boronic acid inhibitors also have reported as promising drug to cure beta-lactamase induced XRD-TB [76]. Arabinogalactan, a highly branched polysaccharide, serves to connect peptidoglycan with the outer mycolic acid layer, and a variety of unique glycosyltransferases are used for its assembly [77]. A new class of anti-mycobacterial agent (1,3-benzothiazin-4-ones) kills *Mycobacterium tuberculosis* by blocking the enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase which otherwise forms decaprenylphosphoryl arabinose, a key precursor of the cell-wall arabinans, thus provoking cell lysis and bacterial death [78]. Molecular cloning of a beta-lactamase type enzyme in *Mycobacterium tuberculosis* has been described [79]. Interestingly, molecular differences in membrane architecture as discussed above and unusual beta-lactamases in *Mycobacterium tuberculosis* made beta-lactam antibiotics out of choice for tuberculosis therapy. However, the high cost of carbapenem drugs may be another reason for DOTs drugs inclusion of meropenem and doripenem which described as promising anti-TB drug by many researchers (Table 2) [73,80].

Penicillin-binding protein in *Mycobacterium tuberculosis* genome: Although blaKPC, blaNDM, blaOXA, blaCTX-M were not
Roles of rRNA mutations and methyl-transferases in multi-resistant TB: ErmA gene encoding methyl transferase has been reported in MDR \textit{Mycobacterium tuberculosis} except Class A BlaC with homology to blaTOHO and blaTEM, many penicillin binding protein were reported. Figure 12 showed a multi-align data demonstrating the mutations of PBPP2 implicated in differential penicillin resistance in \textit{M. tuberculosis}.

Roles of drug efflux proteins in MDR \textit{Mycobacterium tuberculosis}: Astonishingly, we also detected emrB drug transporter and MFS drug transporters (protein id. AMP28863) in \textit{Mycobacterium tuberculosis} PR10 genome (accession no. CP010968). The lfrA drug efflux pump was reported first in \textit{Mycobacterium smegmatis} PR1 genome (accession no. CP016794). Figure 15 giving resistant to ciprofloxacin [89]. Buriankova et al. introduced plasmids with ermMT and AAK46043 (AE000516.2; nt. 1946550-1948169 complement). (Red means strong homology, green means less homology and black means diverged). Figure 12: Mutations of specific PBP2 of \textit{Mycobacterium tuberculosis}. Protein sequences were derived from WGS as follows: AU50827 (accession no. CP024614.1; nt 1955692-1957245 complement); EFDS3848 (accession no. D5985189.1; nt.546057-547673; KBX80709 (accession no. JLC01000005.1; nt. 207622-209256); SGJ61490 (accession no. FPVX01000005.1; nt.25337-30803) and AAK46043 (AE000516.2; nt. 1946550-1948169 complement). (Red means strong homology, green means less homology and black means diverged).

Table 2: Seq-2 BLAST of \beta-lactamase amino acid sequences compare with blaC protein of \textit{Mycobacterium tuberculosis}.

<table>
<thead>
<tr>
<th>Protein id</th>
<th>Protein id</th>
<th>Identity</th>
<th>Sequence cover</th>
<th>Expect Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlaC,307aa</td>
<td>AMP</td>
<td>286aa</td>
<td>118/263</td>
<td>86%</td>
</tr>
<tr>
<td>blaTEM-1</td>
<td>AKA68566</td>
<td>286aa</td>
<td>92/231</td>
<td>80%</td>
</tr>
<tr>
<td>blaCTXM-1</td>
<td>CAAB3262</td>
<td>291aa</td>
<td>18/281</td>
<td>89%</td>
</tr>
<tr>
<td>blaCTXM-2</td>
<td>ATQ37988</td>
<td>291aa</td>
<td>128/294</td>
<td>95%</td>
</tr>
<tr>
<td>blaCTXM-9</td>
<td>AAZ30046</td>
<td>291aa</td>
<td>117/282</td>
<td>90%</td>
</tr>
<tr>
<td>BlaKPC-1</td>
<td>AAG13410</td>
<td>293aa</td>
<td>119/240</td>
<td>83%</td>
</tr>
<tr>
<td>blaNDM-1</td>
<td>AGCS4622</td>
<td>270aa</td>
<td>4/6</td>
<td>2%</td>
</tr>
<tr>
<td>blaOXA-2</td>
<td>CAC82805</td>
<td>276aa</td>
<td>12/38</td>
<td>13%</td>
</tr>
<tr>
<td>blaOXA-23</td>
<td>AET95879</td>
<td>273aa</td>
<td>8/24</td>
<td>8%</td>
</tr>
<tr>
<td>blaOXA-48</td>
<td>CDP90224</td>
<td>265aa</td>
<td>8/15</td>
<td>5%</td>
</tr>
<tr>
<td>blaOXA-58</td>
<td>AGCS42783</td>
<td>280aa</td>
<td>8/15</td>
<td>5%</td>
</tr>
<tr>
<td>blalMP-1</td>
<td>AAB30289</td>
<td>246aa</td>
<td>4/5</td>
<td>1.7</td>
</tr>
<tr>
<td>blaVIM-1</td>
<td>CAC82722</td>
<td>266aa</td>
<td>15/47</td>
<td>17%</td>
</tr>
<tr>
<td>blaSFM-1</td>
<td>CAD37801</td>
<td>276aa</td>
<td>0/0</td>
<td>0%</td>
</tr>
<tr>
<td>blaACC-1</td>
<td>CAB46491</td>
<td>390aa</td>
<td>8/22</td>
<td>5%</td>
</tr>
<tr>
<td>blaTOHO-1</td>
<td>BAA07082</td>
<td>291aa</td>
<td>129/298</td>
<td>100%</td>
</tr>
<tr>
<td>blaDHA-1</td>
<td>ABN56447</td>
<td>379aa</td>
<td>5/7</td>
<td>2%</td>
</tr>
<tr>
<td>blaGES-1</td>
<td>AAF27723</td>
<td>250aa</td>
<td>93/233</td>
<td>93%</td>
</tr>
<tr>
<td>blaGIM-1</td>
<td>AEX25699</td>
<td>250aa</td>
<td>5/9</td>
<td>3%</td>
</tr>
</tbody>
</table>

efflux proteins were identified and Rv1258c-type drug efflux conferred resistance to tetracycline and aminoglycosides like streptomycin [83]. Genuinely absence of strA/B and aphA4-type drug phosphorylating genes in plasmid and chromosome is astonishing. But similar unusual assembly of mdr genes was reported in MDR \textit{Neisseria gonorrhoeae} [5]. Similarly, \textit{M. tuberculosis} H37Rv epA protein has similarity to QacA drug efflux super family and reports also suggested Rv2686c-2687c-2688c operon may have multidrug efflux genes [84,85]. ABC transporters like arrA/B also have been characterized in \textit{M. tuberculosis} [86]. However, acrAB/CD of \textit{Escherichia coli} and mexAB/CD/EF types of \textit{Pseudomonas aeruginosa} well documented drug transporters have not reported in \textit{Mycobacterium tuberculosis} [87,88]. Figure 13 showed the sequence divergence between ermB and qacB drug efflux genes. Figure 14 was disclosed a suspected MFS drug efflux gene in \textit{M. tuberculosis} where as a suspected drug efflux protein was presented in Figure 15 giving resistant to ciprofloxaci [89].

Erythromycin resistant gene in \textit{Mycobacterium}: Erythromycin esterase was located in \textit{Mycobacterium tuberculosis} genome at nt. 2273141-2275186 in the complement orientation (Accession no. CP016794). \textit{ermMT} Methyl transferase (23S rRNA A 2357) was present in most members of the \textit{Mycobacterium} and involved in macrolide resistance and the enzyme was similar in action to monomethyl transferase [81]. Buriankova et al. introduced plasmids with ermMT gene (pOMV16, pOMV20, pOMV30, and pMP12) and was transformed into the macrolide-sensitive strains, \textit{M. bovis} BCG Pasteur and \textit{M. smegmatis} and the resulting strains showed increase in erythromycin MIC from 8 µg to 1000 µg/ml with pOMV20 ermMT plasmid and to some lesser extent with other plasmids [90].

Drug acetyl-transferases and phospho-transferases in \textit{Mycobacterium}: Due to lack of R-plasmids and MDR conjugative plasmids in \textit{Mycobacterium tuberculosis}, catB3, aacC1 and aacA1 types of acetyl transferases have not been linked to multidrug-resistance in \textit{Mycobacterium}. Most abundant chloramphenicol acetyl transferase has not been documented and my attempt is to make attention in
that issue if we have missed such genes in *Mycobacterium*. Evidence was reported that chromosomal acetyl transferases confer kanamycin resistance in *M. tuberculosis* [91, 92]. A 2'-N acetyl transferase (aac2'-Ic) was reported in *M. tuberculosis* [93]. Hull et al. reported a plasmid with aminoglycoside transferase but *M. fortuitum* is drug sensitive implying a problem in the study [94]. A phosphotransferase was isolated from *M. fortuitum* involved in streptomycin resistance [95]. Such discrepancy of *mdr* genes between *Escherichia coli* and *Mycobacterium tuberculosis* was reviewed recently [96].

Figure 13: Sequence similarity between QacB and emrB drug efflux proteins of *Mycobacterium tuberculosis*. (Red means conserved, green means has homology and black signifies no homology.)

Figure 14: Amino acid sequence of the MmpL5 siderophore RND drug transporter involved in bedaquiline and clofazimine resistance in *M. tuberculosis*.

Figure 15: Mutation of MFS drug efflux proteins of *Mycobacterium tuberculosis* involved in fluoroquinolone resistance.

Figure 16: Amino acid sequences of the chromosomal *mdr* genes involved in fluoroquinolone resistance.
1. blaNDM-1, blaOXA-1, CTX-M1/2/9 enzymes have not detected in plasmids of *Mycobacterium* (Figure 17). In truth MDR conjugative plasmids have not reported demonstrating host specific *Mycobacterium* is less prone to share genetic material by conjugation. Amikacin and linezolid are promising drugs whereas levofloxacin, meropenem are in clinical trials but optimistically multidrug-resistant TB cases are in the rise worldwide. I speculate that MDR plasmids will be in *Mycobacterium* but due to low copy number and heterogeneities among them, careful assesse must be needed. Critic will rule out my statement but I hope further calamy will force us to do work carefully. DOTS antibiotics are: group 1 (Isoniazid, rifampicin, ethambutol, pyrazinamide), group 2 (streptomycin, amikacin, kanamycin, capreomycin); group 3 (ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin, gatifloxacin and group 4 (ethomamide, prothionamide, cycloserine, terizadone, paramamo salicylic acid, thiacetazone) [61].

TB treatment is lengthy, isoniazid+ rifampicin+ pyrazinamide + ethambutol for two months followed by isoniazid + rifampicin for next four months (total six months). So many drugs we ingest, your total gut bacteria will be finished and thus vitamin supplement is must during therapy to survive. Certain cases weekly regimen is followed due to toxicity of drugs. As we discussed, all these drugs may not work and WHO third line drugs like clarithromycin, linezolid and bedaquiline. The rate of spontaneous mutation was reported where 1 mutation for every 10^10 cell division for streptomycin and isoniazid and 10^{12} for rifampicin. Patients with extensive pulmonary TB have ~10^{12} bacteria and thus changes for rifampicin + isoniazid resistant bacteria will be 1 in 10^6 and all four drug resistant (rifampicin + isoniazid + streptomycin + ethambutol) will be 1 in 10^{11}. Even such calculation may not explain the correct outcome regarding MDR-TB but I argue DOTS therapy is simply toxic and generating more complex microbes and also limits the life of patients. If we find a drug that has specific target, then simply one drug will kill the bacteria completely in one day if the drug reach the target and if the bacteria is replicating. Central nervous system-TB and bone-TB may need cautious approach where steroids (prednisolone, dexamethasone) may be useful and thalidomide may be beneficial to TB meningitis. On October 2006, the XRD-TB means resistant to fluoroquinolones and any of one drug from kanamycin, capreomycin and amikacin [99]. Kanamycin resistant is overwhelming in MDR Entrobacteriaceae isolates due to diversified phosphotransferases and overwhelming mutation in the gyrA and gyrB subunits of DNA gyrase as well as topoisomerase IV. That way 95% TB clinical isolates should be multidrug-resistant but that was not the case. Because aminoglycoside resistance in *Mycobacterium* has shifted to mutation of 16S rRNA and ribosomal proteins. No plasmid and integron were reported for *M. tuberculosis*. Then why we have not use cefotaxime and meropenem in TB therapy? Likely similar to gonococcus bacteria beta-lactams drugs did not showed promise in clinical therapy, possibly due to penicillin binding protein in *Mycobacterium* chromosome and may be activated by drugs similar to blaAmpC beta-lactamase or tetA/C genes by tetracycline (Figure 17) [100].

Ethambutol inhibits TB bacilli by inhibiting arabinosyl transferase to form mycopic acids attach to the 5'-hydroxyl groups of D-arabinose residues of arabinogalactan making mycolyl-arabinogalactan-peptidoglycan complex in the cell wall [54]. Mechanism of MDR-drug, pyrazinamide is not clear but pyrazimic acid was thought to inhibit the enzyme fatty acid synthase I (FAS), which is required by the bacterium to synthetize fatty acid and also binds to the ribosomal protein S1 (rpsA) and inhibit trans-translation [53]. Mutations in the pncA gene may be responsible for the majority of pyrazinamide resistance in *M. tuberculosis* strains. Peptide antibiotics like capreomycin was discovered from *Streptomyces* [96] *capreolus* in 1960 and now widely used in case of MDR-TB as also veomycin. Several mycobacterial efflux pumps associated with fluoroquinolone resistance have been described, including pumps of the MFS family (IfrA and Rv1258c) and ABC transporters (DrrAB, PstB and Rv2686c-2687c-2688c). A new class of spectinomycin analog, spectinamide evaded Rv1258c over-expression through structural modification and restored MICs to susceptible levels by binding to 16S bacterial ribosomal subunit. Various mutations like P1998L, G198A and C213A within Rv0194, Rv1634, and Rv2686c EPS respectively has been reported where fluoroquinoline resistant lacks gyrA, gyrB and DNA topoisoasemase IV mutations [88]. As discussed above few MFS drug efflux proteins located in whole genome sequence of *Mycobacterium tuberculosis* (accession nos. MP018036 and CP024614). Amino acid sequence of such MFS drug efflux protein is unrelated to acrA or mexA MFS proteins of *Escherichia coli* and *Pseudomonas aeruginosa* respectively and may be used to discover as *Mycobacterium* specific drug efflux inhibitors [51]. Chinese herb medicine has potential as anti-tuberculosis drug [101]. Over all, too many drugs have to be given to clear MDR-TB. Any chemical in excess is toxic to >30,000 enzymes in our cells and sometime carcinogenic. Thus, during therapy a well-known nutritionist must help a patient otherwise treatment will bring death even your TB bacilli no longer active in your body. We demand though, a careful and systematic study of *Mycobacterium tuberculosis* MDR plasmids. *Mycobacterium lfiandi* and *Mycobacterium avium* plasmids (pMUM002 and pVT2) with no mdr gene may be an indicator justifying our demand. Surely phage therapy, enzybiotics and nano-drug carriers are emerging technologies to curve MDR pathogenesis but I believe on herbal drugs as described in Sastura Samhita and Atharva Veda according to ancient Hindu Civilization [64,101].

Conclusion

The mechanism of AMR in *Mycobacterium tuberculosis* is complex as the resistance is generated against TB-specific drugs. In truth, all classical antibiotics are used against MDR Enterobacteriaceae, have been attempted against TB with moderate success. Thus, generation of catB3, strAB, sul1/2, blaKPC, blaOXA-48, blaOXA-51, dhfr, tetA/C, qnrA1, acrA, mexCD are expected but no such mdr genes nor 50-500kb MDR conjugative plasmids are reported till date in *M. tuberculosis*. Genome wide search indicated blaC, PBPs, MFS drug efflux proteins.
in chromosome. Likely, BlaC, PBPs, gyrAB and Dem/Dam MTase mutations might be implicated in penicillins, fluoroquinolones and macrolides resistance. The slow cell division may be the main reason but study indicated that acquisition of too many transposable elements would be created multiple plasmids in Enterobacteriaceae and in M. avium subsp. hominis suis 135 (135kb plasmid: pMAH1135), in M. marinum (114kb plasmid, pRAW) and in M. kansasii ATCC 12478 (145kb plasmid, pMK12478). Likely, high copy number plasmids in M. tuberculosis were absent causing a delay of discovery of MDR plasmids. Otherwise, may be such plasmids are not stable due to very slow replication where replication of plasmids depend on chromosome replication. Surely M. tuberculosis conjugation has been proved today using conjugative plasmids from other species but a real discovery of MDR conjugative plasmid in Mycobacterium tuberculosis will be challenging! Similarly, mutation in the target TB-mdr genes indicated transposition events are random creating a new trait giving drug void. Thus MDR-TB will be increasing and new drug development is an argent need. Mptb gene cloning in expression vector (antisense RNA/ Ribozyme) or alkaloids like secouenitine against M. tuberculosis topoisoomerase may give new direction for TB control.

Acknowledgement
I thank Dr. Jayanta Mukhopadhyay, Department of Chemistry, Bose Institute, Kolkata for valuable suggestion during the study. Special thank Dr J B Medda (OAER) for funding.

References

