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Introduction
In many growth and developmental studies organisms are arranged 

in tanks or other types of enclosure and repeatedly examined over time 
to acquire information on developmental stages. Examples include 
studies of plant growth, metamorphosis of fish or amphibians, or small 
arthropods [1-3]. The maturation process can usually be naturally 
modelled using multistate processes.

In some contexts it can be difficult to identify individual organisms. 
In studies of hornworms for example [4], the larvae are both mobile 
and indistinguishable. Gouno et al. also reported on a growth study of 
arabidopsis thaliana where the data are recorded in aggregated form 
[1]. In such cases the available data consists only of the counts of the 
number of organisms in the different developmental stages at each 
assessment time. This form of aggregation is also common when the 
only available data are published in tabular form.

There has been much discussion on methods for dealing with 
aggregate data. MacRae first introduced the nonlinear generalized least 
squares and briefly mentioned methods for exact maximum likelihood 
for aggregate data [5]. Kalbfleisch and Lawless introduced a weighted 
least squares approach for estimating transition intensities from 
aggregate data [6]. We develop build upon a likelihood approach in this 
paper and consider strictly progressive Markov processes appropriate 
for growth data. Computational challenges may arise as the number of 
assessment times and individuals increase, so we propose composite 
likelihood as an appealing alternative in such cases [7]. When organisms 
are organized in different tanks (i.e., clusters), tank-to-tank variation 
must be taken into consideration. Jiang and Cook [8] use composite 
likelihood to handle such data based on both marginal methods with 
robust variance estimation, and a random effects model.

The focus of this paper is on the optimal design for studies involving 
multiple tanks/clusters; we adopt the marginal approach of Jiang and 
Cook [8] for aggregate data. In some contexts tracking of individuals 
is possible but incurs a cost [9]. We also consider cost-effective design 
by addressing the situation in which some tanks contain organisms to 
be tracked individually over time, while other tanks may be designated 
to provide only aggregate counts in the different developmental stages 
at different assessment times. Sample size calculations are derived and 
cost-effective allocation of tanks to these two observation schemes is 

also considered.

The remainder of this paper is organized as follows. In the next 
section we define notation and describe a composite likelihood for 
clustered Markov processes which we use to characterize growth of 
individual organisms and to accommodate dependence in progression 
rate within tanks. Large sample results and methods of inference for 
both tracking and aggregate observation schemes are given. Sample 
size criteria are developed to meet design objectives and cost-effective 
allocation of tanks to the tracking and aggregate observation schemes 
are developed and discussed along with some simulation results. 
Concluding remarks are then made.

Notation and Likelihood
Composite likelihood for clustered panel data

We consider strictly progressive multistate models suitable for 
studying maturation processes. Suppose that observations are made on 
a group of individuals who act independently of one another, with each 
individual passing through states according to a multistate process 
with state space {1, 2,…, K}. We let Zj(t) denote the state occupied by 
individual j at time t and {Zj(s), 0<s} be the multistate process.

Let Hj (t)={Zj(s), 0 ≤ s<t} denote the history of the process for 
individual j at time t and let

j j
j 0

( ( ) 1| Z ( ) ; ( ))
(t | (t)) lim j

k t

P Z t t k t k t
t

λ
− −

∆ ↓

+ ∆ = + =
=

∆

H
H      (1)

denote the k → k+1 transition intensity, k=1,…, K−1. For Markov 
processes the intensity does not depend on the history in which case 
we write the left hand side of eqn. (1) as λk(t). Given a K × K transition 
intensity matrix Λ(t) with (k, k+1) entry λk(t), diagonal entry −λk (t), for 
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Abstract
Studies of the development and growth of organisms are often conducted in laboratories where organisms maintained 

in tanks are examined repeatedly over time. Collection and recording of cross-sectional aggregate count data on stage 
occupancy is both less expensive and administratively more convenient than tracking the stages of each organism over 
time. In such settings tank to tank variation must also be taken into account as growth rates may be more similar among 
organisms within the same tank than for those in different tanks. We consider the cost effect design of a prospective 
developmental study of organisms based on a marginal Markov model which deals with between tank variation and within 
tank dependence. We develop a flexible design in which some tanks provide repeated cross-sectional aggregate data, 
and other tanks provide serial responses through tracking individuals. We assess the relative efficiency of aggregate and 
individual-level longitudinal data. The optimal cost-effective design is shown to depend on whether primary interest lies in 
transition intensities or associated cluster-level covariate effects.
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k=1,…, K−1 and zeros elsewhere, by product integration [8] the K × K 
transition probability matrix is

{ }
(s, t]

(s, t) 1P u du= Π + Λ( ) 				                   (2)

with (k, l) entry P(Z(t)=l|Z(s)=k) for k ≤ l. If observations are made at 
times 0=aj0<aj1<...<ajRj for individual j, panel data denoted by {(Zj(ajr), 
ajr), r=1, 2, ...,Rj} are obtained. Kalbfleisch and Lawless [10] develop 
a Fisher-scoring algorithm for maximizing the likelihood which is 
implemented in the R function msm [11].

Now consider a setting with I tanks of organisms with ni 
individuals in tank i, i=1,…, I. Let 0=ai0 ≤…≤ aiRi denote the common 
assessment times for all j=1,…, J individuals in tank i, i=1,…, I. 
Diao and Cook [12] formulate a copula-based model for correlated 
Markov processes which accommodate dependence between processes 
within clusters and retain the marginal Markov property for each 
process. With progressive processes, within-cluster dependence can 
be modeled in terms of sojourn or state entry times through copula 
functions. We consider a class of Archimedian copulas [13] of the 
form ( ) ( ) ( )( )1

1 2 1 2, , , ; ; ;
inC u u u G G u G uη η η−… = +…+  where G : [0, 

1] → [0,∞) is a continuous, strictly decreasing and convex generator 
function with dependence parameter η and G (1; η)=0 [13]. To induce 
a dependence, we select the first transition time (i.e., the entry time to 
state 2) and note that a dependence is induced within clusters for the 
subsequent state entry times. Specifically, we let Tij2 denote the entry 
time to state 2 for individual j in tank i and Ti2=(Ti12,,…, Tini2)′ denote 
the vector of all state 2 entry times in tank i, i=1,…, I. We adopt the 
Clayton copula [13] and use Kendall’s τ as a measure of dependence 
where
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We formulate the joint survivor function for Ti2 by linking all 
marginal survivor functions Fij( tij2; λ1)=P(Tij2 > tij2) exp(−λ1tij2) via the 
Clayton copula as

1/
i2 1 i12 1 i i2 1 i; , ) ( ( ; ) ... ( ; ) ( 1)) n

n(t t tη ηλ η λ λ− −= + + − η −F F F .

Diao and Cook [12] describe an alternative approach where the 
association in the absorption times is modeled instead of earlier state 
entry or sojourn times, but the principle of inducing a dependence 
between multistate processes within a cluster by linking a particular 
time is in the same spirit.

Consider the case with a cluster level covariate xi, i=1,…, I and let
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which we denote more compactly as λik, k=1,…, K − 1. If αk=logλk, 
k=1,…, K − 1, α=(α1,…, αK−1)′ and β=(β′1,…, β′K −1)′, we then let 
θ=(α′, β′)′. Under a working independence assumption and a panel 
observation scheme (i.e., with individual tracking) the composite 
likelihood is
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and Zij(t) is the state occupied by individual j in tank i at time t. We 
then define
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and we let S1i(θ)=(S1i1(θ),…, S1iRi(θ)) be a p × Ri matrix. We let θ̂  denote 

the solution to 1 1 1 1
( ) ( ) 0iI R

i r ir
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= =
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A robust sandwich variance estimate is required to ensure valid 
inference under this working independence assumption. Under 
standard regularity conditions [14]
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and tests regarding elements of θ or associated 95% confidence intervals 
are constructed based on the estimated covariance matrix 1 1 1

1 1 1
ˆ ˆˆA B A− − − .

Composite likelihood for correlated aggregate data

Under the Markov property for a single individual process 
considered on its own, the stage occupied at time air only depends 
on the stage occupied at ai,r−1. With aggregate data we only need to 
consider two consecutive assessment times, and the joint distribution 
is built up as a product of the conditional probabilities. However, as 
the number of assessment times and individuals per tank increase, 
the likelihood becomes computationally challenging. That motivates 
use of a composite likelihood approach where we adopt a working 
independence assumption and consider contributions from the 
marginal frequency data observed at each time point as arising 
independently from the data at different time points from the same 
tank.

Here we consider data from the baseline assessment to each of 
the follow up assessment times. Thus for two assessment times ai0=0 
and air, the missing information in the aggregate data are Ni(air), the 

vector containing all counts 1 ir ij i 01
( ) (Z ( ) ( ) 1)in

i l ir ijj
N a I a l | Z a

=
= = =∑  

for l=1, ...,K and i=1,…, I. With a strictly progressive process and 
P(Zij(ai0)=1)=1 and we let Ni1l(air)=Mil(air) corresponds to the number 
of individuals occupying state l at time air in tank i. We can then obtain 
the composite likelihood
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Robust sandwich variance estimates are adopted to ensure valid 
inference. The estimating equations corresponding to the composite 
likelihood is
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where S2ir(θ)=∂log L2ir(θ)/∂. Since the contributions of eqn. (7) are 
valid likelihood contributions E{S2(θ)}=0 and the solution is denoted 
by θ . Again, under standard regularity conditions [14], we can then 
construct the robust sandwich variance as

1 1
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Study Design
In this section we discuss the cost-effect design of a prospective 

study in which a Markov model can characterize dynamic features of 
the process with some clusters providing repeated aggregate data, and 
others providing longitudinal responses at the individual level. Note 
that the expected information for both panel and aggregate data will be 
computed in a robust sandwich form due to the working independence 
assumption from the composite likelihood (see above sections). We let 
I1 denote the number of tanks for assigned to the panel observation 
scheme and I2 denote the number of tanks providing only repeated 
aggregate data. Without loss of generality we suppose tanks 1,…, I1 
are under the panel and tanks I1+1,…, I1+ I2 are aggregate observation 
schemes. The composite likelihood resulting from pooling the data from 
the panel and aggregate data observation schemes is L(θ)=L1(θ)L2(θ) 
where 1

1 11 1
( ) ( )iI R

iri r
L Lθ θ

= =
=∏ ∏ and 1 1( ) ( ) ( ) ( )θ θ θ θ− −=G A B A

. We let f=I1/I denote the proportion of tanks that are under panel 
observation scheme. We let n denote the number of individuals per tank 
which is fixed and common across all tanks. The cost of observation 
per individual is C1 and C2 for panel and aggregate data observation 
schemes respectively. The asymptotic robust variance of the maximum 
composite likelihood estimator is then

1 1( ) ( ) ( ) ( )θ θ θ θ− −=G A B A

where

1 2( ) ( ) (1 ) ( ),f fθ θ θ= + −A A A

1 2( ) ( ) (1 ) ( )f fθ θ θ= + −B B B

with the component matrices from eqns. (6) and (8) and

( ) (0, ( ))I Nθ θ θ−  G

with θ  being the estimate of θ. Given a target parameter of interest 
represented by the qth element of θ, the optimal cost-effective design 
involves allocation of tanks subject to the cost constraint B satisfying

[ ] 1 2qq
min ( ) ( (1 ) )nI fC f C Bθ ρ  + + − − G 		                  (9)

where  is a Lagrange multiplier. If the interest lies in more than one 
parameter, we can adopt other optimal allocation methods such as the 
D-optimality which is widely used in experimental design studies [15].

Here we give an example of the cost-effective design for clustered 
data under a specified setting. Let n=10 for each tank i and let Xi ~ Bern 
(0.5) be a tank level covariate, i=1,…, I. We use a 5-state progressive 

process as in the case of the maturation stages of Northern rock sole. 
We assume 4 follow-up assessment times (not including a0) and the 
assessment times are evenly spaced between 0 and 1. We set λ12 such that 
P(Zij(1)=1|Zij(0)=1)=0.135. We then set λ23=λ12𝜔, λ34=λ12 𝜔2, and λ45=λ12 
𝜔3 with 𝜔=1.1 indicating an increasingly rapid progression through the 
more advanced states, and set β=log1.2. The data is generated such that 
the entry times to state 2 within each tank are correlated under a copula 
model (see above section); the subsequent sojourn times are generated 
from an exponential distribution. In this example we adopt the Clayton 
copula with Kendall’s τ set to 0 (for independence) or 0.2.

Under the above setting, we now consider the case where the 
interest lies in study design with the goal is to achieve a pre-specified 
precision set to 0.01 for the estimator of the regression coefficient. 
Given the pre-specified variance, Figure 1 shows the percentage of 
aggregate tanks needed to achieve that variance as a function of the 
cost when Kendall’s τ is 0 (left column) and Kendall’s τ is 0.2 (right 
column). Note that when the cost ratio is 1, λ12 increases then decreases 
again. This is due to the fact that our model is strictly progressive and 
all units start in state 1. Another thing to notice is that it’s the number 
of aggregate clusters that give us more information rather than the 
number of individuals per cluster. Hence we see the concave shape for 
λ12 for example. Under this particular situation, aggregate data gives 
similar amount of information as panel data. Moreover, we see that λ34 
has a strictly increasing curve for cost ratio=1 which corresponds to the 
fact that aggregate data is losing information comparing to panel data. 
Note that increasing Kendall’s τ increases the cost to achieve the pre-
specified variance. Figure 2 displays the trade-off between the optimal 
allocation of tanks and the associated asymptotic variance asymptotic 
variance when we decrease the budget but keep the constraint that the 
total number of tanks is the same. The number of tanks is fixed at a 
number such that we can achieve the pre-specified variance under panel 
observation scheme. Here we used cost ratio C2/C1=0.5 for illustration 
purposes. Again, we plot the results in Figure 2 for Kendall’s τ 0 (left 
column) and Kendall’s τ 0.2 (right column) [16].
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Figure 1: Plot of the trade-off between cost and % of aggregated tanks need 
to achieve a pre-specified variance with Kendall’s τ=0 on the left column and 
Kendall’s τ=0.2 on the right column.
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Note that we have also superimposed a blue line mimicking the 
asymptotic variance from a simulation study under the same setting 
as outputted from Figure 2. Moreover, we have done 100 simulation 
to assess the empirical biases (Ebias), empirical standard errors (ESE) 
and the robust standard errors (ASE) for β. We see a good agreement 
between the blue lines (simulated ASE) broadly match of the red 
(expected asymptotic variance) from Figure 3.

Discussion
We have described a cost-effective optimal design method based on 

clustered panel and aggregate data. Aggregate data may be subjected to 
a lower cost and effort when monitoring organisms. Having aggregate 
data may also prevent possible misclassification or measurement error 
when the organisms are hard to identify. The method proposed here 
gives insight on the trade-off between number of aggregate tanks and 

0

20

40

60

80

100

%
 A

G
G

A
SV

A
R

0.011

0.012

0.013

0.014

0.015

450 500 550 600 650 700 750 800 850 900

BUDGET

0

20

40

60

80

100

%
 A

G
G

A
SV

A
R

0.012

0.014

0.016

0.018

700 800 900 1000 1100 1200 1300 1400

BUDGET

12

0

20

40

60

80

100

%
 A

G
G

A
SV

A
R

0.0115

0.0120

0.0125

0.0130

0.0135

450 500 550 600 650 700 750 800

BUDGET

12

0

20

40

60

80

100

%
 A

G
G

A
SV

A
R

0.010

0.011

0.012

0.013

0.014

900 1000 1100 1200 1300 1400 1500 1600 1700

BUDGET

45

0

20

40

60

80

100

%
 A

G
G

A
SV

A
R

0.0100

0.0105

0.0110

0.0115

0.0120

1300 1500 1700 1900 2100 2300 2500

BUDGET

45

0

20

40

60

80

100

%
 A

G
G

A
SV

A
R

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130

1300 1500 1700 1900 2100 2300 2500 2700

BUDGET

Figure 2: Plot of the trade-off between the optimal allocation of % aggregated tanks and their associated asymptotic variance subject to a fixed budget 
and number of tanks with a cost ratio of 0.5 with Kendall’s τ=0 on the left column and Kendall’s τ=0.2 on the right column.

Figure 3: Empirical performance of estimators for 100 simulations under a mixture of panel and composite likelihood via marginal model according to a 
proportion vs. the expected asymptotic variance.
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panel tanks needed in order to achieve a user-desired variance tolerance. 
Design can also be considered in terms of power of tests of the cluster 
level covariate effects, or other features of the multistate process such as 
mean sojourn times or median time to maturation. Depending on the 
cost ratio and the user desired variance tolerance, one can gain insights 
on such prospective study with the optimal cost-effective design.

The framework we have described can be generalized in a number 
of ways. In some settings it may only be possible to record aggregate 
data at certain phases of the development process (i.e., at the larval 
stage) but it may be possible to tag or otherwise identify organisms 
when they are more developed. In this case aggregate data may be 
available at early stages but tracking of individuals may yield panel 
observations once a certain stage of the life cycle has been reached. 
Another interesting variation of this design is to allow timing of 
assessments to differ between tanks. Some tanks, for example, may be 
examined more frequently at the early stages of the life cycle and others 
may be examined more frequently at later stages. Optimal allocation of 
the tanks to these observation schedules can also be considered.

We restrict attention here to progressive multistate processes 
with time homogeneous transition intensities. Calculations are easily 
adapted to deal with piecewise constant transition intensities as done 
in Jiang and Cook [8]. Extensions may be developed for recurrent 
processes or processes involving a terminal (e.g., death) state which 
can be entered at any time during the maturation process, but settings 
involving multistate models with reversible transitions are much more 
difficult to handle even under the panel observation scheme.
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