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Abstract
Several areas of technology and robotics research are being influenced by an increasing interest in AI. The space community has only recently 
begun to investigate artificial neural networks and deep learning techniques for space systems. The most important aspects of these topics for 
controlling, guiding, and navigating spacecraft dynamics will be discussed in this paper. In an effort to draw attention to the benefits and drawbacks 
of employing the most prevalent architectures of artificial neural networks and the training strategies that go along with them, we examine these 
components. Quantitative and qualitative metrics are used to compare and review particular system identification, control synthesis, and optical 
navigation applications of artificial neural networks. The end-to-end deep learning frameworks for spacecraft guidance, navigation, and control are 
presented in this overview, as are the hybrid approaches that combine neural techniques with conventional algorithms to boost their performance.
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discussion of the most common network architectures in addition to those that 
fall into the aforementioned categories [2].

Literature Review

An active area of research is the development of an adaptive guidance 
and control system through the application of reinforcement learning and meta 
reinforcement learning. Particularly, autonomous guidance and control during 
proximity operations and landing trajectories have been generated using deep 
reinforcement learning. For a variety of scopes, autonomous trajectory planning 
has been generated using reinforcement learning. Pesce and others, Piccinin 
and team and Chan and co utilized DQN and neural fitted Q as value-based 
methods to examine the autonomous mapping of asteroids. Federici and co 
proposed an actor–critic proximal policy optimization framework for real-time 
optimal spacecraft guidance during terminal rendezvous maneuvers in the 
presence of both operational constraints and stochastic effects, such as the 
presence of random in-flight disturbances and inaccurate knowledge of the initial 
spacecraft state [3]. 

Brandonisio and others proposed a direction and control regulation to play 
out the examination of an uncooperative rocket. Advantage actor-critic (A2C) 
methods and a DQN in this. State-activity esteem capabilities are approximated 
utilizing fake brain organizations (ANN); in particular, straightforward MLPs are 
utilized. While the state space is continuous, a discrete action space is maintained. 
Transfer learning (TL) is also used to make it easier to train for more difficult tests. 
Pre-training the RL agent on a simpler task prior to training on the main task 
is one transfer learning technique. In the paper, the different assignments are 
addressed by expanding intricacies of the prize models. Policy-based methods, 
according to many researchers, produce better results. Derivatives and proximal 
policy optimization (PPO) are two of those that are frequently used. A PPO 
formulation that makes use of recurrent neural networks (RNNs) is frequently 
utilized in order to enhance the agent's stability and robustness under various 
scenario conditions [4]. 

Recurrent layers' capacity to store information from previous states, as 
predicted in Section 3, may have a significant impact on agent-safe trajectory 
planning and speeding up progress toward mission objectives. In addition, the 
research asserts that improving an RNN's environmental conditions sensitivity 
through training contributes to the agent's robustness regardless of the 
operational environment. A deep reinforcement learning-based guidance method 
for spacecraft proximity tracking operations is proposed in this work. The D4PG 
algorithm, which stands for distributed distributional deep deterministic policy 
gradient, was utilized. This kind of algorithm has a deterministic output and 
operates in continuous state and action spaces. The actor–critic algorithm is a 
subset of the D4PG algorithm [5].

Introduction

The advancement of an older idea known as artificial intelligence (AI) has 
been one of the most significant developments in autonomous systems over the 
past ten years. This broad term includes several research areas. Additionally, 
one of its sub-clustering terms is frequently misunderstood because AI is a broad 
term. The well-known artificial neural networks (ANNs) are nearly as old as 
artificial intelligence, but rather than a method for implementing AI in autonomous 
systems, they represent a tool or model. A typical architecture can be used 
to describe nearly every deep learning algorithm: According to, the idea is to 
combine a model, a cost function, an optimization method, and a specification 
dataset. In fact, due to distribution mismatching, using a dataset for guidance, 
navigation, and control yields subpar results. The aforementioned dataset 
distribution mismatch, as comprehensively presented in, justifies the requirement 
to update the dataset using simulated observations and actions during training 
even when training is carried out in a simulated environment but not during 
deployment. Overfitting issues are also less likely to arise when incremental 
observations are used to update the dataset. The theoretical foundation for the 
fundamental work of is laid out in this survey [1]. 

The goal of this overview is to provide an overview of the current trends in the 
application of AI-based techniques to space applications, particularly in relation 
to hybrid applications of artificial neural networks and traditional algorithms in the 
areas of control, navigation, and guidance. Despite the fact that these are the 
only domains covered by the survey, the subject remains extremely broad and 
various points of view can be found in recent surveys. Applications range from 
initial spacecraft design to mission operations, with a focus on navigation and 
guidance and control algorithms; lastly, new research areas include astronomical 
object classification and perturbed dynamics reconstruction. The authors intend 
to limit the discussion to spacecraft guidance, navigation, and control (GNC) and 
the dynamics reconstruction domain due to the large number of applications. 
However, the most promising AI-based applications are mentioned in the 
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The domain features that are useful and frequently used in particular space-
based applications are the focus of the discussion. Deep learning (DL) and 
machine learning (ML) research is extremely extensive and complex. The author 
recommends referring to [1] in order to acquire the proper understanding of the 
subject. Thusly, just the most important ideas are accounted for to contextualize 
the work created in the paper. The terms "machine learning" and "deep learning" 
should be distinguished as the first significant distinction [6].

Unaided learning calculations are taken care of with a dataset containing 
many highlights. The framework figures out how to extrapolate examples and 
properties of the design of this dataset. In the context of deep learning, as stated 
in [1], the objective is to learn the underlying probability distribution of the dataset, 
either explicitly for tasks like density estimation or implicitly for synthesis and de-
noising. Other unsupervised learning algorithms perform other functions, such 
as clustering, which involves dividing the dataset into distinct sets, or clusters, 
of experiences and data that are similar. In the spacecraft GNC domain, the 
unsupervised learning approach has not yet been widely used [7].

The trade-off between exploration and exploitation is one of the difficulties 
that arises in reinforcement learning, in contrast to other types of learning. In 
most cases, the agent must investigate the environment in order to acquire an 
appropriate optimal policy, which identifies the necessary action in a particular 
perceived state. The agent must simultaneously make use of this information to 
carry out the task. For practical reasons, the balance in the space domain must 
shift toward exploitation only for online deployed applications. As shown in Table 
3, there should also be a distinction made between model-free and model-based 
reinforcement learning methods. Model-free methods primarily rely on learning, 
whereas model-based methods rely on planning as their primary component. 
Even though these two kinds of methods have a lot in common, they also have a 
lot in common. Anything that an agent can use to predict how the environment will 
react to a given action is referred to as an environmental model [8].

Discussion

In the spacecraft guidance, navigation, and control domain, this paper 
provided an overview of the applications of machine learning, deep learning, 
and artificial neural networks. In particular, in order to provide the reader with a 
customized introduction to the novel approaches, a brief outline of the theoretical 
foundations of the Artificial Intelligence-based methods has been presented. 
The paper's objective was to draw attention to the emerging ideas of artificial 
intelligence in the space community as well as the drawbacks and limitations of 
these approaches in the challenging space environment. The most frequently 
used neural network architectures have been thoroughly examined, along with 
their underlying principles. Every artificial neural network's uniqueness has 
been emphasized and linked to specific research domain applications. The 
use of sensed data to retrieve temporal structures, approximate disturbances, 
encapsulate dynamical behavior, and perform parametric system identification 
is one of the most intriguing applications in the spacecraft dynamics, guidance, 
navigation, and control domain. Recurrent neural networks typically have better 
performance at approximating temporal series, but their training complexity is 
high. Since many different kinds of convolutional neural networks are used to 
process images from optical sensors, the most promising use for them is in optical 
navigation, where neural-based methods and image processing techniques are 
combined [9]. 

In fact, the most up-to-date CNN-based methods for pose estimation and 
planetary landing were discussed in two applications. In addition, the paper 
examined the extensive field of deep reinforcement learning and its applications 
to autonomous guidance and control in a variety of contexts, including 
proximity operations and planetary landing. In addition, a number of different 
approaches, including transfer-learning and meta-reinforcement-learning ones, 
were examined and described for the purpose of improving the robustness of 
algorithms. However, applying AI algorithms to GNC systems faces a number of 
unresolved issues, such as a lack of training data, a theoretical understanding 

and modeling of any AI system's behavior, the application of learned features to 
a variety of situations, and validation [10].

Conclusion

Spacecraft control problem-solving strategies based on reinforcement 
learning (RL) have been the subject of this survey. The focus of the investigation 
has been on how RL techniques are used in particular application areas, such 
as guidance, navigation, and control systems for spacecraft landing on celestial 
bodies, maneuver planning for orbit transfers and interplanetary mission 
trajectory, spacecraft attitude control systems, guidance and proximity maneuvers 
in scenarios involving rendezvous and docking, constellations, and so on. We set 
out to create a helpful review and tutorial for professionals in the space industry 
who want to adopt deep learning and artificial neural networks or who want to 
stay up to date on the most current AI concepts for space applications. 
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