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Introduction
In longitudinal analysis, medical researchers frequently come 

across outcome data taking only two values. There are many examples 
of binary outcome data in medical and epidemiological studies. An 
older person with a serious health condition may be alive or dead at 
the end of a time interval following a medical treatment; a patient with 
depression experiences emission or remains diagnostically depressed 
after a psychosocial treatment; a drug-user either relapses to use 
drugs again or remains clean after being released from a rehabilitative 
center; and so on. When the distribution of the response variable is 
dichotomous in the longitudinal setting, the use of linear mixed 
models are no longer statistically efficient and can result in unrealistic 
predicted values of the response [1-5]. Additionally, the variance/
covariance structure for the dichotomous response is not homogeneous 
longitudinally, thereby introducing additional specification problems. 
With such a data structure, mixed-effects logistic regression models, 
also referred to as mixed-effects logit models, are regularly applied for 
describing the time trend in the dichotomous outcome, as associated 
with theoretically relevant risk factors and confounders [1,3,4,6,7].

When interpreting the analytic results from mixed-effects binary 
logit models, one cannot solely rely on the estimated regression 
coefficients of explanatory variables and their antilog transforms (the 
so-called odd ratios). With incorporation of the individual-specific 
random effects, the covariate’s effect on the response probability 
involves information on retransformation of the random components. 
Given such functional retransformation, the estimated regression 
coefficient from mixed-effect binary logit models may not be 
consistent with changes in the response probability with a unit change 
in the covariate. Therefore, in the analysis of binary longitudinal 
data researchers must evaluate the effects of explanatory variables by 
averaging over the distribution of the specified random components 
[2,6]. One perspective to accomplish this goal is to perform nonlinear 
predictions using values of the explanatory variables, the estimated 
regression coefficients, and the averaging of the random effects. In 
this perspective, a transformed linear function needs to be converted 
to predict the marginal probability, with normality of the random 

components in the logit function being appropriately retransformed 
to a nonnormal distribution [8.9]. Without such a retransformation 
process, the analytic results of mixed-effect binary logit models cannot 
be appropriately interpreted, even when true values of the regression 
coefficients are known.

In this article we attempt to go beyond existing work by introducing 
two new effect summary measures to aid in interpreting the results from 
mixed-effects logit models. First, we review the general specifications 
of mixed-effects logit models including computation of the predicted 
probability. Then, we describe the approximation method to estimate 
variance of the predicted probability. Next, we introduce the algorithms 
for two summary measures, the conditional effect on the probability 
and the conditional odds ratio, for displaying the effect of a specific 
risk factor in mixed-effects logit models. An empirical illustration is 
provided to display how to apply the new methods in longitudinal data 
analysis. In the summary section, we summarize merits and remaining 
issues in these methods.

Mixed-effects Logistic Regression and Predicted 
Probability

Let Yij denote the value of a dichotomous variable taking only two 
levels (for example, yes/no or 0/1) associated with subject i at time j, 
and ( )ij ij iProb Y 1 ,= X b  be the probability of the subject taking value 1 at 
time j given covariate vector Xij and random effect vector bi. By adding 
the individual-level random effects to the classic logistic regression, the 
probability that Yij=1 for person i at time j can be written by
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Abstract
The authors of this article developed new approaches to present analytic results from mixed-effects binary logit 

models in longitudinal data analysis. We first described basic specifications of mixed-effects logit models, the derivation 
of the fixed and the random effects, and nonlinear predictions of the response probability and the corresponding 
standard errors. Particular attention was paid to the interpretability of the conventional odds ratio in the longitudinal 
setting. The authors contended that without information on averaging of the random effects for two population subgroups 
of interest, the regression coefficient of an explanatory variable and its antilog in mixed-effects binary logit models are 
not interpretable. We recommended the computation of the conditional effect and the conditional odds ratio to aid in 
displaying a covariate’s effect on the longitudinal binary response. An empirical illustration was provided to demonstrate 
how to create interpretable summary measures for aiding in the interpretation of the results from mixed-effects logit 
models when analyzing binary longitudinal data.
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where  Xij is the M × 1 covariate vector including a time variable 
or a set of time polynomials for subject i at time point j, β is an M 
× 1 vector of unknown population parameters with the first element 
being the intercept, Zij is a known ni × q design matrix with the first 
column taking constant 1 if the intercept is assumed to be random 
across subjects, and bi is an q × 1 vector of the unknown subject effect 
with variance-covariance matrix G. With the specification of bi, intra-
individual correlation is addressed in mixed-effects logit models. 
By definition, the probability for Yij=0 is. 1− Ρij There are a variety 
of statistical approaches to derive efficient, consistent, and robust 
estimators of β, bi, and G [10-17].

Equation (1) does not specify a term for within-subject random 
errors, based on the assumption that variations over individual-level 
random effects completely reflect within-subject variability in the 
response [1,8,18]. This assumption can sometimes be too restrictive 
as it implies perfect intra-persons correlation in longitudinal data 
assuming that uncertainty in the binary response at any time can be 
ignored. Overlooking sizable within-subject variability can result in 
tremendous bias in nonlinear predictions, thereby misspecifying the 
experiences generated by the stochastic longitudinal process [6,9].

If within-subject variability is included in mixed-effects logit 
models to address uncertainty given the model parameters, the 
probability Pij=1 for subject i at time j can be predicted empirically by
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where ∆̂ ij  is empirically defined as the second-order smearing 
estimate evaluated at ( )i

ˆ ˆ,β b , assumed to follow local normality. As 
the actual probability is unobservable, this within-subject random term 
can be approximated from the partial derivative of the log likelihood 
function with respect to β, given by

( ) ( )ij
ˆ ˆij

 l y , ,ˆ ˆ y ,
β ϕ

β

∂
∆ = ∆ −µ ≈

∂ij ij ,bβ

G

where µij is the conditional mean. As a local approximation, this 
random term can be ignored only when intra-individual correlation is 
equal or close to unity implying that between-subjects variability can 
completely or predominantly capture the within-subject uncertainty.

If the within-subject random error is considered non-ignorable 
in the specification of a mixed-effects logit model, the conditional 
mean of the response probability Pij can be predicted by the following 
nonlinear function:
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which has properties E(bi)=0, cov(bi)=G, and cov(bi, εij)=0. In 
this mixed-effects logit model, the multiplicative random variable for 
subject i at time point j, denoted by ij iΦ b , follows a multivariate 
lognormal distribution with expectation

( ) ij

2
ij ij

ij iE exp ,
2
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b            
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and variance
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If ijΦ̂  and Xij in Equation (3) are replaced with ( )ijE Φ  and 
X0, respectively, Equation (3) predicts the marginal probability for 
a group of subjects with covariates evaluated at X0. The individual 
probabilities within the group should be scattered randomly around the 
marginalized probability corresponding to variability of both between-
subjects and within-subject random components. This relationship 
between the subject-specific and the marginal logit model is graphically 
and analytically demonstrated in Diggle et al. and Molenberghs and 

Verbeke [1,5]. Because the expected value of ijΦ̂  is greater than unity 
given a lognormal distribution, it is inappropriate to overlook this 
retransformed random variable in predicting a marginal probability 
unless 

ij

2
ij ij 0ε′ = σ =Z GZ .

Approximation of Variance for the Predicted Probability
With the response probability being predicted, variance of 

the prediction needs to be approximated, as routinely applied in 

longitudinal modeling for nonlinear predictions [1,7,8,18]. Let ijL̂  be 
a random variable of the predicted logit for subject i at time point j with 

mean ijη  ( ij ij ijlog  η ϕ′= +X β , where log φij is the random term in 

the linear predictor) and variance ( )ijL̂var , and ( )-1
ij ij

ˆP̂ g= L  is a 
transform of ijL̂ , as predicted by Equation (3). As conventionally 
defined, g is the logit link function and g-1 is its inverse function. For 

large samples, the first-order Taylor series expansion of ( )ijL̂g-1  
yields approximation of mean, given by
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(6)

and the variance ( )ijP̂var
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In Equation (7), ( )[ ]ijL̂gvar 1−  is the approximate of variance of 

the predicted probability ijP̂  for large samples. The calculation of the 
partial derivative in the equation can be based on a basic formula in 
calculus for the derivation of a ratio of two one-dimensional functions 
[4]. After some simplification, the partial derivative can be written in 
the formulation of the logit function, given by
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We might insert Equation (8) into (7), which yields the approximate 
of variance for ijP̂ , given by
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where ( )ijL̂var  may consist of two variance components – 
between-subjects variance and within-subject variance. While between-
subjects variance component is generally estimated by the application 
of mixed-effects logit models, within-subject random errors can be 
approximated from the variance of the intercept with the covariates 
being rescaled to be centered at selected values.

Conditional Effect of a Covariate on the Predicted 
Probability

In the construct of mixed-effect logit models, each subject has a 
unique random effect value on the log odds, and consequently, the 
regression coefficients are interpretable only within subjects or on 
the condition that two subjects have exactly the same value of the 
random effect [5]. As the random effect varies over subjects, the mean 
of the random effects also tends to change across different population 
subgroups with specific individual and environmental characteristics. 
Due to a lack of interpretability for the regression coefficients in 
mixed-effects logit models, the researcher can compute the discrete 
probability change with a one-unit increase in an independent 
variable [4,19], in which the averaging of the random effects must be 
taken into account. This method compares the nonlinear predictions 
between two population subgroups or given two values of independent 
variables while adjusting for the confounding effects. As the change in 
the predicted probability is conditional on the value of covariates, the 
estimated regression coefficients, and the average of the random effects 
associated with the two population subgroups, we refer to this scale-
dependent effect as the conditional effect.

For analytic convenience, consider the effect of a medical treatment 
factor at a given time point. We define the treatment factor as Xm that 

takes value 0 (control) or 1 (treatment). Let ( )ij m r 0P̂ X 0, ,= ΦX  be 
the marginalized estimate of the response probability for the control 

group when all other covariates are scaled as sample means, where rX  
is a vector containing sample means of the covariates other than the 
treatment factor and 0Φ  is the average of the random effects among 
those in the control group. Likewise, let ( )ij m r mP̂ X 1, ,= ΦX  be 
another predicted marginal mean for those receiving treatment when 

other covariates are fixed at sample means where mΦ  is the average 
of the random effects for those receiving treatment. It follows that the 

difference between ( )ij m r mP̂ X 1, ,= ΦX  and ( )ij m r 0P̂ X 0, ,= ΦX  

is the conditional effect of the treatment variable Xm on the response 

probability, marginalized at sample means, denoted by mP̂∆ . The 
equation is
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Where mβ̂  is the estimated regression coefficient of the 
dichotomous treatment variable and β̂  is the vector of the estimated 
regression coefficient for the other covariates. Equation (10) can be 
readily extended to computing the conditional effect of a continuous 
independent variable on the response probability. This discrete 
probability change approach differs conceptually from the conventional 
marginal effect described in the literature of econometrics reflecting 
an instantaneous rate change without bound in value [20]. In the 
application of mixed-effects logit models, we strongly recommend 
the use of the discrete conditional effect because it is consistent with 
the traditional perspective to interpret the effect of a covariate and 

accommodates the specification of qualitative independent variables 
taking more than two values. Theoretically, the conditional effect on 
the probability scale is scale-dependent, and therefore, it is sensitive 
to change in the value of the covariate. The logistic function, however, 
approximates a straight line except at the two ends, and therefore, the 
conditional effect does not tend to vary considerably over changes in 
the covariate’s scale within the zones where most cases are located.

A statistically significant effect of a covariate on the logit scale 
does not necessarily translate into a statistically significant effect on 
the probability scale. While the significance statistic on the logit scale 
only tests the significance of the fixed effect, a significance test on the 
conditional effect at the probability scale accounts for variability of all 
the random components. Therefore, the significance tests on these two 
different scales, logit and probability, need to be performed separately. 
Specifically, statistical significance of the conditional effect can be 

tested by the Wald chi-square statistic, denoted by 2
W,mχ [21,22].

Let 0̂P  represent ( )m r 0P̂ X 0, ,= ΦX  and mP̂  stand for  

( )m r mP̂ X 1, ,= ΦX . The following equation of the Wald chi-
square statistic is then defined from the delta method:

( )
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As predicted from the same parameter estimates where all but 

one covariate has exactly the same values, 0̂P  and mP̂  are essentially 
subject to the same probability distribution. Therefore, the two random 
variables  Ρ0 and Ρm should be very closely correlated. For analytic 

convenience, the two nonlinear predictions, 0̂P  and mP̂ , can be 
assumed to have perfect correlation[22]. Consequently, Equation (11) 
can be simplified as
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This Wald statistic is distributed asymptotically as chi-
square with one degree of freedom under the null hypothesis that 

( ) 0ˆˆ
0 =− PPm . If the assumption of perfect correlation between 

0̂P  and mP̂  is considered invalid with specification of the 
random effects, Equation (11) can be applied by using an empirical 
covariance score.

Conditional Odds Ratio of a Covariate
With specification of the random effects, the antilog transform of 

the regression coefficient, conventionally interpreted as the odds ratio, 
becomes hard to interpret. Given the same example as above, the odds 
ratio for the treatment factor Xm at time point j, is the ratio of the odds 
of Y=1 for those receiving treatment to the odds for those in the control 
group. In the longitudinal setting, the odds ratio can be written as
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Clearly, in computing the odds ratio in mixed-effects logit models, 
the averaging of the random effects needs to be taken into account.

After some mathematical simplification, the odds ratio for the 
treatment factor at time point j can be computed in the construct of 
mixed-effects logit models, given by

( )
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Equation (13) can be well extended to the odds ratio with a 
one-unit change in a continuous covariate. This equation clearly 

demonstrates that exponentiation of mβ̂  does not result in an odds 
ratio in longitudinal analysis without information on the averaging of 
the random effects for two population subgroups. Given dependence 
on the averaging of the random effects, the odds ratio specified in 
Equation (13) is referred to as the conditional odds ratio.

The variance of the conditional odds ratio for the treatment factor 

can be approximated by using the delta method. Let ( )m
ˆg β  be a 

single-valued function linking mβ̂  to the odds ratio of Xm. Then, from 

the Taylor series expansion of the function ( )m
ˆg β , variance of the 

odds ratio can be approximated by

( ) ( ) ( ) ( )2
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Given the third equality of Equation (13), Equation (14) can 
expand to
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The standard error of the conditional odds ratio is the square root 
of the conditional odds ratio variance, based on which the confidence 
interval of the conditional odds ratio can be easily computed. Given 
nonlinearity of the probability distribution after retransformation, 
however, this confidence interval is not symmetric.

In displaying the results from mixed-effect logit models, the 
conditional odds ratio does not necessarily reflect the magnitude of 
the difference in the probability between two population subgroups 
of interest. For example, a ratio of 0.4 over 0.2 is two, and the ratio 
of 0.004 over 0.002 is also two, in which the information about the 
difference between the absolute probabilities is immensely overlooked. 
Correspondingly, the variance of an odds ratio estimate in logistic 
regression reflects variations in a ratio, rather than the variability in 
the difference between two predicted probabilities. In the application 
of mixed-effects logit models, therefore, significance test on the effect 
of a risk factor on the response variable cannot rely on the variance 
estimator for the conditional odds ratio. It is scientifically sounder to 

display the conditional effect of a risk factor on the probability when 
presenting the results from mixed-effects logit regression models.

Illustration
The data presented here is solely for the purposes of illustrating 

interpretation of the results from mixed-effects logit models. Data 
used for this illustration came from a partially empirical and partially 
simulated dataset, derived from a two-parallel arm randomized, 
controlled effectiveness trial evaluating a care management intervention 
for treating Posttraumatic Stress Disorder (PTSD) and Depression in 
primary care. A detailed description of the study design, procedures, 
measures, and results is available elsewhere [23,24]. Briefly participants 
were recruited directly from eighteen primary care medical clinics at 
six large US military treatment facilities. Participants who met criteria 
for probable PTSD and/or depression were identified by and referred 
to the study through routine PTSD and depression screening in 
military primary care and at the discretion of the primary care provider 
and the patient. Thus, the sample was representative of patients who 
were presenting to military primary care with PTSD and/or depression 
symptoms and accepted a referral to receive management of their 
condition within primary care. The final sample of 666 eligible and 
consented patients (332 active interventions; 334 cares as usual) was 
drawn from 2,592 patients who were referred to care management 
during the project period. PTSD and depression outcomes were 
measured longitudinally across four time-points in one year (Baseline, 
3-Months, 6-Months, 12-Months).

In this illustration, we analyzed the impact of the active 
intervention on the pattern of change over time in diagnostic status. 
Participants with eleven symptoms of PTSD and/or depression were 
categorized as diagnostic, while those patients below threshold cutoff 
levels for both PTSD and depression were categorized as diagnosis-
free. Thus, the outcome diagnostic status variable was dichotomous, 
with 1=diagnostic and 0=diagnostic-free. Operationally, we analyzed 
the probability of being diagnostic at four time points, defined as Ρr 
(Yij=)1where i=1, …., N, j=1, 2, 3, 4. Correspondingly, the complement 
of the diagnostic probability, namely 1-Ρr (Yij=) 1, was defined as the 
diagnostic-free probability. Of the explanatory variables, time was the 
primary predictor to describe trends of diagnosis over time, with the 
number of months from baseline being measured (0, 3, 6, 12 months). 
Another main predictor is treatment arm, for which we defined 
1=active intervention and 0=care as usual intervention. Three control 
variables were included in regression analysis to adjust for confounding 
effects: gender (1=women and 0=men), age at baseline, and education 
at baseline. To adjust for confounding effects effectively, we rescaled 
values of these controls to be centered at sample means at each time 
point.

As the response data were binary, the random-intercept binary 
logit model was applied, and accordingly, we assumed the effects of 
the explanatory variables on the logit to be fixed over time. We applied 
the SAS PROC NLMIXED procedure (SAS Institute Inc., Cary, NC) 
to derive parameter estimates, both the fixed and the random [25]. 
According to preliminary data analysis, adaptive Gaussian quadrature 
was used for the approximation of the integral of the likelihood over the 
random intercept. In terms of deriving robust random effect estimates 
and the model fit statistic, the advantage of adaptive Gaussian quadrature 
over other approximation methods has been well documented [5,16]. 
With use of the random intercept logit model, we specified time as a 
continuous variable. After a thorough examination, we chose to use 
the quadratic polynomial time function, the combination of time and 
time × time components, to describe trends of diagnosis. As a routine 
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practice, we rescaled the time variable T as a centered covariate to 
reduce numeric instability and collinearity [4].

Table 1 displayed the analytic results of the mixed-effects logit 
model with covariates, except the treatment factor, being centered 
at sample means at time six (the third time point). The regression 
coefficients of time, time × treatment, and time × time were each 
statistically significant at α=0.05 reflecting high quality of these 
estimates. While the main effect of the treatment factor was not shown 
to be statistically significant (β=-0.166, se=0.273, t-value=-0.61, p-value 
> 0.05), we consider the fixed effect of the active intervention to be 
statistically meaningful given its strong interactive association with 
time. It may be indicated again that exponentiation of the treatment 
fixed effect did not convert to an effective odds ratio estimate without 
averaging of the random effects for the two treatment groups. The 
between-subjects random effect on the intercept was statistically 
significant, suggesting very high intra-individual correlation in the 
active intervention longitudinal data. Of the three control variables, 
age had a positive, statistically significant effect on the log odds of the 
diagnostic probability, as expected. Males were expected to have positive 
effects on the log odds, and highly educated persons to have negative 
effects on the log odds; however, the regression coefficients of those two 
controls were not statistically significant. The fixed effects of covariates 
did not yield a robust and consistent estimator for interpretation of 
the results from mixed-effects logit models. In longitudinal analysis on 
binary data, nonlinear predictions and the computation of conditional 
effects for covariates are essential.

The predicted diagnostic probability at each time point and 
its variance can be estimated by applying Equations (3) and (9), 
respectively. Table 2 presents the predicted diagnostic probability 
across four time points (0, 3, 6, and 12 months) for both the control 
and the treatment groups. For both intervention groups, the diagnostic 
probability is shown to decline steadily over time. For the care as 
usual group, the probability declined from 0.952 at baseline to 0.786 
at month twelve, a 17.4 percent reduction in diagnostic probability; for 

the active intervention group, reduction during the same observation 
period was even greater, a 25% decline (0.961 at baseline to 0.720 at 
month twelve). Additionally, both sets of the diagnostic probability 
over time were associated with very low values of variance, indicating 
high quality of these nonlinear predictions.

Table 2 displayed a delayed effect of the active intervention. At the 
first two time points, time zero and time three, the difference in the 
diagnostic probability was negligible, though statistically significant. 
The conditional effects of the active intervention at those two months 
were 0.009 and 0.004, respectively. At month 6, the diagnostic 
probability for the active intervention group started to decline more 
sharply than for the care as usual group, 0.720 versus 0.810. At 
the last time point, month twelve, the difference in the diagnostic 
probability between the two intervention groups was as substantial as 
7 percent, statistically significant with a high value of the Wald-statistic 
(chisq=51.09 with one degree of freedom). The conditional odds ratios 
also showed the delayed effect of the active intervention; nevertheless, 
as a relative score, the odds ratio failed to reflect the change over time in 
the effect of intervention accurately. For example, the conditional odds 
ratio at baseline was as high as 1.25, statistically significant, while the 
absolute difference in the diagnostic probability between the treatment 
groups was less than 0.01.

Figure 1 plots longitudinal trajectories of the diagnostic probability 
and its complement, the diagnosis-free probability. The solid line 
represented the trajectory of those in the care as usual group, while 
the dotted curve for patients receiving the active intervention. Panel 
A demonstrated a trend of sustained reduction in the diagnostic 
probability and its differences between the two intervention groups. 
At the first two time points, the two trajectories displayed a sharply 
declining pattern at almost the same pace; the two lines started to 
separate at month 6 and eventually leading to a considerable separation 
at month twelve. In Panel B, the pattern of change over time in the 
diagnosis-free probability was displayed. As a complement to the 
diagnostic, the diagnosis-free trajectory displayed the same rate of 

Explanatory variable and effect measure Regression coefficient Standard error t value p value>t
Fixed effects

 Intercept 2.474*** 0.250 9.88 <0.01
 Time (centered at month six) -0.211*** 0.028 -7.45 <0.01

 Treatment -0.166 0.273 -0.61 0.54
 Time (centered) × treatment -0.075** 0.037 -2.02 0.04

 Time × time (centered) 0.028*** 0.005 5.49 <0.01
 Age (centered at month six) 0.099*** 0.023 4.38 <0.01
 Male (centered at month six) 0.307 0.345 0.89 0.37
 Educ. (centered at month six) -0.093 0.099 -0.94 0.35

Random Effects:
 Intercept 2.513*** 0.214 11.76 <0.01

-2 log likelihood 1756.90
***p-value <0.01; **0.01<p-value <0.05.
Note: Randomness of the intercept is parameterized by the standard error of the random effects.

Table 1: Analytic results and summary measures for the mixed-effects logit model on diagnostic status (N=666; df=665).

Predicted probability of diagnostic and effect of 
treatment

Month since baseline time
Baseline time month three month six month twelve

Probability for control group 0.952 (var <0.001) 0.881 (var <0.001) 0.810 (var <0.001) 0.786 (var <0.001)
Probability for treatment group 0.961 (var <0.001) 0.885 (var <0.001) 0.794 (var <0.010) 0.720 (var <0.001)
Conditional effect of treatment 0.009 (chisq >100) 0.004 (chisq >100) -0.016 (chisq=98.0) -0.066 (chisq=51.1)

Conditional odds ratio of treatment 1.250 (var=0.007) 1.039 (var=0.007) 0.907 (var=0.007) 0.699 (var=0.082)

Table 2: Predicted probabilities of diagnostic for treatment and control groups and three treatment effect summary measures (N=666).
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change to that of Panel A, though with the opposite direction, with 
a wide separation between the two curves at the last time point. The 
trajectories of the diagnostic and the diagnosis-free probabilities each 
have their own focuses and implications, and therefore, the researcher 
might want to select which trajectory curve should be presented 
according to one’s research interests.

Discussion
We argued in this article that one should not attempt to interpret the 

analytic results of mixed-effects logit models by means of the regression 
coefficients or their antilog transforms. The reason was that with the 
specification of the individual-specific random effects, a normally 
distributed random component on the logit function must be converted 
to a lognormally distributed multiplier in nonlinear predictions of the 
response probability. Given the property of a lognormal distribution, 
the expectation of this multiplier was greater than unity in nonlinear 
predictions, and this expectation tended to take different values over 
various population subgroups due to the presence of the variance 
function in generalized linear mixed models. Additionally, test results 

could be tremendously biased from ignoring retransformation of the 
random components because the variance of nonlinear predictions would 
be considerably underestimated. In this study, we attempted to provide 
new summary measures to correctly interpret the analytic results from 
mixed-effects logit models. In our perspective, both between-subjects and 
within-subject variability and its retransformation were taken into account 
in nonlinear predictions and the computation of the covariate’s effect.

We would also like to emphasize that when analyzing longitudinal 
binary data, one needs to examine the effects of explanatory variables on 
the response probability and the effects on the logit separately. When the 
random effects are considered, both types of covariate effects are time-
dependent, conditional on the covariates’ values, the regression coefficients, 
and the averaging of the random effects. Sometimes, those two types of 
covariate effects, both point and variance estimates, can differ considerably, 
in turn generating different test results. Compared to the odds ratio statistic, 
the predicted probability and the conditional effect of a risk factor reflect a 
longitudinal trend and its difference between two associated population 
subgroups in a straightforward fashion. Therefore, these two summary 
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Figure 1: Pattern of change over time in diagnostic and diagnosis-free probabilities: treatment and control groups (N=666).
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measures provide more useful information with policy implications 
than the odds ratio statistic.
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