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Introduction
In the current state of medical device technology and

implementation, most implanted medical devices are relatively static
and utilitarian in design and function, with single use functionality
and data. As a result, implanted medical devices tend to be relatively
unresponsive to their local environment, which often leads to device
related complications which can result in device removal, patient
morbidity, and requirement for systemic therapy (with its own
association risks and complications).

In an earlier related article [1], a proposed innovation was described
in which medical device embedded miniaturized biosensors could
create an opportunity to produce “smart”, “intelligent”, and “adaptive”
medical devices capable of continuously collecting objective and
standardized data related to device functionality, structural integrity,
and the local environment; with the goal of facilitating early diagnosis
and treatment of device related complications.

With the ever growing diversity and functionality of biosensors, the
data possibilities and derived analytics could become quite expansive
and potentially improve medical device performance, lifetime, and
overall safety. At the same time, the ability to prospectively record
standardized device related data could result in the creation of large
multi-institutional referenceable device databases which could assist in
the creation of device, patient, and context specific best practice
guidelines; which can further promote the existing goals of evidence
based and personalized medicine.

The same opportunities offered through real-time analysis of sensor
embedded medical devices can be extended to include synchronous
data of other medical devices, along with complementary clinical data
available in the patient electronic medical record. The end goal is to
produce a multi-source data network which can communicate via
wireless technology to facilitate real-time data analytics, patient and
provider communication, computerized decision support, and
customizable intervention.

Data Components and Analyses
While the variety and number of biosensor derived data elements

are rapidly expanding with continuous innovation in biosensor
technologies, the pertinent medical device data can be grouped into 3
broad categories: functional, structural, and environmental data.
Functional data is specific to the individual medical device and its
intended purpose (e.g. vascular patency, anatomic fixation) and
essentially measures the effectiveness of the device in maintaining
homeostasis. Structural data refers to the mechanical stability and

integrity of the device and its individual components. Environmental
data refers to the local cellular and tissue environment in which the
implanted device resides and is a frequent source of device related
complications. These complications can fall into two categories;
generalized and device specific. Generalized complications are in large
part a concern for most different medical devices and include
infection, cellular proliferation, and bleeding. Device specific
complications are in large part unique to the individual type of device
and its anatomic location. For discussion purposes, this manuscript
will focus on generalized complications since they are more applicable
to the broad population and diversity of medical devices in general.

The representative functional and structural data elements provided
are specific to the device clinical performance and structural integrity.
The principle types of local environmental complications (i.e.,
infection, thrombus, cellular proliferation) listed would in turn each
have associated data elements (e.g. cytokines for infection, fibrinogen
for thrombosis, endothelial and smooth muscle cell-derived
neuropilin-like protein for cell proliferation). A key feature in the data
analysis is the ability to continuously record prospective data over the
lifetime of the medical device; thereby providing for early detection of
data variation through temporal analysis. As data is collected over
large patient cohorts, the expected range of device-specific data
variability can be defined; providing greater specificity to the analysis.

The detection of a data outlier can also result in modification to the
routine data collection process by increasing the frequency of device
data collection, increasing the vigilance of sensor quality control, and
increasing correlation with pertinent electronic medical record (EMR)
data. In the example of suspected device infection, relevant data from
the EMR may include vital parameters (e.g. temperature), laboratory
data (e.g. white blood cell (WBC) count and differential), imaging
exams (e.g. nuclear medicine WBC scan), and microbiology (e.g. blood
culture). Rules based analysis and computerized decision support tools
can be created specific to individual data elements to assist in analysis
and automate the data extraction process.

Knowledge of sensor distribution within the individual medical
device would also play a key role in data collection and analysis. When
abnormal data is collected within a limited number of device sensors,
the device-specific sensor roadmap would provide specific location of
the sensors providing the abnormal data of record. The ability to
accurately localize abnormal data takes on heightened importance in
early detection and intervention. In the example of an arterial stent,
localized sensor-derived data abnormalities could identify early signs
of infection, thrombus, or a structural defect; all of which would
benefit from immediate and localized intervention in the hopes of
maintaining device function and avoiding significant patient
morbidity. In current practice such early and localized diagnosis and
intervention is routinely not practical and often results in systemic
therapy and/or device removal. As described in a companion article
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[2], sensors provide both diagnostic and therapeutic options, and have
the ability to store and inject drugs (e.g. antimicrobials, thrombolytics)
locally, with the potential to reduce the negative clinical effects of
systemic therapy.

Multi-Device Data
Given the diversity and multi-functionality of medical devices,

multiple synchronous medical devices are commonly encountered;
particularly in the acutely ill, elderly, and chronic disease patient
population [3-5]. In the circumstances where multiple devices of
similar functionality or organ system are simultaneously present in
different anatomic locations, the device from each individual device is
complementary to its counterpart devices; creating the opportunity for
synergistic multi-device data analysis.

Using the cardiovascular system as an example, an individual
patient with arterial occlusive disease may have multiple implanted
arterial stents (of different design and structure) coexisting in the
coronary arteries, aorta, visceral, and lower extremity arteries. The
ability to correlate synchronous data from these multiple anatomic
locations may provide insights which cannot be achieved through
single device data analysis alone. To illustrate how multi-device data
may prove complementary and facilitate early diagnosis we will take
the example of arterial stents simultaneously located in the abdominal
aorta, right common iliac artery, and bilateral superficial femoral
arteries (Insert Diagram). Biosensor derived flow related data (e.g.
pressure, velocity, turbulence) in the right common iliac arterial stent
demonstrates consistent measurements throughout the stent length,
indicating stent patency and proper performance. However, when the
arterial inflow data (i.e., sensors in the proximal stent) is correlated
with data from the abdominal aortic stent (which is proximal to the
common femoral artery stent), then one can detect there is a drop off
in arterial pressure somewhere between the distal end of the
abdominal aortic stent graft and the proximal end of the right common
femoral arterial stent. The severity of this obstruction can be further
surmised based upon the degree of segmental pressure change between
these two arterial stents.

If we were to go one step further and compare the pressure and
velocity measurements between the right and left common femoral
arterial stents, we find that the inflow measurements of the left
common femoral artery stent are comparable to the pressure/velocity
outflow measurements of the abdominal aortic stent graft. These
comparative device specific measures provide evidence that the
obstruction occurs after (i.e., distal to) the aortic bifurcation and
proximal to the right common femoral arterial stent, most likely at the
origin of the right common femoral artery. If the obstruction had
instead been located in the distal abdominal aorta (proximal to the
aortic bifurcation), a comparable abnormality would have been
expected in the left common femoral artery stent, which was not the
case. At the same time, comparative pressure and flow inflow
measurements in the right superficial femoral artery stent show no
significant change in measurements when compared to the right
common femoral artery stent, which would mitigate against an
obstruction in the arterial segment separating these two stents.

Now let us go one step further in order to identify a critical
application of the invention by showing how the device related
measurements can be sequentially analyzed to identify the timing,
severity, location, and etiology of pathology. Using the same patient
with 4 arterial stents (in the treatment of peripheral vascular disease)

we now have an example of a sudden and rapid change in arterial
velocity inflow measurements in the right common femoral artery
stent, accompanied by complete absence of distal stent outflow. This
indicates that an acute obstruction has occurred in the right common
femoral artery stent, the specific location of which can be determined
by analyzing neighboring sensor data along the course of the stent. The
two most likely causes of pathology are progression in atherosclerotic
plaque or embolism. Since the “pre-event” measures showed a
relatively mild degree of obstruction and the abnormity occurred quite
acutely (i.e., in the 15 minute interval of routine sequential
measurements), the logical etiology is that of embolism. Since the
embolism source can occur anywhere proximal to the point of
obstruction it is often difficult to localize. However in this case,
analysis of the sensors in the internal wall of the abdominal aortic stent
graft had previously demonstrated a significant burden of
atherosclerotic plaque along the middle of the stent which is no longer
detected. By measuring the distance between adjacent sensors in the
abdominal aortic stent graft “before and after” sensor data, one can
estimate the size of the embolus (i.e., 2.5 cm), which correlates with the
luminal diameter of the occluded right common femoral artery stent.
Knowing the etiology, source, timing, and severity of this obstruction
can provide timely diagnosis, notification, and intervention. Having
the ability to correlate real-time data from multiple individual devices
provides additional knowledge and insight not available when data is
limited to that of a single medical device alone.

Using another example, suppose this same patient had an indwelling
cardiac pacemaker due to an underlying cardiac arrhythmia. Analysis
derived from the pacemaker sensors revealed a prolonged period of
atrial fibrillation 24 hours prior to the event in question (i.e., embolic
obstruction of the right common femoral artery stent). Since atrial
fibrillation is a well-documented cause for cardiac thrombus formation
and subsequent emboli, this could also serve as a source of the embolic
disease. One method of differentiating between the two possible
sources of emboli (i.e., cardiac versus abdominal aorta) is to review the
flow data derived from the abdominal aortic stent graft data during the
specific time frame of concern (i.e., the period of time immediately
preceding and up to the time the occlusion of the right common
femoral artery stent was identified). If, the thrombus had originated
from the heart, then the embolus would have had to pass through the
abdominal aortic stent before passing into and obstructing the right
common arterial stent graft. This could have been identified by
retrieving sensor derived data within the abdominal aortic stent graft
during the time in question and evaluating for the presence of
abnormal internal flow (e.g. loss of normal laminar flow, alteration in
flow directionality, presence of a new intraluminal mass). This last
feature can be facilitated by incorporating ultrasound capabilities
within the sensors, which provides the ability to use ultrasound to
analyze medical device internal flow and wall characteristics.

While these examples illustrate the potential for analysis of
analogous multi-device data, similar opportunities exist for correlating
data from disparate devices, whose functionality and organ system
differ from one another. For illustrative purposes we will take the
example of an abdominal aortic stent graft and an artificial pancreas.
The aortic stent graft serves to maintain arterial flow and integrity of
the abdominal aorta, while the artificial pancreas serves to monitor
blood glucose and dynamically excrete insulin in an attempt to
maintain endocrinology homeostasis. In this example, biosensors in
the aortic stent graft detect small increases in infection-related data
measurements (e.g. cytokines, white blood cell aggregation), which
cause concern for a developing device-related infection. This prompts
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an automated query for retrieval of infection related laboratory data
from the EMR, along with an automated alert for infection related data
in other medical devices. Upon recognition of this alert, the data
associated with the artificial pancreas is reviewed to detect any
temporal changes in data which may be directly or indirectly related to
early infection. This data analysis demonstrates that recent blood
glucose levels have unexpectedly increased beyond the patient normal
range and required progressively increased levels of insulin over the
past 24-36 hours. Combining these two disparate device data sets
yields an association; glucose levels often acutely increase in the setting
of infection. Other causes of unexpected acute rise in glucose levels
include medication change, stress, non-functioning insulin or insulin
pump, and dietary change. An automated query of the EMR and
artificial pancreas database effectively excludes the other possible
etiologies and confirms infection as the most likely etiology. With
localized release of antibiotics (at the specific sensor location of
concern), both the infection-related data measures and glucose/insulin
levels return to normal. This example illustrates how data from
disparate medical devices can be collectively analyzed and acted upon
to improve diagnosis and treatment.

Conclusion
The creation of standardized and objective medical device data

(through embedded miniaturized biosensors) provides the ability to
create referenceable medical device databases, which can comingle
multi-institutional data for large sample size statistical analysis. When
taking into account specific patient attributes and the clinical context,
retrospective analysis of the database can assist in selection of the
medical device and clinical institutional providers. The creation of real-
time sensor data within the medical device provides the ability to
prospectively analyze device functionality, structural integrity, and the
local environmental complications. When this device-specific real time
data is correlated with historical device and clinical outcomes data;
predictive analytics can be performed which provide insight as to the
relative risk of device malfunction and/or clinical complications. When
the medical device data is combined with artificial intelligence and
automated data extraction from the electronic patient record,
computerized decision support tools can be created in an effort to
improve diagnosis and treatment of device related complications.

In addition to analysis of an individual medical device, data from
both analogous and disparate medical devices can be collectively
correlated and analyzed to enhance diagnosis and treatment decision
making. This multi-device data analysis has the potential to identify
new and unexpected interaction effects between devices and the
relative impact environmental influences have on different device types
and anatomic locations. By embedding biosensors within medical
devices, one can transform the device from a passive and static
instrument to one of dynamic and adaptive features, which create and
analyze device related data in real-time, thereby offering the potential
to improve device performance and healthcare outcomes.
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