
Open AccessISSN: 2168-9768

Irrigation & Drainage Systems Engineering

*Address for Correspondence: Jingwen Zhang, Department of Civil and 
Environmental Engineering, University of Illinois at Urban-Champaign, Illinois, 
USA, E-mail: JingwenZhang22@unical.it

Copyright: © 2023 Zhang J. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

Received: 01 February 2023, Manuscript No. idse-23-90179; Editor assigned: 
03 February 2023, PreQC No. P-90179; Reviewed: 15 February 2023, QC No. 
Q-90179; Revised: 22 February 2023, Manuscript No. R-90179; Published: 28 
February 2023, DOI: 10.37421/2168-9768.2023.12.374

Crop Water Stress Index for Managing Irrigation Water
Jingwen Zhang*
Department of Civil and Environmental Engineering, University of Illinois at Urban-Champaign, Illinois, USA

Introduction
When there is a limited supply of water, irrigation water management using 

an automated irrigation decision support system (IDSS) as a smart irrigation 
scheduling tool can increase crop production and water efficiency. The current 
study compared the predicted Crop Water Stress Index (CWSI) and Crop 
Evapotranspiration (ETc) using the calculated single crop coefficient FAO56 ETc 
and Jackson's theoretical CWSI, respectively, to the predictions made by various 
AI algorithms and their ensembles. During the growing seasons of 2020 and 
2021, soil moisture, canopy temperatures (Tc), and the Normalized Difference 
Vegetation Index (NDVI) were all measured from irrigated and unirrigated maize 
plots in West Central Nebraska. For ETc and CWSI predictions, fifteen and twelve 
input combinations were used. These combinations had input variables like 
soil moisture and weather, as well as ancillary variables like NDVI, reference 
evapotranspiration (ETr), and cumulative growing degree days (CGDDs). The 
coefficient of determination (r2), root mean square error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE) were the four statistical 
performance indicators used to evaluate the models. In addition, ranking scores 
were applied to statistical results in order to identify the optimal model for each 
input combination. The most accurate model for predicting CWSI was CatBoost, 
with an RMSE between 0.06 and 0.09 unitless, while the most accurate model for 
estimating ETc was Stacked Regression, with an RMSE between 0.27 and 0.72 
mm d1. In order to establish soil water and plant stress feedback for automated 
irrigation scheduling, future research will look into designing and evaluating an 
IDSS using the best machine learning models that have been identified. 

Description
In arid or semi-arid climate regions, irrigation can be essential to food 

production systems and economies. Since there is a possibility that a lack of 
freshwater resources will not be able to meet the demand for water, effective 
scheduling strategies are desirable in order to maximize crop yields with a limited 
supply of water. Using irrigation schedulers that can link physical interactions 
between air, soil, and plant as a continuum can improve water use efficiency 
in intensively irrigated areas. However, scheduling tools are frequently chosen 
by producers due to their low cost, adaptability to changing conditions, and, 
most importantly, ability to provide near-real-time information on crop water 
requirements and/or water stress. The majority of irrigation scheduling tools, 
including process-based agricultural models, soil and plant sensors, and soil 
water balance models, necessitate local soil, crop, and climate data. Even though 
localized and in-field methods, particularly soil and plant sensors, are less likely 
to make mistakes, they still need to be set up and maintained, which can be 
costly. Furthermore, the majority of approaches lack both spatial and temporal 
resolution. In order to inform and possibly automate their irrigation scheduling 
decisions in real time, producers require user-friendly and well-designed irrigation 
decision support systems (IDSS).

Due to its non-destructive nature and adaptability to larger fields, infrared 
thermometry has received increased interest in IDSS. With the crop water stress 

index, infrared thermometry is commonly used to monitor water stress, but it has 
also been extended to estimate crop evapotranspiration (ETc). However, the high 
costs of sensors, the need to program and wire dataloggers, and issues with data 
quality may make it difficult to implement thermometry-based scheduled decision 
on producer fields. Additionally, CWSI baselines cannot be extended to other 
climates because the collection of canopy temperature (Tc) is limited to a specific 
time of day (midday hours) [1,2].

Using multiple linear regressions to create lower or unstressed baselines for 
corn and soybeans in order to facilitate the localization-independent calculation 
of CWSI in irrigation management. However, if there are non-linear relationships, 
the use of climatic variables and plant growth parameters to model CWSI can be 
more complicated, necessitating robust models for better predictions. Mentioned 
that it would be worthwhile to think about algorithms that would eliminate the 
need to create baselines in order to normalize Tc to microclimatic conditions or 
even the need to avoid taking Tc measurements at particular times during the 
day in order to promote CWSI in irrigation scheduling. However, producers 
haven't taken advantage of ETc or soil moisture-based methods, which are 
considered accurate. A major obstacle to the adoption of ETc-based irrigation 
models is still the availability of weather stations and knowledge or access to 
a specialist who understands how to interpret data into an irrigation decision. 
As a result, automated irrigation scheduling tools may benefit from soliciting 
additional straightforward but dependable models that can automatically forecast 
or estimate ETc. They require data of high quality that is relevant to the local area, 
which is one factor [3-5].

Conclusion
It is interesting to note that datasets generated from calibrated process-

based agricultural models like the Root Zone Water Quality Model (RZWQM2) 
and AQUACROP model have now been used to monitor soil moisture content 
in the rooting zone in support of irrigation scheduling. These datasets were 
generated using neural network (NN) models such as Long-Short Term Memory 
(LSTM) and Artificial Neural Network (ANN). As a result, those datasets for model 
training can be generated by calibrated process-based agricultural models. A 
study by used fuzzy NN to determine irrigation time and volume and ANN to 
predict changes in soil moisture based on daily weather. As opposed to traditional 
process-based models, AI models can easily identify associations between input 
and response variables without much input from the modeler. Ensembling ML 
models can also be used to combine them to boost their prediction performance 
and accuracy
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