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Introduction
In epidemiological studies, it is often necessary to determine the 

relationship between exposure levels and the risk of disease. However, 
the data on exposure levels are often available in intervals because they 
are generally not recorded for each individual subject. For example in 
studies on the association between alcohol consumption and the risk 
of disease, researchers often treat the exposure levels as intervals when 
they interview participants about their consumption levels, but they 
are unable to obtain the exact values as continuous variables. Also in 
traditional meta-analysis based on aggregated data, it is not possible 
to obtain the original data, and the published articles do not include 
enough data. In such situations, meta-analysis of observational studies 
often has to rely on the summarized data where the exposure levels are 
grouped into intervals available from research reports. 

Table 1 summarizes data from a study of the association between 
alcohol consumption and all-cause mortality, which was conducted 
by Lin et al. [1]. The alcohol intake of current drinkers was classified 
into five groups: non-drinkers, alcohol intake of 0.1-22.9 g/day, 23.0-
45.9 g/day, 46.0-68.9 g/day, and ≥ 69.0 g/day. Table 2 summarizes the 
characteristics of two studies of coffee consumption and stroke, by 
Bidel et al. [2] and Grobbee et al. [3]. They were included into a meta-
analysis of 11 studies by Larsson and Orsini [4], where the categories 
used for coffee consumption differed among the studies. Moreover 
the reference category was assigned to non-drinkers in Grobbee et al. 
[3], whereas 0-2 cups/day were used in Bidel et al. [2], and hence the 
meanings of the reported relative risks (RRs) were different and it was 
inappropriate to combine them directly.

Studies that measure the risk at different levels of exposure 
are usually analyzed based on a trend estimate by linear (or log-
linear) regression analysis. When performing a regression analysis 
of summarized response data that are grouped into intervals, many 
researchers use the pre-assigned exposure levels from historical data or 
the midpoint values of each interval [5]. Results of regression analysis 
with grouped data may be sensitive to the assignment of the exposure 
levels. Recently, Takahashi and Tango [6] proposed a method for 
assigning values by applying the likelihood approach, and they showed 
the procedure can produce a more accurate linear regression coefficient 

than the typical procedure which uses the midpoint values.

On the other hand, some studies have reported that the risk of 
disease has a nonlinear relationship with the exposure level. For 
example, it is known that the association between alcohol and coronary 
heart disease [7] or total mortality [8] may be depicted as a J-shaped 
curve. Some evidence of a J-shaped association has also been reported 
recently between coffee consumption and the risk of stroke [4]. 
Curve-fitting methods based on a fractional polynomial model or a 
spline model has often been applied to these nonlinear dose-response 
associations for regression [9-11]. Di Catelnuovo et al. [8] applied 
fractional polynomials to fit the association between alcohol intake and 
the RR of total mortality in a meta-analysis of 34 prospective studies. 
On the other hand, for example, Larsson and Orsini [4] performed 
a dose-response meta-analysis and detected a potentially nonlinear 
association between coffee consumption and stroke using a cubic spline 
model, and cubic spline regression models may have many advantages 
over polynomials [12].

In this paper, we propose a procedure for assessing nonlinear 
associations between exposure levels and the risk of disease from 
a summarized grouped data, which is based on the assignment of 
levels to grouped exposure intervals by applying the likelihood-
based assignment procedure proposed in Takahashi and Tango [6]. 
In particular, we focus on the restricted cubic spline model that was 
described in Orsini et al. [13] and Larsson and Orsini [4] for J-shaped 
dose-response curves. We demonstrate how to estimate a J-shaped 
curve from the grouped summarized data using only four or five class 
intervals. Also this procedure can provide the log relative risk on each 
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Abstract
In epidemiological studies that measure the risk at different levels of exposure, the data is often only available for 

the analyses that summarized the response data in grouped exposure intervals. In typical methods, the midpoints are 
used as the assigned exposure levels for each interval. Results of the analysis with grouped data may be sensitive to the 
assignment of the exposure levels. In this paper, we propose a procedure for assessing J-shaped associations based 
on the likelihood-based assignment of values to grouped intervals of exposure, and applying the cubic spline regression 
models. Numerical illustrations and comparisons based on simulations showed that the proposed procedure can yield 
better estimates for curves than those obtained using the typical assignment method based on the midpoints of each 
interval.
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exposure levels relative to that of 0, even if the level of reference 
category for reported RRs was not 0. We provide some numerical 
illustrations and comparisons based on simulations with typical 
assignments to determine the effects of exposure level assignments.

Methods
Likelihood based assignment of levels for grouped exposure 
intervals

In some cohort studies with N individuals, the data on exposure 
xi of each individual i is summarized in a table of grouped exposure 
interval  ( , )∈ =i j j jx I u v  and the corresponding summarized response 
data with the frequency Nj, the number of cases aj, the log value of the 
relative risk yj and its standard error sj for each interval Ij, j=0,1,…,m (Table 
3), where the lower endpoint u0 is known but the upper endpoint vm is 
unknown. Nj is given as the number of individuals, or the person-time, 
and yj is sometimes shown as the adjusted values of some covariates. 
sj can also be estimated from the confidence interval of the risks if 
the standard error of the logRR is not reported [14]. In case-control 
studies, however, the number of controls bj is also given and yj is the log 
value of the odds ratio (OR).

In typical methods, the midpoints are used as the assigned 
exposure levels for each interval Ij, (j=1,2,…,m) (here after midpoints 
assignment). On the other hand, we assign the exposure level based 
on the summarized data according to the procedure proposed by 
Takahashi and Tango [6] as follows. We assume that the exposure levels 
of all individuals in the study are a set of random variables (x1, x2,…, xN) 
and that a power transformation of the exposure,  λ

ix , is obtained from 

a common normal distribution N(μ,σ2) with the mean μ and variance 
σ2, where 0 log=i ix x  for λ=0. Given this assumption, the frequency 
Nj provides a log-likelihood based on a binomial distribution for the 
distribution of x=xi. The unknown parameters λ, μ, σ2 and vm can be 
estimated by maximizing the log-likelihood. Based on the estimated 
distribution of x=xi with the probability density function f (x) such as 
xλ ~ N(μ,σ2) , the assigned exposure level dj for the jth interval Ij=(uj,vj) 
is calculated as the mean of its truncated distribution:

( )

( )
=
∫
∫

j

j

I
j

I

xf x dx
d

f x dx
 

(j=0,1,…,m) (hereafter likelihood-based assignment).

Nonlinear association modeling using cubic splines

Splines are smooth functions that can assume virtually any 
shape, and the most useful type of spline is generally a cubic spline 
function, which is restricted to be smooth at the junction of each cubic 
polynomial [12]. In epidemiological studies, a restricted cubic spline 
model has been often applied to nonlinear dose-response data. As 
noted by Larsson and Orsini [4], a restricted cubic spline with three 
knots was recently applied to a potential nonlinear association that was 
depicted as a J-shaped curve. However, in some studies, such as that 
in Table 2, the exposure level of the reference group is not assigned 
on x=0. Thus, in this paper, we consider a cubic spline model for the 
log relative risk on the exposure x, logRR(x), that satisfies logRR(d0)=0 
using assigned exposure levels d0 for the reference interval I0, as follows:

* * *
1 0 2 0 1 2 1 0 2 0log RR( ) ( ) ( ) ( )β β β β β β= = − − + + = − + −x y d d x x x d x d            (1)

where * 3 3 3
2 1 3( ) ( ) (1 ) ,γ γ+ + += − − − − − )( −x x k x k x k  

* 3 3 3
0 0 2 0 1 0 3 3 2 3 1( ) ( ) (1 )( ) , ( ) / ( )γ γ γ+ + += − − − − − − = − −d d k d k d k k k k k  with fixed 

knots 1 2 3< <k k k , and 3 3) max{0, ( ) }+( − = −x a x a .

First, we construct an approximate covariance estimate for the 
adjusted log relative risks from a fitted table that conforms to the 
values proposed by Greenland and Longnecker [15], and we construct 
a variance-covariance matrix ∑. In this step, we assume the assigned 
exposure levels dj and standard errors sj for each interval Ij to be fixed. 
The coefficients b of the restricted cubic spline model (1) are estimated 
using generalized least-squares regression with ∑, i.e.,

1 2
ˆ ˆ ˆ( , )'β β ′ ′-1 -1 -1b = (X X) X yΣ Σ

and the estimated variance-covariance matrix of b̂ ,

ˆ ′V -1 -1(b) = (X X)Σ  

where A’ and A-1 imply the transpose and inverse matrices of A, and

 

* *
1 01 1 0

* *
2 02 2 0

* *
0 0

,

− − 
   − −  =   
    − −   




m m

d dy d d
d dy d d

y

d dm d d

X =

respectively. Note that, if we need to estimate a spline model for the log 
relative risk on x relative to x=0, logRR0(x), when the reported y implies 
that relative to the reference x=d0, we can determine the spline model as 

 

*
1 20log RR ( )  β β= +x x x                       (2)

Alcohol 
intake (g/day)

No. of 
individuals

Person-
years

No. of 
deaths

Adjusted RR 
(log value)

95% CI

Nondrinkers 7,839 75,352 1,281 1.00 ( 0.000) Reference
0.1-22.9 6,140 59,708 616 0.80 (-0.223) (0.72, 0.88)

23.0-45.9 8,072 77,757 998 0.90 (-0.105) (0.82, 0.98)
46.0-68.9 7,085 68,622 765 0.95 (-0.051) (0.86, 1.04)

≥ 69.0 3,337 32,076 440 1.32 ( 0.278) (1.18, 1.48)

Table 1: Relative risks of death from all causes as well as alcohol intake among 
men in the JACC study in Japan (for details, see Lin et al. [1]).

Coffee 
consumption

(cups/day)

No. of
individuals

No. of
cases

Adjusted RR
(log value)

95% CI

Bidel 
et al., [2]

0-2 644 35 1.00 ( 0.000) Reference
3-4 1,041 54 0.79 (-0.236) (0.51, 1.22)
5-6 1,356 69 0.66 (-0.416) (0.43, 1.03)
≥ 7 796 52 0.94 (-0.062) (0.58, 1.52)

Grobbee 
et al. [3]

None 7,592 8 1.00 ( 0.000) Reference
≤ 1 13,048 23 0.58 (-0.545) (0.25, 1.36)
2-3 16,009 18 0.68 (-0.386) (0.36, 1.31)
≥ 4 8,940 5 0.48 (-0.734) (0.18, 1.31)

Table 2: Characteristics of two studies of coffee consumption and stroke that were 
included in a meta-analysis [4].

Exposure x No. of 
individuals

No. of cases logRR SE (logRR)

u0-v0 N0 a0 0.0 Reference
u1-v1 N1 a1 y1 s1

⋮ ⋮ ⋮ ⋮ ⋮
um-vm Nm am ym sm

Total N A

Table 3: Grouped exposure intervals and summarized response data in a cohort 
study.
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using the same b  estimated from (1), because 
0

log( / )= x dy p p = 
log(𝑝𝑥/𝑝0)+ 

0
log( / )x dp p  and 

0
log( / )x dp p =  

*
1 20 0β β− −d d   where 𝑝𝑎 is 

the probability of being a case with an exposure of 𝑥=𝑎. 

A crucial problem in spline regression is knot placement [10]. One 
simple approach is to have the observations xi determine the positions 
of the knots [16]. Some studies such as those by Larsson and Orsini [4], 
Harrell et al. [12] and Orsini et al. [13], placed knots at fixed percentiles 
in the data. Therefore, we examine a procedure here for selecting 
the positions of three knots among the assigned exposure levels dj 
(j=1,2,…,m) with the exception of d0 of the reference group I0. Thus, 
we assign the knots k1=d1, k2=d2, k3=d3 when m=3. If m>3, we require 
a procedure that is based on likelihood. Under the normal assumption 
of generalized linear regression, y~Nm (Xb,Σ), we can derive the log-
likelihood function of b and evaluate the likelihood of each resulting 
model for several candidate knot positions. Thus, the putatively better 
knots k1, k2, and k3 are placed in a position that maximizes

1
1 2 3

1 1ˆ ˆ ˆ( , , ) log(2 ) log ( ) ( )
2 2 2

π −= − − − − Σ −
ml k k kb y Xb y XbΣ          (3)

Application

First for the data in Table 1 with person-years for Nj, the likelihood-
based assignment procedure assigned the exposure levels as dj=0, 
14.26, 34.20, 56.09, and 86.41 g/day with the estimated parameters 
λ=0.5 and vm=139.90. When using the number of individuals for Nj, 
they are assigned as dj=0, 14.27, 34.21, 56.09, and 86.41 g/day with 
the estimated parameters λ=0.5 and vm=140.00. Thus, they differed 
from the midpoints assignment of dj=0, 11.5, 34.45, 57.45, and 82.8 
(as 1.2 times the lower boundary for the open-ended upper category) 
or 80.45 (as assuming the open-ended upper category has the same 
amplitude as the adjacent category) g/day for each Ij. By using the 
exposure levels of dj=0, 14.26, 34.20, 56.09, and 86.41 g/day, likelihood 
procedure (3) selected k1=14.26, k2=34.20, and k3=86.41 as the knots, 
and the coefficients were estimated as β1=-4.88×10-3 and β2=-5.46×10-6, 
respectively, while the midpoints assignment with d4=80.45 estimated 
the coefficients as β1=-2.51×10-3 and β2=-1.36×10-5 with k1=11.5, 
k2=57.45 and k3=80.45 (Figure 1). 

Next for the data in Table 2, the exposure levels were assigned by 
the likelihood-based assignment as dj=1.65, 3.56, 5.44, and 7.94 cups/
day with λ=2/3 and vm=14.4 in Bidel et al. [2] where the intervals were 
assumed as 0 ≤ x<2.5, 2.5 ≤ x<4.5, 4.5 ≤ x<6.5, and 6.5 ≤ x, respectively. 

k1=3.56, k2=5.44, and k3=7.94 were set as the knots, the coefficients 
were estimated as β1=-0.131 and β1=-0.024, respectively, and we can 
determine the estimated curve of logRR0 from the model (2) (Figure 
2). On the other hand, the midpoints assignment with d0=0.0 estimated 
β1=-0.085 and β1=-0.023.

Simulation

In this section, we discuss the simulation studies conducted to 
assess our proposed procedure, wherein we used cubic spline regression 
for the nonlinear association with the likelihood-based assignments in 
grouped exposure intervals. Two cubic spline curves

*
0

0

log RR ( ) log 0.2 0.05= = = − −xpy x x x
p                                        (4)

with three knots (k1, k2, k3)=(I) (3, 5, 7) and (II) (2.3, 3.2, 10.5) were 
assumed to be the true model for the association between exposure x 
and the log relative risk y in a cohort study, respectively, where px and 
p0 are the probabilities of being a case with the exposure x and x=0, 
respectively (Figure 3). We considered interval for grouping, 0 ≤ x<2, 
2 ≤ x<4, 4 ≤ x<6, and x ≥ 6, such as that the number of knots in each 
interval Ij was at most one for curve I, whereas the interval 2 ≤ x<4 had 
two knots, i.e., k1=2.3 and k2=3.2, for curve II. 
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Figure 1: Fitted curve for the log of the adjusted relative risk logRR0 of all-
cause mortality associated with alcohol intake, as reported by Lin et al. [1] in 
Table 1 (black line: the likelihood-based assignment; gray line: the midpoints 
assignment). Dashed lines represent the 95% confidence intervals based on 
the asymptotic normal theory.
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Figure 2: Fitted curve for the log of the adjusted relative risk logRR0 of strokes 
associated with coffee consumption relative to the reference consumption level 
of zero in Bidel et al. [2] in Table 2 (black line: the likelihood-based assignment; 
gray line: the midpoints assignment with d0=0). Dashed lines represent the 95% 
confidence intervals based on the asymptotic normal theory.

 

logRR 0( )  

 

Figure 3: Cubic spline curves logRR0(x)=-0.2x - 0.05x* for the true model with 
knots (k1, k2, k3) of (I) (3, 5, 7) and (II) (2.3, 3.2, 10.5)).
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scenario. It also gave closer coverage probabilities to 0.95, and E( )b  
was close to true b. Overall the curve produced using this procedure 
had a good fit to the true curve.

Next, the proposed procedure (i), which used the likelihood-based 
assignment and the selected knots, also had a small bias, small MSE 
values for each x. In particular, when x ≥ 9 for true curve I, it was shown 
that the curve produced using this procedure had a better fit to the 
true curve than that produced using procedure (iv). When x<5 for true 
curve II, this procedure had a slightly higher bias than procedure (iv). 
However, the coverage probabilities remained higher than 90%.

Procedure (ii), which used the midpoints assignment, was very 
similar to procedure (i) when x<5 for curves I and II. When x>5, the 
bias and MSE increased gradually, so this procedure could not deliver 
stable estimates with a large x.

Procedure (iii), which used the midpoints assignment and d0=0, 
estimated the value slightly higher with a low x compared with the other 
procedures. With a high x, it showed similar behavior to procedure (ii).

Discussion
In this paper, we proposed a procedure for assessing the nonlinear 

association between exposure levels and the risk of disease by assigning 
exposure levels to grouped exposure intervals. In particular, we focused 
on a restricted cubic spline model for J-shaped dose-response curves. 
The procedure can be applied to the log relative risks when they are 
given relative to the reference point x=0 and also to the interval 0∈x I . 

We set the population size N=2,000 and the probability p0=0.05 
for the reference x=0. We generated a set of exposures x={x1, x2,…,x2,000}
from a truncated normal distribution of N(3.5, 8.0) with the interval 
0 ≤ x ≤ 12. By calculating 

ixp using (4), we generated a set of 1 or 0 
Bernoulli random numbers w={w1, w2,…,w2,000} using Pr{ = 1} =

ii xW p  
for each xi, where the sample was counted as a case when wi=1, and we 
summarize the generated data{x,w} in Table 4. Note that each relative 
risk was calculated relative to the reference group 0 ≤ x<2. 

We compared the following four procedures:

(i) The likelihood-based assignment and the three knots were set at 
them: (d0, d1, d2, d3)=(1.22, 3.0, 4.91, 7.96) .

(ii) The midpoints assignment with d0=1.0 and the three knots were 
set at them: (d0, d1, d2, d3)=(1.0, 3.0, 5.0, 7.0).

(iii) The midpoints assignment with d0=0.0 and the three knots 
were set at them: (d0, d1, d2, d3)=(0.0, 3.0, 5.0, 7.0).

(iv) The likelihood-based assignment (d0, d1, d2, d3)=(1.22, 3.0, 4.91, 
7.96), but the three knots were fixed on the “true knots” (k1, k2, k3)=(3.0, 
5.0, 7.0) for true curve I and (k1, k2, k3)=(2.3, 3.2, 10.5) for true curve II.

Procedure (i) is our proposed method, and procedures (ii) and (iii) 
are typical methods that use midpoints, where the highest interval was 
assigned by assuming that the boundary had the same amplitude as the 
adjacent category [4]. In addition, we compared the proposed method 
with procedure (iv), which has true knots. Note that for true curve I, 
the positions of the three knots in curves according to procedures (ii) 
and (iii), (k1, k2, k3)=(3.0, 5.0, 7.0), were in the same positions as the 
true knots. 

We generated B=1,000 sets of w1, w2,…,wB for the fixed x. The 
curves were estimated using procedures (i-iv) for each set, and 
we estimated logRR0(x) as  ( )by x  (b=1,2,…,B) for each point of 
x=1,2,…,12. Comparing with the values derived from the true model 

(4), Tables 5 and 6 show the bias Bias ( ) 1

1ˆ ˆ(x) ( ) ( )
=

 = − 
 

∑B
bb

y y x y x
B

, 

the mean squared error (MSE) ( ) ( )
2

1

1ˆ ˆMSE (x) ( ) ( )
=

 = − 
 

∑B
bb

y y x y x
B

, 

and the coverage probability CP(x) for a 95% confidence interval of 
B=1,000 sets for each x=1,2,…,12 based on the fitted curves produced 
by each procedure using the summarized data for true curves I and 
II, respectively. The means and standard deviations of estimated 
coefficients 1 2

ˆ ˆ ˆ( , )β βb =  are also shown as ˆE( )b  and ˆSD( )b  in the 
tables. Note that the accuracy of the fitted curves cannot be measured 
based only on β , because β  and the accuracy must be affected directly 

by the positions of the knots. Figure 4 shows the curves joining the 

mean values 

1

1 ( )
=

 
 
 

∑B

b b
y x

B
.

First, procedure (iv), which used the likelihood-based assignment 
and the true knots, had a small bias and small MSE values in each 

 

Curve I 
 

 

Curve II 

0  

 

( )  

̂

̂

( )  

Figure 4: Comparisons of curves joining the mean values of ( )y x  with 
x=1,2,…,12 for true curves I and II.

x No. of 
individuals

No. of cases log RR SE (log RR)

0-2 426 a0 0.000 Reference
2-4 606 a1 y1 s1

4-6 558 a2 y2 s2

≥ 6 410 a3 y3 s3

Total 2,000 A

Table 4: Summarized data for {x,w}.
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Our simulation results showed that the estimated curve was sensitive 
to the assignment, and the likelihood-based assignment could estimate 
the nonlinear association accurately. It showed that the proposed 
procedure using the likelihood-based assignment had a lower bias 
when used for estimation compared with other procedures that used 

the midpoints assignment.

One of the applications to estimate a dose-response association 
from summarized data is that it should be applicable to a meta-
analysis. In general, the exposure categories were different in the 

x 1 2 3 4 5 6 7 8 9 10 11 12
True -0.20 -0.40 -0.60 -0.775 -0.80 -0.575 -0.20 0.20 0.60 1.00 1.40 1.80

Procedure (i) E( ) = (-0.193, -0.035)b , SD( ) = (0.114, 0.014)b

Bias( ŷ (x)) 0.007 0.014 0.021 0.024 0.007 -0.047 -0.092 -0.084 -0.064 -0.045 -0.025 -0.005

MSE( ŷ (x)) 0.013 0.052 0.117 0.201 0.256 0.244 0.200 0.164 0.168 0.219 0.314 0.456

CP( ŷ (x)) 0.941 0.941 0.941 0.940 0.941 0.924 0.905 0.921 0.969 0.980 0.986 0.988

Procedure (ii) E( ) = (-0.196, -0.063)b , SD( ) = (0.109, 0.024)b  

Bias( ŷ (x)) 0.004 0.009 0.013 0.024 0.072 0.184 0.333 0.488 0.644 0.799 0.954 1.110

MSE(ŷ (x)) 0.012 0.048 0.108 0.183 0.221 0.207 0.248 0.409 0.693 1.102 1.635 2.291

CP( ŷ (x)) 0.949 0.949 0.949 0.948 0.935 0.894 0.848 0.860 0.894 0.922 0.930 0.937

Procedure (iii) E( ) = (-0.143, -0.055)b , SD( ) = (0.081, 0.020)b  

Bias( ŷ (x)) 0.057 0.113 0.170 0.229 0.304 0.405 0.523 0.642 0.762 0.882 1.002 1.121

MSE( ŷ (x)) 0.010 0.039 0.088 0.153 0.209 0.258 0.367 0.570 0.867 1.258 1.744 2.324

CP( ŷ (x)) 0.882 0.882 0.882 0.868 0.818 0.650 0.623 0.784 0.852 0.902 0.920 0.935

Procedure (iv) E( ) = (-0.196, -0.047)b , SD( ) = (0.115, 0.019)b  

Bias( ŷ (x)) 0.004 0.009 0.013 0.016 0.008 -0.017 -0.053 -0.090 -0.127 -0.165 -0.202 -0.239

MSE( ŷ (x)) 0.013 0.053 0.119 0.203 0.256 0.232 0.185 0.166 0.182 0.234 0.322 0.445

CP( ŷ (x)) 0.941 0.941 0.941 0.941 0.941 0.925 0.908 0.920 0.958 0.969 0.981 0.983

Table 5: Comparisons of the estimated values for logRR0(x) on x=1,2,…,12, which were derived from the curves using procedure (i-iv) for Curve I, y=-0.2x–0.05x* with 
knots (3, 5, 7).

x 1 2 3 4 5 6 7 8 9 10 11 12
True -0.20 -0.40 -0.594 -0.673 -0.583 -0.354 -0.013 0.413 0.894 1.403 1.917 2.431

Procedure (i) E( ) = (-0.147, -0.035)b , SD( ) = (0.115, 0.019)b

Bias( ŷ (x)) 0.053 0.106 0.153 0.105 0.018 0.001 0.028 0.049 0.025 -0.027 -0.083 -0.139

MSE( ŷ (x)) 0.015 0.059 0.131 0.195 0.237 0.224 0.178 0.143 0.141 0.178 0.259 0.385

CP( ŷ (x)) 0.916 0.916 0.916 0.936 0.939 0.927 0.915 0.935 0.975 0.987 0.990 0.989

Procedure (ii) E( ) = (-0.196, -0.063)b , SD( ) = (0.109, 0.024)b  

Bias( ŷ (x)) 0.042 0.085 0.121 0.074 0.055 0.222 0.473 0.672 0.815 0.930 1.040 1.150

MSE(ŷ (x)) 0.013 0.051 0.114 0.175 0.204 0.211 0.347 0.594 0.889 1.245 1.662 2.177

CP( ŷ (x)) 0.925 0.925 0.926 0.946 0.940 0.880 0.716 0.716 0.812 0.883 0.914 0.931

Procedure (iii) E( ) = (-0.143, -0.055)b , SD( ) = (0.081, 0.020)b  

Bias( ŷ (x)) 0.083 0.166 0.243 0.233 0.236 0.397 0.625 0.800 0.918 1.008 1.094 1.179

MSE( ŷ (x)) 0.013 0.052 0.115 0.148 0.165 0.245 0.473 0.767 1.071 1.400 1.791 2.251

CP( ŷ (x)) 0.795 0.795 0.797 0.865 0.859 0.650 0.436 0.611 0.765 0.864 0.906 0.927

Procedure (iv) E( ) = (-0.196, -0.047)b , SD( ) = (0.115, 0.019)b  

Bias( ŷ (x)) 0.003 0.005 0.008 0.008 0.004 -0.002 -0.011 -0.022 -0.034 -0.047 -0.059 -0.072

MSE( ŷ (x)) 0.016 0.065 0.145 0.216 0.242 0.226 0.187 0.152 0.142 0.173 0.250 0.374

CP( ŷ (x)) 0.950 0.950 0.950 0.947 0.937 0.923 0.912 0.931 0.970 0.985 0.992 0.994

Table 6: Comparisons of the estimated values for logRR0(x) on x=1,2,…,12, which were derived from the curves using procedure (i-iv) for Curve II, y=-0.2x–0.05x* with 
knots (2.3, 3.2, 10.5).
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studies so they should not be combined. Furthermore, in some of the 
meta-analysis studies described in Table 2, the reference category was 
also different, so it was inappropriate to combine them directly. Some 
methods have been discussed for meta-analysis to obtain the pooled 
estimate without estimating the association within individual studies. 
For example, Greenland and Longnecker [15] described the pool-first 
method for meta-analysis of trend involving data pooling before trend 
analysis. On the other hand, Rota et al. [11] proposed a random-effects 
meta-regression model for nonlinear dose-response relationship 
fitting second-order fractional polynomial models, where the two-
step procedures requires initially fitting second-order fractional 
polynomial models within each study, and then pooling the study-
specific two trend components. They tried to fit a pool-first method on 
the data of a small number of studies, and they obtained the identical 
results achieved by using their random-effects approach. It may also 
be possible to estimate pooled curves using our proposed procedure 
by a multivariate random effect meta-analysis [17], as discussed in 
Larsson and Orsini [4]. However, it has to be noted that both pool-first 
method and two-step procedure use pre-assigned exposure levels for 
grouped exposure intervals, and they assigned values by the midpoints 
assignment. Thus, the likelihood-based assignment could give different 
results in the pooled estimates. Moreover, in situations such as those 
for assessment of publication or other availability bias by the funnel 
plot, it is important to accurately estimate individually.

In the procedure reported herein, we fixed three knots in the 
J-shaped curve. The choice of the location of the knots is a crucial
problem and the estimate of the curve was sensitive to their positions.
Although we showed simulation results only for a situation of m=3
here, we also examined a procedure where the choice was based on
likelihood for m>3, and the results of simulation studies could show
that it produced well-fitted curves. In a similar manner to the procedure 
proposed herein, we can apply restricted cubic spline regression using
other numbers of fixed knots to produce a more flexible curve shape.
However, the choice of the number of knots is generally a crucial
problem in spline regression. In this situation, the model with the best
fit can be selected using a similar procedure by evaluating Akaike's
Information Criterion (AIC), which is a penalized likelihood that takes 
into account the number of parameters estimated in the model based
on likelihood (3). Also non-cubic spline models have been discussed in 
epidemiological studies. Further discussions of such models, including 
evaluations of different methods, are required in the future.

Our work, moreover, could be located in the errors-in-variable 
field, which aims to correct for bias that arises if measurement error 
in x is ignored. The statistical approaches developed in those fields 
might be applied in the situation discussed in this paper. We would 
also like to leave such a study including comparisons with the proposed 
procedure here, in our future work.
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