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Abstract 
The ultimate goal of this paper is to control the angular speed ω ,  
in  a model of a DC motor driving an inertial load has the angular 
speed, ω , as the output and applied voltage, appv , as the input,  
by varying the applied voltage using different control strategies 
for comparison purpose. The comparison is made between the 
proportional controller, integral controller, proportional and 
integral controller, phase lag compensator, derivative controller, 
lead integral compensator, lead lag compensator, PID controller 
and the linear quadratic tracker design based on the optimal 
control theory.  It has been realized that the design based on the  
linear quadratic  tracker will give the best steady state and 
transient system behavior, mainly because, the other compensator 
designs are mostly based on trial and error while the linear 
quadratic tracker design is based on the optimal control theory 
which can give best dynamic performance for the controlled 
system. 
  
Keywords: DC motor, lead compensator, lag compensator, PI 

compensator, optimal control, tracking  
 
1. Introduction  
The term control system design refers to the process of selecting 
feedback gains that meet design specifications in a closed-loop 
control system. Most design methods are iterative, combining 
parameter selection with analysis, simulation, and insight into the 
dynamics of the plant. Ref [3] covered how it is possible to 
improve the system performance, along with various examples of 
the technique for applying casecade and feedback compensators, 
using  the methodes root locus and frequency response. It also 
covered some methods of optimal linear system design and 
presentation of eigenvalues assignments for MIMO system by 
state feedback. In [2] and [4], good descrbtion of the optimat 
control design,  including llinear state regulator control, the output 
regulator control and linear quadratic tracker 
 
The matlab SISO Design Tool [1] can be used to design 
compensators by root locus, Bode diagram, and Nichols plot 

design techniques, and to analyze the resulting designs. In 
addition to the SISO Design Tool in Matlab, the Control System 
Toolbox [2]  provides a set of commands that you can be used for 
a broader range of control applications, including Classical SISO 
design Modern and MIMO design techniques, such as pole 
placement and linear quadratic Gaussian (LQG) methods. 
A simple model of a DC motor driving an inertial load has the 
angular speed of the load, ω , as the output and applied voltage, 

appv , as the input. The system was used as an example in [1]. The 
ultimate goal of this paper is to control the angular rate by varying 
the applied voltage using different control strategies for 
comparison purpose. The comparision is made between the 
proptional controller, integral controller,  propotional and integral 
controller, phase lag compensator, derivitive controller, lead 
integral compensator, lead lag compensator, PID controller and 
the the linear quadratic tracker design based on the optimal 
control theory. 
 
2. Mathematical model of a DC motor 
The resistance of the armature is denoted by R (ohm) and the self-
inductance of the armature by L (H). The torque (N.m) seen at the 
shaft of the motor is proportional to the current i (A) induced by 
the applied voltage (V), 

iKm=τ                                                                      (1) 
where Km, the armature constant, is related to physical properties 
of the motor. The back (induced) electromotive force, emfv  (V), 
is a voltage proportional to the angular rate seen at the shaft, 

ωbemf Kv =                                                                (2) 
where Kb, the emf constant, also depends on certain physical 
properties of the motor. 
The mechanical part of the motor equations is derived using 
Newton's law, which states that the inertial load J (kg·m²) times 
the derivative of angular rate ω  (rad/sec) equals the sum of all the 
torques (N.m) about the motor shaft. The result is this equation, 

iKK
dt
dJ mf +−= ωω                                                (3) 
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where, ωfK  is a linear approximation  for viscous friction. 

 
The electrical part of the motor equations can be described by 

app
b v

LL
K

i
L
R

dt
di 1

+−−= ω                                         (4) 

 
Given the two differential equations, you can develop a state-
space representation of the DC motor as a dynamic system. The 
current i and the angular rate are the two states of the system. The 
applied voltage, appv , is the input to the system, and the angular 
velocity ω  is the output. 
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3. Controlling DC Motor Angular Velocity through Different 
Compensation Techniques 
In this paper the DC motor model was used in order to compare 
different control strategies and compensation techniques. The 
proposed control schemes were designed in order to derive the 
angular velocity ω  to unity with best design criteria’s that can be 
achieved, i.e, rise time of less than 0.5 second, overshoot of less 
than 10%, gain margin greater than 20 dB, phase margin greater 
than 40 degrees 

 
The following nominal values for the various parameters of a DC 
motor used: R= 2.0 Ohm, L= 0.5 Henrys, Km = .015, Kb = .015, 
Kf = 0.2 , J= 0.02 kg·m², so the transfer function of the DC motor 
 

)004.4)(996.9(
1

02.4014
1

)(
)(

2 ++
=

++
=

sssssv
s

app

ω    (7) 

(sec)1.1sec)/(035. ≈= sss tradω  
 

Fig1 shows the open loop response of the dc motor angular speed 
due to step input,

s
svv apapp
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Fig. 1. The open loop step response of the DC motor angular 

velocityω (rad/sec) 

As the open loop step response has a large steady state error, 
sec)/(963.,037.0 radessss ==ω , different closed loop control 

strategies and compensator designs were compared in this paper 
in order to eliminate the steady state error and enhance the system 
transient response. Fig. 2 shows the DC motor with  negative 
unity feed back, and a feed forward compensator C added in 
series with the DC motor so it will control the applied voltage to 
DC motor. The main objective is to design a feed forward 
compensator C that will derive the DC motor angular velocity to 
unity. 

 
Fig. 2. Closed loop control of DC motor, C is  the compensator 

 
3.1. Proportional Controller C=1 
The motor was controlled with the feed forward proportional 
compensator 1=C . The overall closed loop transfer function of 
the controlled system 
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Fig. 3 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted that the proportional compensator of C=1 
could not reduce the steady state error in the angular speed.  
 
\3.2. Proportional Controller C=100: 
The motor was controlled with the feed forward proportional 
compensator 1=C 00. The overall closed loop transfer function 
of the controlled system 

9.73)+(s 4.26)+(s)4)(10(
)4)(10(5.1

)(
)(

++
++

=
ss

ss
sU
sω                                (9) 

(sec)58.sec)/(789. ≈= sss tradω  
 

Fig. 4 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted that the increasing the proportional 
compensator gain, C=100, reduced the steady state error in 
angular speed but could not eliminate it. The system will be stable 
as the propotional gain increased. 
 
3.3. Integral Controller sC /100= : 
The motor was controlled with the feed forward integral 
compensator sC /100= . The overall closed loop transfer function 
of the controlled system 
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Fig. 3. The closed loop step response of the DC motor 
angular velocityω , the root locus and bode plot of the 

controlled system when C=1. 
 
Fig. 5 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted that the integral controller eliminated the 
steady state error in angular speed so the steady state response is 
improved, but the settling time and amount of the overshoot are 
large,  also the system is subject to instability problems as the 
integral gain increased, so a compensator consisting of an 
integrator is not enough to satisfy the design requirements. 
 
3.4. Proportional Integral Controller s)/s(1*100 +=C : 
The motor was controlled with the feed forward proportional 
integral compensator s)/s(1*100 +=C . The overall closed loop 
transfer function of the controlled system 
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Fig. 6 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted hat the proportional and integral controller 
eliminated the steady state error, the system is stable as the 
controller gain increased, the amount of overshoot is reduced, but 
the system settling time still high.  
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Fig. 4. The closed loop step response of the DC motor 
angular velocityω , the root locus and bode plot of the 

controlled system when C=100. 
 
3.5. Phase Lag Compensator 0.01)0.1)/(s(s*100 ++=C : 
Generally the lag compensator has the following form, 

)/(1
/1

Ts
TsAC
αα +

+
= , is known to result in large increase in gain 

which means a much smaller steady state error, and a decrease in 
nω  and so has the disadvantage of producing an increase in 

settling time. The zero  Ts /1−=   and the pole )/(1 Ts α−= are 
selected close together with α  is chosen large value such as 10. 
The pole and zero are located to the left and close to origin, these 
results in increased gain.  

 
The motor was controlled with the feed forward phase 
compensator, 0.01)0.1)/(s(s*100 ++=C . The overall closed loop 
transfer function of the controlled system 
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Fig. 7 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted that the steady state error is reduced but 
not fully eliminated while the settling time is large. The controlled  
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Fig. 5. The closed loop step response of the DC motor 
angular velocityω , the root locus and bode plot of the 

controlled system when sC /100= . 
 
system is not subject to instability problem as the controller gain 
increased. 
 
3.6. Derivative Compensator sC = : 
The motor was controlled with the feed forward derivative 
compensator sC = . The overall closed loop transfer function of 
the controlled system 
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Fig. 8 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system..It can be noted that derivative compensator will derive the 
motor angular speed to zero and so the steady state error is not 
acceptable. 
 
3.7. Lead Integral Compensator 100))10)/(s(s(s*100 ++=C  
settling time. The zero  Ts /1−=   is superimposed on a pole of 
the original system, and that results in moving the root locus to 
left and thus increasing the undamped natural frequency. 1.0=α  
is a common choice. 
Generally the lead compensator has the following form: 
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Fig. 6. The closed loop step response of the DC motor 
angular velocityω , the root locus and bode plot of the 

controlled system when s)/s(1*100 +=C . 
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+
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= . The lead compensator results in moderate 

increase in gain and thereby improving the steady state error. It 
also results in large increase in 

nω  and therefore reduces the  
 
The motor was controlled with the feed forward lead and integral 
compensator 100))10)/(s(s(s*100 ++=C . The overall closed 
loop transfer function of the controlled system 
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Fig. 9 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted that the lead integral compensator will 
eliminate the steady state error, but the transient response settling 
time is large, also the system is subject to instability problems as 
the controller gain increased.  
 
3.8. Lead Lag Compensator  

))01.0)(100/(()1.0)(10(100 ++++= ssssC  
Lead lag compensator shall combine the desirable characteristic 
of the lead and lag compensators. It shall result in large increase  
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in gain which improves the steady state response, and it shall 
result in an increase in 

nω , which improves the transient settling 
time. The motor was controlled with the feed forward lead and 
integral compensator ))01.0)(100/(()1.0)(10(100 ++++= ssssC . 
The overall closed loop transfer function of the controlled system 
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Fig. 10 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted that the lead lag compensator will only 
reduce the steady state error, while the transient response settling 
time is very large. The controlled system is not subject to 
instability problem as the controller gain increased. 
 
3.9. Proportional Integral Derivative Compensator (PID) 

ssC *100/100100 ++=  
The motor was controlled with the feed forward PID  
compensator ssC *100/100100 ++= . The overall closed loop 
transfer function of the controlled system 
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Fig. 11 shows the closed loop step response of the DC motor 
angular velocityω , the root locus and bode plots of the controlled 
system. It can be noted that the PID compensator can eliminate 
the steady state error, but still the transient response settling time 
is quite large. The controlled system will have poles in the 
imaginary axis as the controlled gain increased. 

 
4. Linear quadratic tracker design: 
The continuous linear quadratic tracker problem [2] is 
summarized as follows. The system model, 

EdBuAxyxfx ++== ),(&                          (17) 
y Cx Du Fd= + +                                             (18) 

 
To keep a specified linear combination of the states 
y Cx Du Fd= + +  close to given reference track )(tr , let us 

prescribe the quadratic cost index, 
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If we define the Hamiltonion function, 
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The optimal control is given by solving,  
State system,  
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Control oOf DC Motor using Different Control Strategies 

Copyright @ 2011/gjto 
 

27
Costate system, 

( )

( ) ( ) ( )

T

T T T T T

H f L t T
x x x

A C QC x C QD u C QF d C Qr t T

λ λ

λ λ

∂ ∂ ∂
− = = + ≤

∂ ∂ ∂
− = + + + − ≤

&

&

(23) 

 
Stationary conditions, 
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Then, the optimal controller becomes, 

0ttEdBuAxx ≥++=&                         (28) 
 

QrCuQDCxQCCA TTTT −++=− )()(λλ&              (29) 
 

1( ) ( )T T T T Tu R D QD D QCx D Qr B D QFdλ−=− + − + + (30) 
 

1 1

1 1

( ) ( )
( ) ( )
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− −
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      ( 31) 
 
  If we considered,  

QCDBRAH T
o

1
1

−−=                                     (32) 
T

o BBRH 1
2

−−=                                                 (33) 

)( 1
3 QCDQDRCQCCH T

o
TT −−−=            (34) 

)( 1
4

T
o

TT BQDRCAH −−−=                          (35) 

QDBRH T
o

1
5

−=                                                (36)   

)( 1
6 QCQDQDRCH TT

o
T −−= −                   (37) 

1
7

T
oH E BR D QF−= −                                       (38) 

1
8

T T T
oH C QDR D QF C QF−= − +                  (39) 

 
Then 

1 2 5 7

3 4 6 8

H H H Hx x
r d

H H H Hλ λ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

&   (40) 

 
Substituting, 
 

vSx +=λ                                                           (41) 
vxSxS &&&& ++=λ                                                  (42) 

 
From that, we have 

4 2 6 5 8 7[ ] [ ] [ ]v H SH v H SH r H SH d= − + − + −& (43)

SSHSHSHHS 2413 −+−=&                       (44) 

SSHSHSHHS 2413 +−+−=− &                (45) 

01 =−++ − KBKBRQKAKA T
ooo

T
o            (46) 

 
Where, 
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1
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T

o
TTT
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T
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=v  
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1
2456

1
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Thus, 

1[ ( ) ]T T T T
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We can summarise that continuous linear quadratic tracker 
optimal control as follows,  

x r du F x F r F d= + +                                          (53) 
1

1 1

1 1
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T T
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                         (54) 

 
Where, S is the solution of the Riccati equation 
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1
7

T
oH E BR D QF−= −                                       (66) 
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1

8
T T T

oH C QDR D QF C QF−= − +                  (67) 
 
After the solution of the linear quadratic tracker problem, the 
following control scheme is applied   

1*321 kkikVapp ++= ω  
 
Fig. 12 shows the closed loop step response of the DC motor 
angular velocityω . (sec)1sec)/(1 ≈= ssss tradω . So, the 
designed linear quadratic  has the best steady state and transient 
responses. It fully eliminated the steady state error with small 
transient settling time. There is no overshoot and the system is 
completely stable. 
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Fig. 12. The closed loop step response of the DC motor angular 

velocityω  when the optimal output tracker applied 
 

5. Conclusion: 
A simple model of a DC motor driving an inertial load has the 
angular rate of the load, ω , as the output and applied voltage, 

appv , as the input. Different control strategies and compensator 
designs with the objective to control the angular speed to be unity 
with the best steady state and transient performance. The 
comparision was made between the proptional controller, integral 
controller,  propotional and integral controller, phase lag 
compensator, derivitive controller, lead integral compensator, lead 
lag compensator, PID controller and the linear quadratic tracker 
design based on the optimal control theory. It was found that the 
designed linear quadratic  gave the best steady state and transient 
responses performances. It fully eliminated the steady state error 
with the least transient settling time. There is no overshoot and the 
system is completely stable. The reason is that the other 
compensator designs are mostely based on trial and error while 
the linear quadratic tracker design is based on the optimal control 
theory which can give best dynamic performance for the 
controlled system. 
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