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Introduction
In longitudinal data analysis, researchers frequently encounter 

discrete response data. When the distribution of the response variable is 
not normal or the variance/covariance matrices are not homogeneous 
longitudinally, the use of linear mixed models can lead to erroneous 
parameter estimates and unrealistic predictions of the response. There 
are different types of discrete longitudinal data, such as binary, ordinal, 
count, and multinomial. While there are particular model specifications 
and estimating procedures for each data type, the underlying 
expressions and statistical inferences in many of those models can be 
generalized by following the tradition of generalized linear models, 
referred to as generalized linear mixed models. Generalized linear 
mixed models incorporate subject-specific random effects, thereby 
addressing dependence among subject-specific observations. A variety 
of approaches have ben advanced to yield statistically efficient, robust, 
and consistent estimators on parameters of generalized linear mixed 
models [1-7].

In displaying analytic results of generalized linear mixed models, 
parameter estimates are often not directly interpretable due to 
transformation of distributional functions. With specification of the 
subject-specific random effects, covariates’ regression coefficients in 
generalized linear mixed models do not necessarily describe changes in 
the mean response in the study population, and the actual effects must 
be evaluated by averaging over the distribution of specified random 
components [8]. The issue of interpretability in the analytic results of 
generalized linear mixed models thus calls for nonlinear predictions 
given the covariates’ values, the estimated regression coefficients, and 
the average of random effects. When one converts a transformed linear 
function to predict the marginal mean at the untransformed scale, 
normality of the random components in the linear predictor must be 
retransformed to a non-normal distribution [9,10]; otherwise serious 
retransformation bias can arise. Even if true values of the parameters 
are known, the analytic results from generalized linear mixed models 
cannot be converted to unbiased nonlinear predictions without 
appropriately retransforming the random components.

In this article, we display an efficient, robust method for nonlinear 
predictions in generalized linear mixed models that corrects for 
retransformation bias. In Section 2, we briefly review general 
specifications of generalized linear mixed models. In Section 3, we 
present the classical best linear unbiased predictor for nonlinear 
predictions as an ancillary presentation of generalized linear mixed 
models. This is followed by a description of the retransformation 
method in nonlinear predictions. Section 5 presents approximation of 
the variance-covariance matrix for nonlinear predictions. An example 
is provided in Section 6 comparing results of nonlinear predictions 
from various methods. In the final section, we discuss merits and 
remaining issues in the methods described in this article.

Specifications and Inferences
Generalized linear mixed models are simply an extension of the 

classical generalized linear modeling from univariate data to clustered 
measurements. In the longitudinal setting, let i denote subject i in a 
random sample of N subjects and j=1, ..., ni be the number of repeated 
measurements nested within i. The response variable Yij can be regarded 
as a discrete realization of a random variable Yij with mean μij and 
variance var(yij).  The function g(yij, xij) is a nonlinear function linking 
Yij to covariate vector Xij and a 1 × q vector of subject-specific random 
effects { }T

1, ,i i iqb .... b=b . As the random components are unobservable, 
it is desirable to specify generalized linear mixed models based on 
expectation [1], written as

( ) ( ){ }1 T TE E , µ−= + =ij iy gij ij ijX Z bβ (1)
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Abstract
Researchers often encounter discrete response data in longitudinal analysis. Generalized linear mixed models 

are generally applied to account for potential lack of independence inherent in longitudinally data. When parameter 
estimates are used to describe longitudinal processes, random effects, both between and within subjects, need to 
be retransformed in nonlinear predictions on the response data; otherwise, serious retransformation bias can arise 
to an unanticipated extent. This study attempts to go beyond existing work by developing a retransformation method 
deriving statistically robust longitudinal trajectory of nonlinear predictions. Variances of population-averaged nonlinear 
predictions are approximated by the delta method. The empirical illustration uses longitudinal data from the Asset and 
Health Dynamics among the Oldest Old study. Our analysis compares three sets of nonlinear predictions of death rate 
at six time points, from the retransformation method, the best linear unbiased predictor, and the fixed-effects approach, 
respectively. The results demonstrate that failure to retransform the random components in generalized linear mixed 
models results in severely biased nonlinear predictions, as well as much reduced standard error approximates.
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type estimators; and the random effects are usually approximated as 
posterior modes [2,4,5-7].  The variance-covariance matrix of within-
subjects uncertainty, if specified, can be approximated by using the 
Hessian of the log likelihood function or of the log restricted likelihood 
function. The analytic results from such procedures, however, are 
not sufficiently interpretable until they are converted into nonlinear 
predictions.

Best Linear Unbiased Predictor
There is a variety of approximation methods for nonlinear 

predictions on longitudinal data [1,7,11].  Among those approximation 
methods, a popular approach is the best linear unbiased predictor, 
which uses estimates of the fixed effects and the predicted values of 
the random effects.  In this method, the linear predictor in generalized 
linear mixed models can be written as the mean

( ) T Tˆ ˆ ˆ ˆˆ , , = +i i i ij ij iy b X Z bη β β                                (7)

where { }1,....,
ii i iny y=y , β̂  is the maximum likelihood or the restricted 

maximum likelihood estimate of β, and îb  is the prediction of bi.  The 
marginal likelihood can be fitted by averaging over the distribution 
of the unobserved random effect bi, with the corresponding joint 
likelihoods over N subjects written as

( ) ( ) ( )
1 1

, , , , d . ϕ ϕ
= =

=∏ ∏∫
inN

ij ij i i i
i j

L f y fG b b G bβ β             (8)

The maximum likelihood or the restricted maximum likelihood 
estimates β̂ , Ĝ , and ˆ  are the values of β, G, and φ   that maximize 
the above likelihood function.  The random effect predictions can be 
obtained as the conditional mean of bi given, β̂ , Ĝ , and ϕ̂ :

( )ˆ ˆ ˆ ˆE ; , , .  ϕ=i i ib b y Gβ

Among various approximation techniques for îb , quadrature 
methods are regarded to generate accurate approximations of the 
integral specified in the marginal likelihood function [4,5,8,12]. This 
popular procedure first uses the likelihood calculations given in 
McGilchrist [11], and then the empirical Bayes estimates of the random 
effects to approximate the Gaussian quadrature integral [13]. The 
approximated integral as a marginal likelihood is then optimized for 
the fixed effects, and the fixed effect estimates are applied to produce 
the final prediction. In this approach, as the random effect prediction 
is treated as the fixed effect, some inherent variability is overlooked 
thereby causing retransformation bias in nonlinear predictions. 
Therefore, the best linear unbiased predictor is a partial empirical 
Bayes method in nonlinear predictions. Furthermore, if there is 
evidence that uncertainty is not negligible, the estimator ( )-1ˆ η= i igy  
does not result in an accurate nonlinear predictor for yi because

( ) ( )-1 -1ˆ ˆE g g E  ≠    i iε ε .

The marginal mean for a population subgroup can be predicted 
from subject-specific predictions by creating a scoring dataset that 
represents an actual or a hypothetical population group taking selected 
values of covariates. By retaining the predicted random effect for 
each subject, the mean and the standard deviation of subject-specific 
predictions in the scoring dataset approximate the population-
averaged prediction and its standard error by use of the best linear 
unbiased predictor.

Retransformation Method
One limitation in the best linear unbiased predictor is that îb  is 

Where E(yij) is the expected value of Yij, β is an M  × 1 vector of 
unknown regression parameters to be estimated including a time factor, 
and Zij is a design block matrix.  The 1 × q random effects vector bi is 
distributed as N(0,G), where G is a q × q covariance matrix.  The matrix 
Zij can contain time or other covariates whose association with the 
response is assumed to vary across subjects.  With the specification of β 
and bi, the elements in vector yi=yi1,….yni, are thought to be conditionally 
independent.  The linear predictor, ( ) ( )T Tg , E= +ij i ij ij iy b X Z bβ β , is 
conventionally denoted by ηij .

With the specification of a link function in generalized linear mixed 
models, random errors for nonlinear functions depend on the mean 
function, and accordingly, the variance of yij is written as

( ) ( ) ( )var var Eµ ϕυ µ = +  ij ij ijy

( ) ( ){ }1 T T 1 T Tvar E , ϕυ− −   = + + +   ij ij i ij ij ig gX Z b X Z bβ β           (2)

Where ν is a specific variance function, andφ represents a scale 
factor for over-dispersion. Given this flexible specification, yij can 
follow a probability distribution other than multivariate normality. 
Equation (2) includes two distinctive variance components, between-
subjects and within-subject. Given the specification of the variance 
function, the within-subjects variance cannot be specified freely in 
non-normal longitudinal data.

Equation (1) does not specify a within-subject error term, implying 
zero uncertainty given β and bi.  From Equation (2), however, it seems 
desirable to express yij as a conditional function by including an error 
term for addressing uncertainty [9]:

( ) ( )1 T T 1
,g g ,ε η µ−= + + = = 

-
ij ij i ij iyij ijX Z bβ                           (3)

Where µ ij  is the conditional mean after accounting for the within-
subject random error εij. Correspondingly, ijη  is defined as

( ) T T . ε η ε η= + + = + = ij i ij ij i ij ij ij ijg y b X Z bβ                       (4)

Specification of the variance matrix for within-subjects random 
errors depends on a specific link function, and this random term 
may be conveniently assumed to have local normality with property

( )2~ N 0, εε σij i jb . Due to retransformation of εij in expressing the 

expected value of ijy , very often µ µ≠ ij ij , albeit ( )Eη η=ij ij . Let α  be a 
correlation parameter, and ( )R a  be the ni × ni matrix of α  describing 
the correlation pattern within subject i. Then, if within-subjects 
uncertainty is considered, the within-subject variance-covariance 
structure can be written as

( ) ( ) ( ) ( )1 2 1 2var ,  ε ϕ=  ib Α R a Α/ /
i i i i i iµ µ                              (5) 

where  iµ  is the vector of means over ni time points, ( )i iΑ µ  is an ni 
× ni diagonal within-subject variance matrix containing elements ν, 
evaluated at  iµ , and  Ri is an unknown matrix to be estimated. For 
analytic convenience and simplicity, the matrices in Equation (5) 
are assumed to be common to all subjects. When the subject-specific 
random effects are specified, ( )iR α  is often simplified as RI, where I 
is the identity matrix.

The variance-covariance matrix of the linear predictor, denoted by
( )ηiiV , can be written as

( ) ( ) ( ) ( )1 2 1 2 T .η ϕ η η= + iV Α R a Α Z G/ /
i i i i i i i iZ                                     (6)

The parameters β and G can be estimated by the maximum 
likelihood or the restricted maximum likelihood, or other Bayes-
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treated as the fixed effect in nonlinear predictions. Consequently, a 
portion of variability is ignored in the retransformation process.  For 
a population group, the entire set of random components needs to be 
retransformed for correctly approximating the population-averaged 
mean. We refer to this retransforming of random components in 
nonlinear predictions as the retransformation method.  In this section, 
we present two such methods, one without and one with considering 
within-subjects uncertainty, respectively.

Retransformation method without considering intra-
subjects variability

We start the description with the case of a log link.  Let subject i 
be a typical case in a population of interest characterized by covariate 
vector X0.  The predicted value for the typical subject at time j can then 
be considered the population-averaged prediction for the population 
taking covariate values X0. Given Equation (1), the marginal mean of 
yij given X0j and bi is

( ) ( )T T
0 0 0

ˆ ˆˆE , E exp = + j i j j iyij X b X Z bβ

( ) ( )T T
0 0

ˆ ˆexp E exp =  j j iX Z bβ

( )T
0 0

ˆ ˆexp , Φ= j jX β                                                 (9)

where ( )T
0 0

ˆˆ E expΦ  =  j j iZ b  is defined as the moment generating function 
of bi evaluated at Z0j. Given ( ) ~N ,i 0b G , 

ijΦ  is the expectation of a 
lognormal distribution, mathematically defined as ( ){ }Texp / 2ij ij′Z GZ .  
Therefore, the prediction at time j for the population with covariate 
X0j is given by

  ( ) ( )
T

0 0T
0 0

ˆ
ˆ ˆˆE , exp exp . 

2

 
 =
 
 

j j
j i jyij

Z GZ
X b X β                              (10)

Equation (10) indicates that ( ) ( ){ } ( )T T Tˆ ˆ ˆexp exp exp>ij ij ij ijX Z GZ / 2 Xβ β  
unless all elements in Ĝ  take value zero.  Therefore, given the log link, 
the nonlinear response yij will be under-predicted if retransformation 
of between-subjects random effects is completely or partially neglected, 
with the magnitude of such retransformation bias depending on the 
size of 0̂Φ j .

Next, let g(·) represent the popular logit link. Given the logit 
function, neglect of retransformation of random effects can also lead to 
tremendous retransformation bias on the binary data.  Let yij denote a 
dichotomous response variable taking value 0 or 1 for subject i at time 
j.  Then the predicted probability that yij = 1 for person i at time j given 
X0j and bi can be written as

( ) ( ) ( )0 0 T T
0 0

1ˆ ˆˆE , E pr 1 , E
ˆ ˆ1 exp

 
  = = =      + − +   

ij j i ij j

j j i

p y iX b X b
X Z bβ

( ) ( ){ } 1
T T
0 0

ˆ ˆ1 exp E exp
−

 = + − −  j j iX Z bβ

( )
1

T
0

0

1ˆ1 exp ,   
Φ̂

−
   = + −       

j
j

X β                                         (11)

where; in the construct of the lognormal distribution, 

T
0 0

0

ˆ
ˆ exp .  

2
Φ

 
 =
 
 

j j
j

Z GZ

Let the fixed-effects estimator ( ) ( ) 1
T

0 0
ˆˆE 1 exp

−
 = + − ij j jp X X β  be ( )1ˆ ijp  

and the mixed-effects estimator ( )0
ˆˆE ,ij j ip X b  be ( )2ˆ

ijp . Then, when 
0̂ 1Φ >j , which is generally the case in longitudinal data analysis, we have 
( ) ( )2 1ˆ ˆ
ij ijp p> . Therefore, in nonlinear predictions with mixed-effects logit 

models, ignoring retransformation of between-subjects random effects 
can lead to strong downward bias in the predicted probability. For other 
discrete data types, such as the multinomial, the retransformation bias 
in nonlinear predictions can be equally impactful [9].

Retransformation method with intra-subjects variability

The equations specified in the above section do not specify a 
random term accounting for within-subjects uncertainty.  In the 
application of generalized linear mixed models, between-subjects 
random effects are often perceived to reflect individual differences 
in unspecified characteristics thereby addressing within-subjects 
variability simultaneously [14]. In certain situations, however, this 
assumption does not reflect the true experiences generated by the 
stochastic longitudinal process.

If within-subjects variability is taken into account, the expectation 
of nonlinear response y for subject i at time j can be written as

( ) ( ){ }1 T Tˆ ˆE E ,  µ−  = + + − ij ij ijX Z bij ij iy g Δ yβ                             (12)

where ( )y∆ µ−ij ij   can be understood as a second-order smearing 
estimate evaluated at ( )ˆ ˆ, ibβ . Empirically, the within-subjects random 
term can be approximated from the partial derivative of the log 
likelihood function with respect to β in estimating a generalized linear 
mixed model, given by

( ) ( )
ˆ ˆ

 log , ,ˆ .
ϕ

∆ µ
∂

− ≈
∂βij ij ,b

ijL y
y

β

β G

Practically, the term ( )∆̂ µ−ij ijy  is the local approximation 
of the within-subjects random error with local normality. Such an 
approximate is model-based; different from linear mixed models, its 
specification depends on the marginal mean.  In nonlinear predictions, 
the specification of this local approximation step can be ignored 
only when there is strong evidence that between-subjects variability 
completely captures within-subjects uncertainty.

Some researchers recommend the application of the latent variable 
approach to estimate within-subjects random errors in generalized 
linear mixed models [15]. This standardized approach specifies a 
constant variance of within-subjects random errors, regardless of the 
response type and the number of covariates utilized in a particular 
longitudinal study. It is argued that, when the between-subjects random 
effects are specified, not that much variability remains in a binary 
or a multinomial response [15]. Furthermore, this approach does 
not specify a covariance structure when the data type is multinomial 
thereby overlooking the multivariate nature of the nonlinear data 
structure.

If within-subjects random errors are considered non-ignorable in 
specifying a generalized linear mixed model, the marginal mean of the 
nonlinear response yij, taking the logit link, is

( ) ( ){ }0 T T
0 0

1ˆˆE E
ˆ ˆ ˆ1 exp ∆

 
 =  + − + +  

ij j i

j j i

p
ij

X ,b
X Z bβ

( ) ( ){ } ( ){ }
1

T T
0 0

ˆ ˆ ˆ1 exp E exp E exp ∆
−

 = + − − −  j j i ijX Z bβ
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( )
11

T 2
0 0T

0

ˆ ˆˆ1 exp exp ,  
2

εσ
−−   +   = + −         

j j j
j

Z GZ
X β                       (13)

where ( )ˆ ˆ∆ ∆ µ= −ij ij ijy  and 2ˆ jεσ  is the variance of ∆̂ij  that can be 
obtained from the inverse of the observed information matrix for an 

underlying marginal model.  Let the above estimator be ( )3ˆ
ijp .  Then, 

we have ( ) ( ) ( )3 2 1ˆ ˆ ˆ
ij ij ijp p p> >  unless 2ˆ 0jεσ = . Therefore, if within-subject 

uncertainty cannot be ignored, overlooking retransformation of the 
within-subjects random component results in underestimation of the 
predicted probability.

Variance Matrix for Nonlinear Predictions
We propose to use the delta method to approximate the standard 

errors of nonlinear predictions, as following the tradition in nonlinear 
predictions [12-14,16,17]. Suppose that the discrete response is 
binomial.  Let îjL  be a random variable of the linear predictor for 
subject i at time point j from Equation (4) with mean ijη  and variance

( )ˆvar ijL , and ( )-1 ˆˆ
ij ijp g= L  is a transform of îjL , as defined by Equation 

(3).  As conventionally defined, g is the link function and g-1 is its inverse 
function.  For large samples, the first-order Taylor series expansion of 

( )-1
îjg L  yields approximation of mean

( ){ } ( )-1 -1ˆ ,η≈ ij ij ijE g gL                             (14)

and; of variance ( )ˆvar ijp

( ){ } ( ) ( )
1

1
ˆ ˆ ˆ ˆvar var .ˆ 

η
−

−
 ∂ ≈ = 

∂  



ij

ij ij ij ij
ij

g
g

2
L

L L L
L

                         (15)

In Equation (15), ( ){ }1 ˆvar ijg − L  is the approximation for the variance 
of the predicted probability ˆ

ijp   for large samples.  The square-root of 
this variance approximation yields the standard error of the nonlinear 
prediction given ˆ , Ĝ , and ϕ̂ .

If the discrete response is multinomial, the two scalars îjL  and 
( )-1

îjg L   need to be replaced by two random vectors, 1
ˆ ˆ ˆ,....,ij ijK=L L L  

and ( )1
-1 ˆ ˆˆ ,....,ij ijKg=p L L , respectively, where K denotes the number of 

non-reference response levels [9].  Correspondingly, the variance-
covariance matrix ( )ˆV p  is approximated by

( ) ( ) ( ) ( )1 1

1

Tˆ ˆ ˆ ˆ ˆ ˆ ,ˆ ˆ 

− −

−
   ∂ ∂
     ≈ = =       ∂ ∂      

 V
g g

g η Σ η
L L

L L L L
L L

                       (16)

where;

( ) ( ) ( )1 1 1
1 2

ˆ ˆ ˆ 
, ,.... ,ˆ ˆ ˆ 

g g g− − − ∂ ∂ ∂
 =  ∂ ∂ ∂  

L L L

L L L

and

( )

( ) ( ) ( )

( ) ( )

( )

1 1 2 1

2 2

ˆ ˆ ˆ ˆ ˆvar      cov ,            cov ,

ˆ ˆ ˆ                  var               cov ,ˆ

                                        
ˆ                                                 var    

 ⋅ ⋅ ⋅

⋅ ⋅ ⋅
=



K

K

K

Σ L

L L L L L

L L L

L

.


 
 
 
 
 
 
 
 
 
 
 

In generalized linear mixed models, ( )ˆvar ijL  may consist of 
two components, between-subjects and within-subjects variances, as 
indicated earlier.  Whereas the between-subjects variance is specified 
in a generalized linear mixed model and thereby estimable, the within-
subjects random component can be approximated from the variance 
of the intercept after the covariates are rescaled to be centered at 
selected values [9].  The rationale is that if covariates are centered 
at some specified values, the intercept represents the transformed 
margin, and therefore, the variance of the estimated intercept plus the 
corresponding variance for the between-subjects random effects can be 
considered the approximation of the variance for the marginal mean.

Illustration
Data used for the illustration come from the Survey of Asset and 

Health Dynamics among the Oldest Old, a nationally representative 
investigation of older Americans. This survey, conducted by the 
Institute for Social Research, University of Michigan, is funded 
by National Institute on Aging as a supplement to the Health and 
Retirement Study.  To date, the survey consists of nine waves of data 
collection.  The Wave I survey was conducted between October 1993 
and April 1994, identifying 9,473 households and 11,965 individuals 
in the target area range.  The survey obtains detailed information on 
a number of domains, including demographics, health status, health 
care use, disability, and health and life insurance.  Survival information 
throughout the follow-up waves is obtained through a link to the data 
of National Death Index. Because the first two waves (1993 and 1995) 
were based on a slightly different questionnaire from those of the 
succeeding waves, we use data from the six waves starting with the 1998 
wave (1998, 2000, 2002, 2004, 2006, and 2008).  For details about the 
study design, see the Health and Retirement Study website (hrsonline.
isr.umich.edu).

In this illustration, the outcome variable is survival status, with 
1=death and 0=else.  Operationally, we analyze the probability of death 
between two successive waves, defined as pr(Yij=1) where j indicates 
a time interval between time point j–1 and j. Given the focus on 
nonlinear predictions on longitudinal trajectory of death rate, the main 
explanatory variable is time, measured as the number of years elapsed 
since the 1998 survey (t = 0, 2, 4, 6, 8, 10).  Among the control variables 
considered in this illustration, gender is a dichotomous variable with 
1=women and 0=men, and age and education are both continuous 
variables.  In estimating the model parameters, the control variables 
are rescaled to be centered about sample means. The interaction 
between time and each of the controls was considered for capturing 
possible convergence of the covariate’s effect, but its inclusion did not 
contribute significantly to the model fit and thus was removed.

Given the binary outcome data, we apply the mixed-effects binary 
logit model.  For illustrative simplicity without loss of generality, we use 
the random intercept logit model, assuming the effects of covariates on 
the logit to be fixed over time.  The SAS PROC NLMIXED procedure 
(SAS Institute Inc., Cary, NC) is applied to compute the fixed and 
the random effects given its tremendous flexibility in estimating and 
predicting parameters in generalized linear mixed models [16]. We 
use adaptive Gaussian quadrature to approximate the integral of the 
likelihood over the random intercept with its advantage over other 
approximation methods in deriving robust random effect estimates 
and the model fit statistic [4,12]. With the specification of between-
subjects random intercepts, time is treated as a continuous variable. 
A combination of time and time × time, the so-called quadratic 
polynomial time function, was found to best describe the longitudinal 
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trajectory of death rate.  Given high correlation between the two time 
components, the time variable t was rescaled as a centered covariate to 
reduce numeric instability and collinearity.

To compare statistical efficiency and robustness of different 
methods for nonlinear predictions in longitudinal analysis, we first 
create a “full” logit model consisting of all covariates and two random 
components in the estimation process, assuming the population-
averaged predictions and the corresponding variances/covariances 
derived from this model to be exact. Then we purposefully exclude 
the variable “education” from the logit model. As education has a 
statistically significant effect on death rate, there is definitely additional 
clustering in the outcome data after its removal, and therefore such 
a reduced model is actually a misspecified model. We have three 
operational objectives in this illustration. First, we examine whether 
the retransformation method can capture the random effect after an 
important predictor is removed, relative to the results from the full 
model. Next, we assess whether the retransformation method yields 
much smaller retransformation bias than the best linear unbiased 
predictor in nonlinear predictions. Third, we demonstrate how the 
fixed-effects approach, though tending to generate unbiased estimates 
of regression coefficients [18], results in tremendous retransformation 
bias in nonlinear predictions. The best linear unbiased predictor and 
the retransformation method are actually based on the same model 
eliminating education from the estimating process, and therefore, we 
develop three logit models in the illustration: the full mixed-effects 
logit model, the reduced mixed-effects logit model removing education 
from regression, and the reduced fixed-effects logit model.

While the best linear unbiased predictor approximates death rate 
for each observation, we obtain the population-averaged predictions 
from this method by creating a scoring dataset that specifies the 
outcome variable as missing and the independent variables as zero, 
with covariates rescaled to be centered at selected values corresponding 
to a target population group. In the scoring data, the random effect 
per individual should be present, and therefore, the mean of the 
predictions with y=missing and X’s=0 in the scoring dataset generates 
the predicted death rate for the population or a typical subject taking 
selected values of covariates.

Table 1 displays the analytic results of three models. All regression 
coefficients, full or reduced, random- or fixed-effects, are statistically 
significant at α=0.05. In each model, the regression coefficient of time 
on the logit is positive, while that of time × time is negative, which, 
combined, suggest a decelerating time trend in old-age mortality. 
The between-subjects random effect on the logit is 0.381 for the full 
model and 0.380 for the reduced, both statistically significant. The 
intercept, the regression coefficients, and the standard errors in the 
reduced fixed-effects model are close to those from the two random-
effects logit models. Such a similarity indicates that in this analysis, 
the large-sample behavior follows, and consequently, the asymptotic 
process ( )1/ 2 ˆ

0 jn -β β , where β0 is the true parameter vector, tends to 
converge to a normal vector with mean 0 and the covariance matrix 
as approximated by the inverse of the observed information matrix. 
The fixed-effects logit model, however, does not have capability to 
yield a robust and consistent estimator for nonlinear predictions in the 
longitudinal setting, as will be shown in Table 1.

The predicted death rate at each time point and its variance can 
be estimated by applying Equations (14) and (15), respectively. In the 
construct of binary response data, the partial derivative of death rate 
with respect to the logit function is
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where ( )ˆvar ijL  consists of two components if within-subjects random 
errors are considered.

Table 2 presents four sets of the predicted death rates and the 
standard errors at six time points, computed from the full model, the 
retransformation method, the best linear unbiased predictor, and the 
fixed-effects reduced model, respectively.

In Table 2, death rate is shown to increase exponentially over 
time at the early and the middle stage, and then the increase slows 
near the end of the observation period, reflecting a “selection of the 
fittest” process. The retransformation method, transferring both the 
between-subjects and the within-subject random components in this 
analysis, generates the closest predictions to those from the full model, 
indicating its high efficiency and coverage in handling retransformation 
bias in nonlinear predictions. In the first two panels, the predicted 

Explanatory variable and 
effect type

Regression coefficient Standard error

Full random-effects logit model
Fixed Effects:
  Intercept -1.486*** 0.033
  Time (centered) 0.292*** 0.016
  Time × time (centered) -0.047*** 0.002
  Gender (centered) -0.476*** 0.052
  Age (centered) 0.132*** 0.006
  Education (centered) -0.032*** 0.006
Random Effects:
  Intercept 0.381*** 0.017

Reduced random-effects logit model
Fixed Effects:
  Intercept -1.472*** 0.031
  Time (centered) 0.271*** 0.018
  Time × time (centered) -0.047*** 0.002
  Gender (centered) -0.446*** 0.051
  Age (centered) 0.129*** 0.006
Random Effects:
  Intercept 0.380*** 0.017

Reduced fixed-effects logit model
Fixed Effects:
  Intercept -1.448*** 0.027
  Time (centered) 0.229*** 0.007
  Time × time (centered) -0.045*** 0.002
  Gender (centered) -0.390*** 0.040
  Age (centered) 0.116*** 0.003

***p<0.01.
Note: Randomness of the intercept is parameterized by the variance of the random 
effects.
Table 1: Analytic results of three binary logistic regression models on the inter-
wave death rate in older Americans (N=7,480).
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death rates in the first two observation intervals, 1998-2000 and 2000-
2002, are not statistically significant at α=0.05, with high standard 
errors. The best linear unbiased predictor provides close predictions 
at the early times; in the last three time periods, however, the predicted 
death rate deviates markedly from those from the first two methods. 
Furthermore, this method results in severely underestimated standard 
errors of the predictions. The fixed-effects logit model generates the 
least valid predictions with massive deviations from those of the mixed-
effects models. More significantly, the fixed-effects approach severely 
underestimates standard errors, much more so than the best linear 
unbiased predictor. With severe underestimation of standard errors, 
all predicted death rates from the best linear unbiased predictor and 
the fixed-effects model are very strongly statistically significant, thereby 
yielding erroneous test results.

Figure 1 plots three longitudinal trajectories of death rate and 
the corresponding 95% confidence limits, approximated from the 
retransformation method, the best linear unbiased predictor, and the 
fixed-effects approach, respectively. The solid line and the shaded area 
in each panel are the trajectory and the 95% confidence region from the 
full model, used as a standard for comparison. Panel A demonstrates 
how well the retransformation method predicts old-age mortality and 
the confidence limits, after one theoretically important, statistically 
significant predictor is removed. In Panel B, the best linear unbiased 
predictor estimates death rate fairly nicely in the early stage, but it then 
falls off systematically from the solid line, with the 95% confidence 
limits dramatically contracted. In Panel C, the predicted time trend of 
death rate is completely amiss, with the two 95% confidence limits very 
narrowly scattered around the predicted curve.

Discussion
As regression coefficients in generalized linear mixed models are 

often not interpretable, we have seen applications using the fixed-effect 
estimates for nonlinear predictions. Such an application can lead to 
considerable retransformation bias due to neglect of retransforming 
random components. If random disturbances in a generalized linear 
mixed model truly follow normality, this distribution needs to convert 
to a non-normal function to correctly predict the nonlinear outcome. 
Consequently, the expectation of random components is not zero in 
nonlinear predictions unless the identity link function is specified or 
both between- and within-subjects random disturbances are zero for 
all subjects. Without appropriately retransforming the random effects, 

the variance of nonlinear predictions will be underestimated, thereby 
affecting the quality of the significance test. The best linear unbiased 

Type of Statistics Inter-wave intervals
1998-2000 2000-2002 2002-2004 2004-2006 2006-2008

Predicted death rates generated from the full mixed-effects model
Death rate 0.075 0.169 0.259 0.294 0.254
Standard error 0.043 0.087 0.119 0.128 0.118

Predicted death rates generated from the retransformation method
Death rate 0.075 0.168 0.258 0.291 0.252
Standard error 0.043 0.086 0.118 0.128 0.117

Predicted death rates generated from the best linear unbiased predictor
Death rate 0.064 0.146 0.227 0.257 0.221
Standard error 0.012 0.024 0.034 0.037 0.034

Predicted death rates generated from the reduced fixed-effects model
Death rate 0.073 0.152 0.220 0.238 0.194
Standard error 0.002 0.003 0.005 0.005 0.008

Note: Except the first model, all other methods in Table 2 are based on "reduced" (misspecified) models.

Table 2: Predicted inter-waves death rates and standard errors at five longitudinal intervals from 1998 to 2008: AHEAD longitudinal survey (N=7,480).

Figure 1: Longitudinal trajectories of death rate derived from four models.
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prediction, widely applied in longitudinal analysis, only accounts for 
a portion of between-subjects variability and overlooks the within-
subject random component that may exist inherently even with the 
specification of the between-subjects random effects.

In this article, we compare the predicted death rate at six time points 
from three predicting methods: the retransformation method, the best 
linear unbiased predictor, and the fixed-effects approach, as relative to 
a pre-specified full mixed-effects logit model. In particular, we examine 
how each of these methods behaves in nonlinear predictions after an 
important predictor variable is removed. The results of our illustration 
display that failure to retransform random components in generalized 
linear mixed models can result in severe bias in nonlinear predictions 
and sizable underestimation of standard errors, even when the 
estimated regression coefficients are unbiased. Such retransformation 
bias exerts substantial influences on the quality of significance test on 
nonlinear predictions. The fixed effects are population-averaged, and 
therefore, the subject-specific variability is disregarded; once random 
effects are considered in nonlinear predictions, the inherent variability 
is much increased, thereby lowering the value of the chi-square statistic. 
The best linear unbiased predictor reduces some retransformation bias 
but its effect is shown to be very limited. Relative to the fixed-effects 
approach and the BLUP estimator that are associated with tremendous 
retransformation bias, our retransformation method is shown to 
increase the efficiency and coverage in nonlinear predictions.
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