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Abstract

Inspired by biological systems and grounded in mathematical and computational models, complex networks have been extensively employed to 
represent diverse biological phenomena. The significance of network controllability in comprehending intricate biological systems is universally 
acknowledged, leading to the development of several algorithms aimed at analyzing network controllability. These algorithms serve the purpose 
of manipulating input signals to guide biological system dynamics toward desired states. New studies in biological systems have shown that 
there are complicated connections between nodes that are hard to show in simple networks. In response to these complexities, multiplex 
networks have emerged as robust constructs capable of accommodating and capturing multiple relationships simultaneously simultaneously 
within high-dimensional spaces. This research introduces a framework designed to regulate the behavior of biological multiplex networks by 
identifying pivotal driver nodes. This framework is presented to identify minimum driver nodes that the efficacy of it evaluated through its 
application to authentic biological multiplexes. Applied to three virus multiplex networks, the framework underscores the potential for identified 
driver nodes to serve as targets for drug enrichment or as subjects for investigating intricate diseases. The implications of this research extend 
to identifying potential driver genes for various virus-related diseases within the landscape of biological multiplex networks.
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Introduction
Biological networks provide a conceptual and intuitive framework 

to understand biological systems, which have been increasingly 
employed in diagnosing and controlling diseases. These networks 
have become one of the most important fields of biomedical research 
Yu, et al., and offer a meaningful approach to understanding various 
diseases. Controllability is a fundamental idea in modern control 
theory [1]. It has proven to be a useful tool for guiding the behavior of 
biological systems from a starting point to a wanted end point in a set 
amount of time. Studies have demonstrated that manipulating and 
controlling intercellular networks can provide novel drug targets and 
new ways to treat diseases Liu, et al., Iglesias and Ingalls [2]. In 
recent years, exploring network controllability through linear dynamic 
systems has provided novel insights into modern molecular biology. 
This knowledge aids in identifying key host elements that regulate 
cell progression during infection, comprehend disease dynamics, 
spotlight  proteins as potential  drug targets and  facilitate  further

biological investigation. One of the earliest proposed methods for 
complete control over gene regulatory networks was the computer-
based experimental tests by Liu, et al. Liu, et al., which required 
direct control over up to 80% of the nodes and was deemed 
impractical for medical applications. In subsequent studies 
investigating control features under different network topology, 
Minimum Dominating Sets (MDS) have been proposed to control 
interaction network dynamics Wu, et al., Khuri and Wuchty [3].

Recent studies conducted on network controllability have 
demonstrated that the ability to manipulate and control intercellular 
networks can provide insights for discovering novel drug targets 
Asgari, et al. One of the most significant studies proposed a novel 
algorithm for identifying the essential number of driver nodes to 
achieve target control while minimizing the number of mediator 
nodes Ebrahimi et al. Until now, the emphasis in research on 
controllability methods has been on single layer networks, where a 
single type of interaction links nodes. However, in reality, complex 
networks are usually composed of multiple, interconnected layers,
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known as multiplex networks. These layers interact in various ways, 
making them a more sophisticated and realistic representation of 
biological systems [4]. Despite their significance, most controllability 
methods developed for biomedical systems in recent years have 
mainly focused on single-layer networks. Therefore, there is a 
pressing need to understand and control multilayer networks as they 
pose a fundamental challenge Wang, et al.

In contemporary times, multiplex networks have emerged as 
promising tools to address the complex inter dependencies that are 
not fully captured by single-layer networks Bianconi [5]. Consequently, 
controlling multiplex networks has become a critical and formidable 
issue for various applications, including drug design Menichetti, et al.

While recent advancements have been in understanding the 
controllability of multiplex networks, controlling such networks 
remains a fundamental challenge. Yuan et al. Yuan et al. developed a 
comprehensive framework that enables controllability analysis in 
multiplex networks, employing multiple relation and layer networks 
[6]. Proposed a theoretical approach utilizing disjoint path covers to 
calculate the minimum number of inputs required to fully control 
multiplex, multi-timescale networks. The correlation strength of 
interconnections plays a pivotal role in determining the controllability 
of multilayer networks, as demonstrated by the findings of Wang, et 
al. [7]. Finally, Zheng, et al., proposed a general framework for 
identifying minimal driver nodes and controlling nonlinear dynamical 
systems to steer multilayered nonlinear dynamical systems toward 
desired states. Their framework is based on the assumption that each 
node of the multiplex network is either a driver node in each layer or 
it is not a driver node in any layer Zhao. However, in real multiplex 
networks, nodes may exhibit different properties across different 
layers. Therefore, this assumption may not always hold true. Different 
layers within a multiplex network could have different sets of driver 
nodes, which can vary based on the specific attributes or interactions 
within each layer [8].

We investigated this assumption on the HIV multiplex network, 
which is common with Zhao and Zhou, as well as other datasets. 
Subsequently, we introduced a framework to identify the driver nodes 
in multiplex networks.

Multiplex networks refer to multilayer networks where each layer 
corresponds to a specific type of interaction between nodes and the 
nodes in each layer are the same and have a one-to-one mapping. In 
biological contexts, controlling multiplex networks is crucial for 
various applications and understanding how to control such systems 
is still a challenging and fundamental issue. Specifically, we analyze 
multiplex networks characterized by a predetermined set of nodes 
connected through diverse interaction types. In our study, we 
introduce a framework to ascertain the minimum number of driver 
nodes and investigate the influence of the multiplex structure on 
network controllability within biological systems [9,10]. The 
effectiveness of this framework is demonstrated by its successful 
application to different multiplex networks involving interactions 
between viruses and hosts. Our results indicate that certain nodes we 
identified might  have potential as  targets for drugs in  biological

experiments or play significant roles in important biological 
processes, as indicated in the literature [11].

Materials and Methods

Controllability of biological networks
Although real-world systems, such as biological networks, are 

influenced by complex nonlinear processes, their behavior is often 
described using linear models. This preference for linear models in 
network controllability research is because of the availability of 
effective tools and methods for understanding systems with linear 
dynamics. On the other hand, the controllability of nonlinear systems 
at their equilibrium shares several traits with that of linear systems. 
As a result, the concept of structural controllability can be a suitable 
criterion for assessing the controllability of nonlinear systems [12].

Structural controllability offers a solution to address the challenges 
posed by incomplete knowledge about the state of real networks and 
the high computational costs associated with network controllability. 
The idea of structural controllability was first introduced by Lin, et al. 
in 1974 Hemminger and Beineke, offering a way to assess the 
controllability of networked systems. A key advantage of structural 
controllability is its ability to enable control across virtually all 
conceivable parameter values [13]. This implies that if a system 
demonstrates controllability for a specific set of nonzero system 
parameters, it will also exhibit controllability for all other parameters 
except those within a set of measure zero Dion et al.; Zhang et al.

Considering the factors outlined earlier, the primary aim of this 
study is to explore the structural controllability of biological networks 
using linear dynamic models. In its most basic representation, the 
behavior of a Linear Time Invariant (LTI) system with N nodes can be 
captured by equation (1).

dx(t)/dt=Ax(t)+Bu(t) (1)

Where x(t)=(x1(t), . . . , xN (t))T corresponds to the state of N nodes, 
indicating the network’s status at time t. A represents the network’s 
adjacency matrix (N × N), capturing how nodes are connected and 
the strength of their interactions. B as a (N × M) input matrix (M ≤ N) 
identifies the nodes controlled by external control, while 
u(t)=(u1(t), . . . , uM (t))T signifies the input signals at time t that guide 
the system’s behavior. A node directly receiving a control signal is 
known as a driver node [14]. From now, driver nodes of network will 
be referred to as ND. In the controllability of a complex network, we 
need a set of nodes with different input signals. Controllability refers 
to the capability of directing a linear networked system, described by 
equation (1), towards a desired outcome using a suitable control 
signal within a specific time frame. This ability exists if and only if the 
(N × NM) controllability matrix C=(B, AB, AiB, . . . , A(n−1)B) has full 
rank, that is  rank(C)=N . The  Kalman rank condition  Sontag offers  a
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controllability test for a linear networked system, evaluating the 
system’s controllability through a designated set of inputs.

Over the past few decades, substantial research has been directed 
towards examining the controllability of isolated networks to uncover 
the underlying mechanisms. Controllability involves the capacity to 
guide a system towards a particular state by applying a control signal, 
where the driver node is the node that directly receives this signal. 
Control theory asserts that a networked system is controllable if each 
node can be controlled independently, yet this approach is often 
unfeasible and costly [15]. As a result, researchers have been 
investigating the problem of identifying the Minimum Set of Driver 
Nodes (MDNS), aiming to achieve network control with the least 
possible input signal while ensuring controllability Liu, et al.

The problem of identifying the MDNS is challenging for large 
networks due to its computational complexity. Nonetheless, certain 
studies have demonstrated that this issue can be converted into a 
graph-theoretical problem called maximum matching. This approach 
has been previously used in various studies Commault, et al., and 
matching has been widely researched in graph theory with various 
real-world applications Nepusz and Vicsek Liu, et al., proved that the 
‘maximum matching’ can be calculated the minimum number of driver 
nodes required within a network. This breakthrough paved the way 
for progress in network control through matching techniques. Despite 
significant advancements in single-layer network controllability, it has 
become increasingly evident that many intricate biological systems 
possess a multiplex network structure configuration and involve 
highly complex nonlinear processes. In the following, multiplex 
networks are discussed in the next section [16].

Multiplex networks
Multiplex networks are commonly employed to represent various 

interactions among entities in the real world. A multiplex network 
Bianconi consists of multiple interacting networks organized into 
layers. These networks can be visualized as a set of individual 
single-layer network, sharing identical nodes but featuring distinct 
edges. A common strategy for modeling multiplex networks involves 
illustrating various types of interactions among entities, with each 
type associated with a unique layer. Each layer represents a separate 
network capturing a specific interaction type [17].

Multiplex networks are represented as G=(V, E, L), where V is the 
set of nodes, E is the set of undirected edges among the nodes, 
including intra layer and inter-layer edges and L is discrete layers that 
share the same nodes and edges, depicting diverse interaction types 
[18]. Every layer depicting diverse interaction types and provides 
distinct insights into the network’s attributes. Two fundamental 
attributes of multiplex networks are the one-to-one correspondence of 
replica nodes across layers and the linking of interactions to their 
corresponding replica nodes. In our context, the nodes correspond to 
proteins and the edges represent relationships between them.

In this case, one way to interpret a multiplex network is no 
distinction be- tween the identity of corresponding replica nodes 
without interlinks between layers. Given |L|=K and |V|=N, the 
multiplex network can be represented with G=(G1, G2, .., Gα, ..., GK). 
Each network such as Gα=(Vα. Eα) formed by the same set of nodes, 
i.e. Vα=V={i|i ∈ {1, 2, ..., N}} and by the set of edges Eα. In this case, 
the complete information regarding the multiplex network is 
represented by K different adjacency matrices, denoted by a[α]ij, 
corresponding to the network layer α. The adjacency matrices a[α] of 
unweighted, undirected multiplex networks are N × N matrices with 
elements [19].

aij
[α]={1 if node i is linked to node j in layer α at oherwise 0｝( 2)

For weighted, undirected multiplex networks elements wij
[α] are 

given by:

aij
[α] wij

[α]= {w if node i is linked to node j in layer α with wij[α] 

Otherwise 0｝    (3)

Real-world biological systems often exhibit a multiplex network 
structure, where nodes are interconnected across various layers 
through multiple relationships. Managing such systems poses a 
practical challenge, with the goal is conducting the system dynamics 
toward the desired outputs by determining the minimum set of driver 
nodes. To this end, we introduce a Framework called Controllability in 
Multiplex Biological Networks (FCMBN) based on the proposed 
approach of Criado, et al. The primary goal of this framework is to 
investigate the controllability characteristics of complex systems by 
determining the minimum set of driver nodes needed for control. 
This approach is a valuable tool for assessing the controllability of 
real-world multiplex systems, offering significant insights into their 
dynamics and potential manipulations. The framework’s content in 
Figure 1 describes the step-by-step process of identifying the 
essential set of driver nodes [20].

The architecture of FCMBN is divided into two main sections. The 
initial section delves into elucidating two distinct multiplex network 
modeling approaches: A(I) and A(II). Each approach transforms a 
multiplex network into a flattened structure tailored to the network’s 
inherent characteristics. The result of this phase is two distinct 
networks, which serve as inputs for the subsequent section. The latter 
section focus on identifying the essential driver node-set using the 
Switchboard Dynamic Control (SBD) method. SBD operates as a 
simplified representation of the underlying dynamic processes found 
in various real-world networks Nepusz and Vicsek. In the following, 
sufficient detail is explained for the framework process.
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Network modeling
A(I) 1. Identifying a bipartite network of the multiplex network: In 

this section, we use the bipartite networks to model multiplex network 
to flatted network. The initial step of this approach involves utilizing 
the concept of bipartite networks to illustrate the connections between 
nodes and layers within a multiplex network.

To initiate, a bipartite graph is constructed from a multiplex 
network. In this graph, one side represents the network layers and the 
other represents the nodes. This bipartite graph effectively portrays 
the behavior of nodes within the multiplex network, with edges linking 
the layers and nodes. Any two edges with a common node in the 
bipartite graph indicates interactions of nodes within a specific layer 
in multiplex network (Figure 1).

Figure 1. Introduced framework on a multiplex network in two main 
sections: multiplex network modeling and Driver node identification. 
Note: A(I)-1, The bipartite graph corresponding to a multiplex 
network, so that α, β and γ are network layers and a, b, c, d, e and f 
are nodes of the network. A(I)-2, The node-mode projections of the 
bipartite graph as Flatted Network. A(II), corresponding to modeling 
of multiplex network to the supra-adjacency network that is used as 
another Flatted Network. Step 1, extracting the line graph L(G) of A(I) 
and A(II) flatted networks. The edges of A(I) and A(II) flatted networks 
are equivalent to the nodes of this network. Step 2, Applying the 
minimum input theorem to L(G) to investigate controlling paths. Step 
3, mapping back from L(G) and identifying driver nodes. The two an 
and e nodes be selected as driver nodes because control paths starts 
from either an ore. specific layer in multiplex network.

A(I) 2. Identifying node-mode projections of the bipartite network: 
In the following of A(I)-1, we employ a comprehensive method called 
“one-mode projection” to condense data of bipartite networks and 
analyze the interconnections among a specific group of nodes 
(Figure 2).

Figure 2. Algorithm 1 A (I)-1: Bipartite network of the multiple 
network.

The method we apply in bipartite networks is referred to as node-
mode projection. This process entails creating a network that 
includes nodes from just one of the two sets, where two nodes in this 
resulting network are linked only if they share a neighboring layer in 
the original graph. For instance, two nodes would be connected 
within output network if they have a connection in the same layer in 
multiplex network. The outcomes of this section is a flatted network 
that can use as the input network for the subsequent step.

A(II). Identifying the supra-adjacency matrix of the multiplex 
network: In this section, we use the supra-adjacency matrix to model 
multiplex network to flatted network. While adjacency matrices are 
suitable for representing simple networks, they are inadequate for 
accurately describing multiplex networks, which demand higher-order 
matrices for proper depiction. A prevalent strategy involves utilizing 
the supra adjacency matrix, which involves flattening the multiplex 
network.

Figure 3. Algorithm 2 A (I)-2: one-mode projection of bipartite 
network.

That visualizes and flatten all the adjacency matrices of a multiplex 
network, interlayer and intralayer, into a single, large matrix.
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  The supra-adjacency matrix comprehensively portrays the entire 
multiplex network, encapsulating all interlayer and intralayer 
adjacency matrices within a single, expansive matrix. This matrix 
structure arranges each layer’s adjacency matrix as a distinct block 
along the main diagonal of the supra-adjacency matrix. Meanwhile, 
inter-layer connections are encoded in off-diagonal blocks through 
diagonal matrices. More precisely, the diagonal is populated with 
intralayer adjacency matrices, while the interlayer adjacency matrices 
are positioned elsewhere. This segment employs the supra-
adjacency matrix for modeling the multiplex network. The resulting 
adjacency matrix of this new network is the supra-adjacency 
representation of the multiplex network named flatted network that 
can use as the input network for the subsequent step.

Step 1. Identifying line graph L(G) of the multiplex network: The 
concept of the line graph was originally presented by Hemminger et 
al. Hemminger and Beineke. In graph theory, the line graph of a 
directed graph represented as L(G) that is a directed graph that 
conveys the relationships among edges in the G. In L(G), the nodes 
represent the edges that exist in the original graph G. The label of 
each node in L(G) is constructed based on two node associated with 
the edge in the initial graph. Every edge in L(G) represents a directed 
path with length of two that spans three nodes in the original graph G 
(Figure 4).

Figure 4. Algorithm 3 A(II): Supra-adjacency matrix of multiplex 
network.

Based on definition 4, in the line graph, each node in L(G)
corresponds to an edge from the original graph G. Likewise, every 
edge in L(G) represents a directed path of length two in G. Therefore, 
according to the definition of switchboard dynamics, the equivalence 
between the switchboard dynamics in G and the linear time-invariant 
dynamics on the nodes L(G). It is shown that determining the 
minimum set of driver nodes necessary for exerting control over SBD 
within a network can be accomplished by utilizing of line graph and 
maximum matching. We use the line graph concept to analyze the 
A(I) and A(II) flatted networks (Figure 5).

Figure 5. Algorithm 4 step 1: L(G) of network.

Step 2. Applying the maximum matching to L(N) and the minimum 
input theorem

If a vertex is matched, it means that it serves as the terminal 
(ending) point of an edge belonging to the matching set. Conversely, 
if a vertex is unmatched, it indicates that it does not function as the 
ending point for any edge within the matching. In the Minimum Input 
Theorem states that when all nodes are matched, the matching 
achieves perfection and in this case, the count of driver nodes is 1. 
Conversely, when not all nodes are matched, the count of Minimum 
(Figure 6).

Figure 6. Algorithm 5 step 2: Applying the maximum matching to 
L(N).

Dominating Sets (MDSs) can be calculated as nD=N−MN∗, where 
MN∗ represents the number of nodes that have been successfully 
matched. Zhao and Zhou.

By employing the minimum input theorem, we can convert the 
controllability challenge of a linear networked system into a Maximum 
Matching (MM) problem. The primary objective of the maximum 
matching problem is to identify the most extensive set of edges where 
no two edges share any common nodes. In graph theory, a matching 
set comprises edges that do not share any common nodes. In this 
section, an equivalence is established between the mini- mum set of 
driver nodes needed to maintain switchboard dynamics on a network 
G (V,E) and the linear time-invariant dynamics on the vertices of L(G). 
This process involves utilizing the maximum matching on L(G), where 
matching de- notes a group of directed edges without shared starting 
or ending nodes. During this step, the separate control paths is 
identified utilizing the minimum input theorem in L(G).

Step 3. Identifying the driver nodes by using mapping back from 
L(N): In this step, our attention should now shift towards the control 
paths  resulting  from the  maximum matching in L(G), utilized for 
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identifying driver nodes. The output of the previous step provides us 
with a collection of matching paths. By mapping these paths from 
L(G) back onto G, we obtain the control paths in G. The traversing of 
these control paths form a comprehensive cover of all edges in G and 
ensures that each edge in G is encompassed by at least one of these 
walks. In G, the sequence for traversing the edges is determined by 
the control paths. Utilizing the sequence of traversing, the driver 
nodes in G can be pinpointed based on those originating from the 
walks. As a result, all nodes of G that each walk starts from them, are 
determined as driver nodes.

Results and Discussion
To explore the controllability of multiplex networks and examine 

the roles of proteins within a biological group across different 
interaction types, we analyzed different biological multiplex networks. 
Specifically, we focused on the Human-HIV1, Human-Herpes4 and 
Hepatitis C multiplex networks. Each dataset has an associated file 
containing genetic and protein interaction data in the different layers. 
These layers were obtained from diverse genetic interactions in the 
comprehensive biological repository.

Our results demonstrated the effectiveness of introduced 
framework in determining the minimum set of driver nodes within 
multiplex networks, making them suitable for controlling multiplex-
networked systems. The specification of these multiplex networks is 
shown in Table 1. The outcomes of the driver node identification 
process for these real networks are presented in Tables 2 to 4.

In network analysis, centrality measures play a crucial role in 
identifying the most important nodes within a network using real-
valued metrics. These measures find application in highlighting key 
nodes in biological networks. The objective of introduced centrality 
measures has ranked nodes and layers within a network, a vital 
aspect in various biological network analyses. Among the commonly 
utilized centrality measures for analyzing multiplex networks is the 
MultiRank algorithm.

In network analysis, centrality measures play a crucial role in 
identifying the most important nodes within a network. These 
measures find application in highlighting key nodes in biological 
networks. Among the commonly utilized centrality measures for 
analyzing multiplex networks is the MultiRank algorithm. In this 
paper, we demonstrate the applicability of the MultiRank algorithm in 
identifying important nodes within biological multiplex network 
datasets, serving as an informative metric for effectively assigning 
rankings to both nodes and layers in multiplex networks. The 
algorithm operates based on the assumption that the centrality of a 
node is influenced by the centrality of the layers it is connected to and 
vice versa the centrality of the layers depends on the centrality of  the 

nodes within them. The MultiRank algorithm incorporates three 
parameters Rahmede et al. that determine its behavior.

Here, we describe the use of MultiRank on three significant
multiplex network examples: The Human-HIV1 multiplex, Human-
Herpes4 multiplex and Hepatitusc multiplex. The MultiRank centrality 
criterion yields results that validate the findings of the framework and 
demonstrate the significance of the identified driver genes. 
Furthermore, we conducted analyses of biological processes and 
signaling pathways associated with the identified driver nodes using 
the Database (DAVID; https://david.ncifcrf.gov/) Dennis, et al. and the 
Protein Analysis Through Evolutionary Relationships (PANT HER; 
http://www.pantherdb.org/) public database platforms. These tools are 
designed to provide functional interpretations and signaling pathways 
for comprehensive gene lists derived from genomic studies. Our 
utilization of these platforms enabled us to functional and pathway 
analyses of the protein set, validating our outcomes.

Dataset
 The availability of protein and genetic interaction datasets is 
essential for analyzing biological network properties and studying the 
functions of genes and proteins. A widely utilized and openly 
accessible database containing gene/protein interactions is BioGRID, 
accessible at http://www.thebiogrid.org. These datasets hold 
significant importance in multiplex network research due to their high- 
quality, well-defined nature. They serve as valuable resources for 
evaluating new algorithms and measures aimed at extracting pertinent 
information Stark et al.; de Domenico, et al. BioGRID stands as an 
expansive and freely accessible repository, encompassing over 
720,000 interactions sourced from more than 41,000 publications. 
These interactions within the database have been meticulously 
curated, derived from high-throughput datasets and focused studies 
concerning genes and proteins. 
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more central nodes have a greater influence, while for s=-1, exert
a greater influence when they encompass a smaller number of
highly influential nodes.

• The parameter “γ” is a scaling factor that can either enhance (γ<1)
or suppress (γ>1) the influence of the layers. The specific value of
γ depends on the chosen value of s.



HHMG network 5 Physical association, direct interaction, colocalization, association 
and suppressive genetic interaction are defined by inequality

HSVMG network 4 Direct interaction, Physical association, association, 
colocalization

HCVMG network 3 Physical association, association, colocalization

Analyzing multiplex network layers as independent 
networks

As stated in the introduction, the method proposed in Zhao and 
Zhou relies on the assumption that in multiplex networks, a node is 
either a driver node in all layers or not a driver node in any layer. 
However, real multiplex networks often exhibit varying characteristics 
across  layers, making it  inappropriate to  assume uniformity in  node 

definitions. Therefore, we cannot assume that each node in a 
multiplex network is consistently a driver node across all layers. To 
delve deeper into this issue, we conducted separate analyses of each 
layer within the multiplex network, identifying driver nodes for each 
layer individually. The results detailing the number of driver nodes 
identified for each layer are presented in Tables 2-4.

Layers #nodes #edges #driver nodes

L1 1005 869 35+246=281

L2 380 434 7+625=632

L3 34 33 11+971=982

L4 21 18 14+984=998

L5 2 1 1+1003=1004

Table 3. The number of driver nodes of HCVMG multiplex network base on layers HCVMG multiplex network (#Layer=4, #Nodes=216, 
#Edges=269).

Layers #nodes #edges #driver nodes

L1 42 37 11+174=185

L2 202 209 15+14=29

L3 10 7 4+206=210

L4 9 6 4+207=211

Table 4. The number of driver nodes of HSVMG multiplex network base on layers HSVMG multiplex network (#Layer=3, #Nodes=105, 
#Edges=137).

Layers #nodes #edges #drivernodes

L1 82 88 13+23=36

L2 44 47 5+61=66

L3 3 2 1+102=103

The workflow in this section involves analyzing each layer of the 
network separately and applying the proposed method to identify 
driver nodes. Within each layer’s network, some nodes become 
isolated due to a lack of communication with other nodes. Isolated 
nodes, by definition, have no connections with other nodes and 
cannot be accessed from them. Therefore, they should be considered 
as driver nodes for controlling the entire network. The number of 
isolated nodes identified as driver nodes in each layer is highlighted in

red. For instance, in the first layer of the HHMG network, 35 nodes 
are identified as driver nodes. Considering the 246 isolated nodes in 
this layer, which also function as driver nodes, the total count of 
driver nodes for this layer becomes 281. Similar results are observed 
for other multiplex networks.
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Edges=1355).

Networks Layers Desc

Table 1. Description of three multiplex networks: HHMG, HSVMG and HCVMG networks.



   If the proposed hypothesis is correct, the integration of driver nodes 
of all layers for each multiplex network should be considered as the 
final sum of the driver nodes of the entire network. This means that 
almost all nodes in the multiplex network should be considered as 
driver nodes which is practically unacceptable.

A common objective in controlling a real network is to minimize the 
number of driver nodes or control inputs. This reduction can enhance 
efficiency and cost-effectiveness in network management. 
Streamlining the system by minimizing driver nodes can lead to 
easier control and reduced the failures. Furthermore, fewer control 
inputs simplify the design and implementation of control strategies, 
facilitating network maintenance and scalability. Ultimately, 
minimizing the number of driver nodes contributes to optimizing the 
performance and operation of large networks.

In a network, it is uncommon for all nodes to be designated as 
driver nodes. Driver nodes are typically identified as nodes that have 
a higher level of responsibility or control within the network and they 
help manage the overall operation of the network. Having all nodes 
identified as driver nodes may not be practical or efficient, as it may 
lead to confusion and potential conflicts in network management. It is 
important to designate driver nodes strategically based on the 
network architecture.

Real multiplex networks
Human-HIV1 Multiplex Gpi (HHMG) network: The Human 

Immunodeficiency Virus (HIV) was first introduced to the human 
population between 1920 and 1940. This virus is one of the most 
notorious pathogens encountered by humans, causing an infection 
approximately every 9½ minutes. The impact of HIV/AIDS has been 
profound, affecting society both in terms of health and economically. 
The human-HIV1 multiplex is a network dataset that portrays various 
genetic interactions involving HIV-1. This dataset consists of 5 layers, 
each representing distinct types of genetic interactions and 1005 
nodes representing proteins. Each layer is directed and unweighted 
presenting a comprehensive portrayal of the intricate relationships 
within the system.

In this study, we utilized FCMBN on the HHMG network to address 
the minimum set of driver nodes using two distinct modeling 
approaches to flatted network. Upon applying the proposed 
framework to the HHMG network, we detected two driver node sets, 
each corresponding to a different modeling approach(A(I) and A(II)). 
Table 5 presents our analysis results on the 5-layer Human-HIV1 
Multiplex network.

A(I) approach A(II) approach

nD: 57 nD: 82

Driver nodes Driver nodes

Vpr, Tat, Env, Gag-pol, TAR, Gag, Vpr, Tat, Env, Gag-pol, Gag, Nef, Vpu,

CD59, THY1, CD63, Nef, CD247, Rev, HCK, Vif, RNF216, Vpu, Rev,

Vpu, Rev, EIF2C2, APOBEC3G, HCK, Vif, RNF216, MDM2, COPB1,

Siglec1, Vif, TCEB2, TCEB1, MDM2, ANXA2, SIRT2, SIRT6, HSPA4,

COPB1, ANXA2, SIRT2, SIRT3, VPS4A, PSMA6 PSMC1, CHMP4A,

SIRT6, HSPA4, VPS4A, NMT2, AP1G1, SMUG1, DDB2, HGS,

MR1, PSMA6, PSMC1, CHMP4A, PAFAH1B1, MDFIC, NCOA2, Slmb,

AP1G1, SMUG1, Nedd4, PTPN23, Pparg, CD4, TAR, CD247, BST2,

DDB2, HGS, UBE2F, Mapk1, EIF2C2, JUN, APOBEC3G, Siglec1,

MAPK1, Pparg, MDFIC, NCOA2, SIRT1, SIRT3, NMT2, NMT1,

SUPT4H1, PPP1CA, CXCR4, PRKDC, Nedd4, BROX, PTPN23,

VPS18, PCSK1, PCSK5, PCSK6, CDK7, FBXW11, HUWE1, UBE2F,

FURIN, CTSG, Slmb, MON2, BROX, Mapk1, MAPK1, VPS18, MON2,

SUPT5H CALM1, PCSK1, PCSK5, PCSK6,

FURIN, CTSG, CCNT1, CD59,

THY1, CD63, SOCS1, MR1, TRIM5,

CREBBP, CUL5, PSIP1, TSG101,

POLR2A, FYN, CUL2, RBX1,

SUPT5H, TERT, SUPT4H1BTF3,
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     Table 5. The minimum driver nodes of HHMG multiplex networks. (#Layer=5, #Nodes=1005, Edges=1355).



HMGN2, PPP1CA, CXCR4

The essential driver node sets required to manage the Human-
HIV1 multiplex network have differences based on the modeling 
approaches used. Specifically, the A(I) and A(II) approaches 
identified 57 and 82 driver nodes, respectively, representing roughly 
(∼0.06) and (∼0.08) of the total network nodes. These findings 
suImmune response-regulating cell surface receptor signaling path 
wayest that achieving complete control over the nodes requires 
independent control over approximately 6% and 8% of them, 
respectively. A(II) modeling approach characterizes the minimum 
number of driver nodes, indicating that a small group of nodes could 
potentially manage the Human-HIV1 Multiplex network.

More importantly, some identified proteins as driver nodes have 
been experimentally confirmed to play crucial roles in vital biological 
processes, serve as potential drug targets or be essential host cells 
for treating HIV-1. Notably, ENV, GAG-POL, GAG and NEF are 
among the important proteins identified as driver nodes using the two 
approaches, with the former being a crucial drug target for treating 
HIV-1. Table 2 shows the primary difference between the two 
approaches. A(II) has performed relatively better than the first 
approach in the HHMG network, as it identified significant nodes 
related to HIV disease. However, it ranks second in identifying the 
minimum number of driver nodes.

Several identified nodes as driver nodes, are host receptors 
considering the extensive interaction between viral and host proteins. 
Among them, CD4 is an indispensable host cell that assumes a 
central role in protecting the body and mounting an effective defense 
against infections. However, HIV exploits CD4 to reproduce and 
disseminate throughout the body. The research conducted by Zheng 
et al. Zheng et al. reveals that Most of our identified protiens are 
thesame with their driver nodes and are crucial players in mediating 
the interactions between hosts and viruses, important biological 
processes and drug targets.

In addition, we compared the driver proteins identified by FCMBN 
and the outcomes of the MultiRank algorithm for protein ranking. In 
Figure 7, we present a graphical representation of the top 16 proteins 
per MultiRank evaluated for s=1; -1 and a=0; 1. The analysis reveals 
that, regardless of the cases s=1; -1 and a=1; 0, TAT, REV, ENV and 
GAG-POL consistently secured the top positions in the ranking. The 
positions of these proteins remain stable across all cases. 
Furthermore, we observed that the ranking of nodes appears to be 
more consistent for the cases s=1 compared to the cases s=-1. 
Notably, the essential genes such as ENV, GAG-POL, GAG and NEF, 
which play a significant role in treating HIV-1, occupy top-ranking 
positions based on multi Rank ranking.

Figure 7. Ranking of the 16 top proteins in the Human-HIV1 
Multiplex Network (listed from top to bottom in order of decreasing 
centrality) according to the Multi Rank algorithm is here shown for 
different values of the parameters s=1; -1 and a=0;1 as a function of γ 
(0.3).

The biological processes and pathways related to the driver 
proteins identified through the two approaches were subjected to 
analysis using the DAVID and Panther tools. This analysis aimed to 
uncover the biological functions and pathways associated with these 
driver proteins. The results are visually presented in Figure 8 and 
Figure 9, outlining processes that regulate viral transcription 
frequency, rate or extent, viral life cycle, viral processes, viral budding 
and immune responses. Notably, A(II) stood out among the two 
approaches by identifying the largest number of nodes associated 
with all the examined processes in the Panther and DAVID analyses, 
as depicted in the figures. For further insight, the outcomes of the 
signaling pathway analysis are presented in Figures 8-11.

Figure 8. Panther analyses for biological process in the 
human-HIV1 multiplex network.
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Figure 9. David analyses for biological process in the human-
HIV1 multiplex network.

Figure 10. Panther analyses for signaling pathway in the human-
HIV1 multiplex network.

Human-Herpes4 Multiplex Gpi (HSVMG) network
HSV-1 and HSV-2, which belong to the human Herpesviridae 

family, are known culprits behind viral infections in most individuals. 
These viruses are notably contagious and often result in conditions 
such as cold sores and genital herpes, given their ability to spread 
through viral shedding by an infected individual. The HSVMG, a 
multiplex network featured in Bio GRID, encompasses 216 nodes and 
259 regulatory interactions distributed across 4 layers. This network 
is characterized by its unweighted and directed nature.

After subjecting introduced framework to testing on various real-
world net- works, the results demonstrate its capability to accurately 
identify driver nodes that effectively control the system. The 
introduced framework with two A(I) and A(II) modeling approaches 
identified 14(∼0.06) and 22(∼0.10) driver nodes, respectively. These 
results indicate the percentage of driver nodes required to control 
multiplex networks. We evaluated the results of the two approaches 
by considering the count of identified driver proteins. The A(I) 
approach outperformed the other approach by discovering 14 driver 
proteins, followed by A(II) with 22. However, in the case of this 
specific network, A(II) performed better than A(I) by identifying 
valuable nodes related to herpes disease.

The two proposed approaches identified several driver nodes in 
the HSVMG network, including EBNA-LP, EBNA-3C, LMP-1, 
EBNA-1, LMP-2A and EBNA-3C, which have been shown to play 
essential roles in various biological processes based on existing 
literature. Table 6 compares results obtained from the two 
approaches and their effectiveness in the HSVMG network. 
Consistent with experimental evidence, some of the predicted driver 
proteins, such as EBNA-LP, have been important implicated in host-
virus interactions.

A(I) approach A(II) approach

nD: 14 nD: 22

Driver nodes Driver nodes

BRLF1, CHEK2, EBNA-1, EBNA- EBNA-LP, EBNA-3B/EBNA-3C,

LP, SPI1, EBNA1BP2, HMGB2, EBNA1BP2, HMGB2, LMP-1,

LMP-1, SUMO2, BBLF2/BBLF3, SUMO2, BBLF2/BBLF3, BPLF1,

SUMO1, BPLF1, BRRF1, ITCH BRRF1, MYC, BRLF1, CHEK2,

EBNA-1, SPI1, LMP-2A, SUMO1,

ZNF350, TRIM28, NEDD8, UBC,

CDKN2A, ITCH

To demonstrate the efficacy of the proposed framework in the 
HSVMG network, we applied the MultiRank algorithm to rank its 
nodes. In Figure 12, we present the results for the top 23 proteins 
ranked by MultiRank. The MultiRank analysis reaffirms the significance

of the identified protein drivers. We observed that the ranking and 
positions of the identified driver nodes were consistent for each case 
where s=1 and s=-1, as well as a=1. Furthermore, the EBNA-LP 
protein consistently ranked in each case, where s=1, -1 and a=1,0; its 
position remained stable in every scenario.
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Figure 11. David analyses for signaling pathway in the 
human-HIV1 multiplex network.

       Table 6. The minimum driver nodes of HSVMG multiplex networks. (#Layer=4, #Nodes=216, Edges=269).



Figure 12. Ranking of the 23 top proteins in the human-herpes4 
multiplex

Network (listed from top to bottom in order of decreasing centrality) 
according to the Multi Rank algorithm is here shown for 
different values of the parameters

s=-1,1; 1and a=0; 1 as a function of γ (0.3).

The crucial biological processes and pathways linked to the driver 
proteins within HSVMG, corresponding to the identified driver nodes, 
are illustrated in Figures 13-16. These outcomes are derived from the 
analysis conducted using DAVID and Panther tools. These visual 
representations offer valuable insights into how driver nodes are 
distributed across various biological processes and pathways for 
each approach.

Figure 13. Panther analyses for biological process in the 
human-herpes4 multiplex network.

Figure 15. Panther analyses for signaling pathway in the 
human-herpes4 multiplex network.

Figure 16. David analyses for signaling pathway in the 
human-herpes 4 multiplex network.

Hepatitis multiplex Gpi (HCVMG) Network
Hepatitis C, caused by the Hepatitis C Virus (HCV), is a significant 

infectious disease with a particular affinity for the liver. While its 
primary impact is on the liver, it can potentially lead to liver disease, 
liver failure, liver cancer or the development of enlarged blood 
vessels in the esophagus and stomach over an extended period. 
Investigated as a multiplex network, HCVMG represents distinct 
types of genetic interactions, comprising 216 nodes and 259 
regulatory interactions distributed across 3 layers. Each layer 
delineates the collaborations within a specific context and directed 
and unweighted connections characterize the network.

We evaluated the introduced framework’s performance with two 
modeling approach on the HCVMG network. We analyzed the number 
of drivers identified and the proportion of validated driver proteins 
among all the predicted drivers. The findings indicated that each 
approach required approximately (∼0.09) and (∼0.15) of the total 
number of nodes in the network as the minimum required driver 
nodes for network control. Table 7 presents the analysis results of the 
3-layer hepatitis C virus multiplex network.

A(I) approach A(II) approach

nD: 10 nD: 15

Driver nodes Driver nodes

HCVgp1, HIST2H2BE, PSMA3, HCVgp1, YY1, EP300, UBQLN1,
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Figure 14. David analyses for biological process in the 
Human-Herpes4 Multiplex Network.

Table 7. The minimum proteins drivers of HCVMG multiplex networks. (#Layer=3, #Nodes=105, Edges=137).



CHMP4B, PSMA4, HCVgp1, PSMA3, CHMP4B, PSMA4, TN-

YY1, EP300, UBQLN1, PSMA3, FRSF1A, FBXL2, SMAD3, SMURF1,

CHMP4B, TNFRSF1A, FBXL2, SMURF2, HIST2H2BE, OAS1,

OAS1, ALDH9A1, SMAD2 ALDH9A1

The proposed framework was applied to the HCVMG network, 
identifying ten driver nodes in A(I), HCVgp1, HIST2H2BE, PSMA3, 
CHMP4B, PSMA4, TNFRSF1A, FBXL2, OAS1, ALDH9A1 and 
SMAD2. and fifteen driver nodes in A(II), HCVgp1, YY1, EP300, 
UBQLN1, PSMA3, CHMP4B, PSMA4, TN- FRSF1A, FBXL2, SMAD3, 
SMURF1, SMURF2, HIST2H2BE, OAS1 and ALDH9A1. Our study 
also highlights the crucial role of HCVgp1 in Hepatitis C and its 
involvement in various biological processes. Notably, HCVgp1 was 
identified as a driver node in all two modeling approaches.

The predicted driver nodes in the two modeling approaches 
include several significant proteins, such as gp1, YY1, OAS1 and E1 
(E1A binding protein p300), enriched in multiple biological processes 
and viral life cycles. For instance, YY1 has been found to inhibit the 
replication of different viruses, such as hepatitis C and human 
immunodeficiency viruses. Furthermore, some of the identified driver 
nodes are known to host receptors. PSMA3, for example, interacts 
with the Hepatitis C Virus (HCV) F protein in host cells. Based on this 
information, it can be inferred that the A(II) approach outperforms the 
A(I) approach in identifying more significant driver nodes.

Additionally, Figure 17 illustrates the multi rank centrality of the 
hepatitis C multiplex network for various multirank parameters. 
MultiRank centrality results corroborate the significance of HCVgp1 
and YY1 in the context of hepatitis C. Notably, the rankings and 
positions of the identified driver nodes remain consistent across all 
cases with s=1 or -1 and a=1 or 0. Figures 18 and 19 present the 
validated outcomes pertaining to biological processes, while Figures 
20 and 21 showcase pathway analysis using Panther and DAVID 
tools in the HCVMG network. The analyses presented in these figures 
shed light on the involvement of these proteins in critical biological 
processes and pathways associated with viral diseases.

Figure 17. Ranking of the 16 top proteins in the hepatitis c 
multiplex network (listed from top to bottom in order of 
decreasing centrality) according to the MultiRank algorithm is 
here shown for different values of the parameters s=-1,1; 1and 
a=0; 1 as a function of γ (0.3).

Figure 18. Panther analyses for biological process in the 
human-hepatitis c multiplex network.

Figure 19. David analyses for biological process in the 
human-hepatitis c multiplex network.

Figure 20. Panther analyses for signaling pathway in the 
human-hepatitis c multiplex network.

Figure 21. David analyses for signaling pathway in the 
human-hepatitis c multiplex network.
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Conclusion
The controllability of a networked system is an important feature 

that plays an essential role in controlling issues. In the realm of 
complex systems, the prevalence of interconnected networks is 
undeniable and the potential for modeling them as multiplex networks 
presents a more nuanced understanding of biological processes 
compared to isolated network models. This underscores the critical 
importance of investigating multiplex network controllability.

With this context in mind, the central focus of this study has been 
to introduce a comprehensive framework for identifying the minimum 
number of driver nodes within multiplex networks. These driver nodes 
hold the key to orchestrating transitions within the network, steering it 
away from unfavorable states and towards more desirable 
configurations through strategic interventions. The introduced 
framework hinging on the results of related research, multirank 
centrality results and public database platforms such as David and 
Panther has proven to be efficacious. Confirming the importance of 
our identified driver nodes by these refrences is evidence for the 
potency of this framework in unearthing highly influential driver 
nodes.

Applying introduced framework to three multiplex networks 
associated with viral diseases and analysis of introduced driver 
nodes validates our framework’s effectiveness with two modeling 
approaches. In particular, though the A(II) approach may not have 
reached the minimum stipulated driver node count, it has excelled in 
terms of the identified nodes’ significance compared to the A(I) 
approach. Furthermore, the observation that the minimum driver 
nodes identified by the FCMBN framework hold activity potential as 
drug targets and vital contributors to essential biological processes 
strengthens the real-world applicability of our framework. In effect, our 
work introduces an efficient avenue for analyzing and exploring 
multiplex networks. It is an efficient way to explore and analyze 
multiplex networks and identify the drug targets for leading the 
transitions of underlying biological networks and studying complex 
diseases.
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