
Open AccessReview Article

Skobowiat, J Veterinar Sci Technolo 2011, S:5 
DOI: 10.4172/2157-7579.S5-001

J Veterinar Sci Technolo Veterinary Anatomic Pathology         ISSN: 2157-7579 JVST, an open access journal 

Abbreviations: ANS: Autonomic Nervous System; ENS: Enteric
Nervous System; SChG: Sympathetic Chain Ganglia; IMG: Inferior 
Mesenteric Ganglion; CD: Crohn’s Disease; UC: Ulcerative Colitis; 
IBD: Inflammatory Bowel Disease; IBS: Irritable Bowel Syndrome; 
CRH: Corticotropin-Releasing Hormone; NA: Noradrenaline; NPY: 
Neuropeptide Y; NO: Nitric oxide; NOS: Nitric oxide Synthase; SP: 
Substance P; CGRP: Calcitonin Gene-Related Peptide; VIP: Vasoactive 
Intestinal Peptide; 5-HT: Serotonin; CART: Cocaine and Amphetamine 
Regulated Transcript

Introduction 
Colitis is a chronic, relapsing, and remitting disease involving 

complex interactions between genes, immune system, and 
neuroendocrine feedback. Important advances have been recently 
made to support the awareness that neuroendocrine factors can 
significantly impact the immune response in the gut [1]. Unlike 
the other nervous systems of the body, the enteric nervous system 
(ENS) can work without central input from the brain and is often 
considered as “the brain-in-the gut”[2]. However, both the ENS and 
the central nervous system (CNS) can amplify or modulate aspects 
of intestinal inflammation through secretion of neuropeptides and 
non-peptide neurotransmitters that serve as a link between the ENS 
and CNS. Neuropeptides are defined as any peptide released from the 
nervous system that serves as an intercellular signaling molecule [3]. 
Neuropeptides and other neurotransmitters, when released at the nerve 
endings in the colon side, diffuse into surrounding tissues and bind to 
their corresponding receptors affecting peristalsis, fluid secretion, and 
digestive processes [3,4]. Locally released neurotransmitters act also 
directly on contiguous vasculature, mast cells and muscles, prompting 
their release of proinflammatory factors [5,6]. Immune cells localized 
in the colon wall express various neurotransmitter receptors, and they 
produce cytokines and other immune/inflammatory mediators like 
chemokines and free radicals. Once the neurotransmitter has reached 
targeted cells and occupied appropriate receptors the initiated signal 
transduction pathways of cytokine production has been started [7]. 
On the other hand, regulatory cytokines released on colon wall can 
bind to specific receptors localized on sensory nerve fibers and trigger 
neuronal response. This bidirectional cross-talk between neuronal and 
immune factors is crucial to maintenance the visceral homeostasis and 
also plays an important role during colitis. Neuropeptides thought 
to play key roles in colitis include substance P (SP), calcitonine 
gene-related peptide (CGRP), neuropeptide Y (NPY), corticotropin-
releasing hormone (CRH), vasoactive intestinal peptide (VIP), 
galanin (GAL) and cocaine and amphetamine regulated transcript 
(CART). Furthermore, neurotransmitters like noradrenaline (NA), 
serotonin (5-HT), and gaseous nitric oxide (NO). All above mentioned 
substances can control a variety of functions within the gastrointestinal 
(GI) tract under physiological and pathological conditions [8]. 
Neurotransmitters may evoke remarkably different and even opposing 
effects depending on the concentration of released neurotransmitter/
co-transmitters, receptor expression levels, affinity, and timing of 
neurosecretory activity in relation to the inflammatory course [4,9]. 
The enhanced neuropeptide release has been reported in the colon 
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during inflammation accompanying ulcerative colitis (UC), Crohn 
disease (CD) and irritable bowel syndrome (IBS) (Figure 1).

Substance P (SP) and calcitonin gene-related peptide (CGRP)

Sensory innervation of colon comprise of intrinsic primary afferent 
neurons (IPANs), whose cell bodies are located in the myenteric or 
submucosal plexuses and extrinsic primary afferent neurons (EPANs), 
with their somata in the dorsal root ganglia (DRG). These neuronal 
populations contain mainly neuropeptides, such as SP and CGRP, 
stored in vesicles that are released upon depolarization. SP- and CGRP-
positive DRG neurons often co-express transient receptor potential 
vanilloid (TRPV1) channel. TRPV1 is one of the key components of 
nociceptive signal transduction pathways and is widely distributed 
throughout the GI tract as well. In experimentally induced colitis in 
rats activation of TRPV1 nociceptive afferent nerve terminals, lead 
to enhanced release of CGRP and SP not only at the inflammation 
side but also in adjacent visceral organs [10]. The liberation of CGRP 
and SP results in vasodilatation, plasma extravasation, and leukocyte 
migration, which is commonly referred to as neurogenic inflammation 

Figure 1: The contribution of particular neurotransmitters in colonic 
homeostasis. The homeostasis of colon activity is regulated by 
vasoconstrictory stimuli, including cAMP, anti-inflammatory cytokines, 
inhibition of NF-κB and Th-2 mode of immune response (left side of figure) 
and vasodilatory stimuli, including cGMP, pro-inflammatory cytokines, 
activation of NF-κB and Th-1 mode of immune response (right side of the 
figure).
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and is related to the axon reflex phenomenon. SP and CGRP stimulate 
T-cell migration, induce secretion of the proinflammatory cytokines 
like IL-1β, interferon gamma (IFN-γ), and tumor necrosis factor alpha 
(TNF-α) [9]. The molecular mechanism underlying this inflammatory 
response involves, in part, the activation of the nuclear transcription 
factor (NF-κB) system and the consequent inflammatory cascade [11]. 
In conclusion, the role of sensory neuronal activation and consecutive 
neuropeptide release with respect to protection or aggression in 
colonic inflammation seems to remain a double-edged sword. For 
example, release of SP/CGRP from afferent terminals triggers mRNA 
up-regulation followed by secondary increase in the release of SP/
CGRP in the colon at later time [10].

Noradrenaline (NA)

The sympathetic nervous system (SNS), with its main 
neurotransmitter NA, which is released from postganglionic varicosities 
innervating the peripheral lymphoid organs, provides the primary 
pathway for the neural regulation of immune function [6,7]. There is 
ample evidence that the immunomodulatory effect of NA is mediated 
through cAMP. NA and the adrenergic agonists may influence the 
immune response directly, through adrenergic β-receptors expressed 
on macrophages and other immunologically competent cells, as well 
as indirectly via alteration of endogenous NA levels by influencing the 
activity of release-regulating presynaptic α2-adrenoceptors located on 
sympathetic nerve terminals. Activation of latter receptors results in a 
negative feedback effect on NA release, leading to decreased extracellular 
NA concentration. On the other hand, activation of neurotransmitter 
receptors that stimulate adenylate-cyclase leads to a shift toward T 
helper 2 (Th2)-type responses, which are both neuroprotective and 
anti-inflammatory, whereas down regulation of intracellular cAMP 
stimulates a T helper 1 (Th1)-type response, resulting in cell destructive 
effects and inflammation [7]. Prior studies have shown that the loss of 
noradrenergic fiber density during colitis is due to inhibition of N-type 
voltage-gated Ca2+ current in postganglionic sympathetic neurons 
[12,13]. Furthermore, during experimental colitis, the axotomy of 
sympathetic nervii supplying the descending colon in pigs are showed 
to decrease in the number of catecholamine-containing perikarya 
localized in sympathetic chain ganglia (SChG) and inferior mesenteric 
ganglion (IMG) – the main sources of sympathetic innervation of 
the colon [14,15]. These findings provide evidence that inflammation 
at colon wall influences the chemical coding of sympathetic neurons 
affecting neuronal plasticity.

Interest in the role of the SNS under inflammatory bowel disease 
(IBD) is rapidly increasing. However, much work needs to be done to 
enhance the understanding of how SNS function is altered during IBD 
and what contribution, if any, these changes make to pathogenesis [12]. 
One of the sympathetic co-transmitters, ATP, is also engaged during 
colitis, namely by the reduced purinergic transmission to submucosal 
arterioles that was noticed, and may be due to increased degradation 
of ATP throughout colitis [16]. On the other hand, venlafaxine, an 
5-HT/NA reuptake inhibitor, alters colonic compliance and tone and 
tends to reduce sensation during colonic distention in healthy humans, 
showing usefulness in colonic disorders affecting motor and possibly 
sensory functions [17,18].

Neuropeptide Y (NPY)

NPY has been shown to elicit diverse biological functions 
including hypothalamic control of food intake, anxiety and sedation. 
This polypeptide is attached to heptahelical G-protein coupled 
receptors, which are widely distributed in the ENS and CNS. It has 

been found that NPY expression is up regulated in enteric neurons 
during experimental colitis in mice [19]. Thus, NPY is an inducible 
gene in enteric neurons that can promote inflammation. It has been 
demonstrated that NPY increases the number of NOS (nitric oxide 
synthase)-producing neurons in the murine ENS ganglia what can 
affect intestine vascularization and motility [20]. The administration 
of NPY antisense oligodeoxynucleotides (ODNs) in rats leads to an 
amelioration of experimentally-induced colitis, suggesting that NPY 
plays an important role in modulating of inflammation throughout 
colitis. Therefore, the NPY antisense ODNs may be a useful therapeutic 
approach to the treatment of ulcerative colitis (UC) and other intestinal 
diseases with inflammatory signs [21].

Nitric Oxide (NO)

NO is a gaseous mediator that exerts key regulatory functions in 
mammalian cells. Low levels of NO play homeostatic functions and 
counteract inflammation, whereas high amounts of NO cause tissue 
destruction and cellular death. NOS generates nitric oxide (NO), a 
major non-adrenergic non-cholinergic (NANC) neurotransmitter, 
which mediates relaxation responses of smooth muscle cells in the 
GI tract. NO has been identified to play a role in a variety of enteric 
neuropathies like Crohn’s disease (CD), UC, Chagas disease, diabetic 
gastroparesis, achalasia and pyloric stenosis [20]. Inflammatory 
cytokines and infiltrating immune cells appear to be responsible for 
much of the colonic oxidative stress that is a hallmark of IBD and 
colonic nitrite levels serve as a sensitive marker of disease activity in 
colitis. When produced in small amounts, NO generally exerts positive 
effects in the gastrointestinal tract. However, under inflammatory 
colonic conditions, greatly increased NO levels have been reported, for 
example, in human IBD and in animal models of colitis [22]. It has 
been demonstrated that increased NO levels in the colon during UC 
is derived mostly from myenteric neurons than from epithelium [20]. 
Vascular resistance accompanying colitis is associated with higher 
levels of vasodilating NO in rat colonic mucosa [22]. Cytokines release 
during UC in rats induced expression of iNOS leading to a steep rise of 
NO synthesis [23]. In a rodent model of colitis, the new NO antagonists 
(NI-NOD1 and NI-NOD2) potently decreased inflammation. These 
data show that NI-NODs are effective in both in vitro and in vivo 
models of inflammation, mimicking the positive effects of low levels of 
NO and suppressing NOS-induced NO production [24].

Corticotropin-releasing hormone (CRH)

CRH is a 41-amino acid hypothalamic peptide that modulates the 
synthesis and release of adrenocorticotropic hormone (ACTH) from 
the pituitary, leading to release of anti-inflammatory corticosteroids 
from the adrenal glands. A major function of CRH is to coordinate 
the endocrine, behavioral, immune, and visceral responses to stress 
[25]. Emerging evidence also links activation of the CRH-dependent 
signaling pathways with modulation of intestinal inflammation [26]. 
There are functional differences between CRH receptor 1 (CRH-R1) 
and CRH-R2 activation. R1 stimulation evokes colonic motility, causes 
proinflammatory response with enhanced visceral nociception whereas 
R2 activation inhibits gastric emptying, reduces visceral perception 
and provokes anti-inflammatory changes reviewed in [27] CRH-R1 
agonists promote intestinal inflammation, as well as endogenous 
inflammatory angiogenesis whereas CRH-R2 ones attenuate these 
features [28]. The enhanced expression of CRH and c-fos inside 
the hypothalamus (paraventricular nucleus) during experimentally 
induced acute colitis in rats has also been observed. This feature 
is probably evoked by the stimulatory effects of pro-inflammatory 
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cytokines on visceral sensory afferents what enhances the excitability 
and activity of the hypothalamus pituitary adrenal (HPA) axis [29,30]. 
In contrary to the anti-inflammatory effects of hypothalamic CRH 
through induction of glucocorticoids, CRH secreted peripherally by 
immune cells, nerve fibers, and possibly additional cell types may act 
locally as a proinflammatory mediator [31]. In a chronic colitis model 
in rats the over expression of CRH-RI has been noticed [32]. The 
worsening of colitis symptoms occurred during periods of emotional 
stress suggests that IBS may be, at least partially, the result of the central 
CRH excess [30]. IBS in human lead to a mild elevation of plasma 
cortisol and significantly blunted ACTH levels suggest a deregulation 
of the HPA axis [33]. As most recently shown, gut [32], similarly to 
skin [34] and joints [35], has formed a local equivalent of the HPA axis 
which contributes to the central one and modulates its activity.

Vasoactive intestinal peptide (VIP)

VIP is a potent neuroendocrine mediator of diverse physiological 
responses, and is expressed prominently in primary immune organs 
and neurons of ENS and CNS [36]. VIP inhibits inflammatory pathways 
by reducing production of TNF-α, IL-6 and IL-12. Other studies have 
shown that VIP enhances the differentiation of T helper cells and 
promotes release of histamine by mast cells, thereby inducing erythema 
[37]. Normal activity of VIP transmission is critical in maintaining 
the intestinal immune homeostasis and selective enhancement of 
VIP signaling activates cAMP/PKA signal transduction pathways 
sufficiently to enhance colitis in mice. Taken together these and 
other findings suggest that VIP may manifest either an inhibitory or 
stimulatory effect on immune and immunopathological reactions in 
intestine [38].

Galanin (GAL)

In humans, GAL is a 30-aa-long neuroendocrine peptide, for 
which its physiological functions are regulated by G protein-coupled 
receptors. GAL is found throughout the CNS and ENS, and its effects 
include a control of memory acquisition, modulation of appetite or 
sexual conduct, GI motion as well as effects on nociception during 
colitis. Both, colitis and the axotomy of colon wall cause an increase in 
GAL-immunoreactivity in the autonomic nervous system [14,15] and 
ENS in pigs [39]. Treatment with GAL is able to reduce the severity of 
the colitis by lowering the incidence of diarrhea, weight loss, infiltration 
of the inflammatory cells, mucosa disruption and edema [40]. GAL 
treatment has a significant preventive effect in TNBS-induced acute 
model of colitis in rats [41].

Serotonin (5-HT)

5-HT is a monoamine neurotransmitter that is classically 
recognized for its functions in the CNS, where it plays important 
roles in regulating mood, body temperature, sleep, sexuality, appetite, 
and metabolism. The vast majority of 5-HT (approximately 95%) 
is localized to the intestine, where is synthesized by serotoninergic 
neurons of ENS as well as in the enterochromaffin (EC) cells [42]. 
As a paracrine factor, 5-HT targets mucosal projections of intrinsic 
primary afferent neurons to initiate enteric peristaltic and secretory 
reflexes. 5-HT is likely to play a role in mucosal homeostasis. Mucosal 
5-HT modulates the immune response, and thus, is able potentially 
influence intestinal inflammation. 5-HT has been shown to promote 
lymphocyte activation and secretion proinflammatory cytokines [43]. 
Moreover, dendritic cells, lymphocytes, macrophages, endothelial cells, 
and enteric epithelial cells all express 5-HT receptors. Additionally, 
activation of specific signaling molecules of the NF-κB pathway is 

mediated by 5-HT during intestinal inflammation [42]. Findings of 
a recent studies have provided a new mechanistic insights into anti-
inflammatory and immunosuppressive activities of 5-HT3 receptor 
antagonist (tropisetron) during rat IBD [44].

Cocaine and amphetamine regulated transcript (CART)

CART was originally given a role in drug abuse but the current 
focus on CART-induced effects is feeding behavior and body weight 
regulation as well the neuromodulatory and/or neurotrophic effects 
in intestine [45]. The coexistence of CART with NOS and VIP in 
the same neural population inside GI indicates that this peptide may 
influence NO- and VIP-induced effects during colitis [46]. CART is 
also implicated in promoting the survival of animal ENS neurons and 
in the protection of enteric neurons in intestinal disorders, neuronal 
stress or injury [47,48]. Other study suggests that CART influences 
on GI function are mostly via CRH-dependent mechanism and 
peripheral cholinergic pathways [49]. Further examinations need to be 
undertaken to elicit the valuableness of CART in intestinal functions 
especially during colitis (Figure 2).

Conclusion
Colitis is a chronic multifactorial disease that targets the colon 

and as of recently afflicts more often the western population exacts 
a substantial toll on the economy with loss of productivity from 
disabilities and cost of medication. Despite advances in understanding 
of colitis pathogenesis and discovery of new treatments, the patients 
continue to suffer from this refractory disease [3]. Current treatment 
of colitis is expensive (antagonists of TNF-α; adalimumab, infliximab, 
certolizumab) and frequently toxic (5-aminosalicylates) [50]. 
Furthermore, they are not effective in all patients [51]. The inadequacy 
of conventional therapy has motivated investigators to develop a 
novel approach to treat colitis. For example, tachykinin NK receptors 
inhibitors [52,53] or natural products which inhibit the NF-κB activity 
[54] have been recently under intense investigation as the newest target 
for colitis treatment.

Colitis is an extremely complex illness involving multiple levels of 
interaction between the neural, immune, and endocrine systems. The 
close anatomical and functional association between nerves, lymphoid 
organs, and intestinal cells suggests multidirectional cross-talk between 
them, where neuropeptides and cytokines act as viable neuroendocrine 

Figure 2: Molecular pathways of neurotransmitters actions in colon wall. 
Various intracellular pathways are active in the enterocytes (summarized in 
this figure) and lead to plethora of phenotypic effects in those cells (described 
in more detail in the text), that depend on the kind of neurotransmitter 
affecting the cell.
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linkage between these systems. However, the complexity of 
interactions between neuropeptides, conflicting study results, and 
opposing mechanisms of action of the neuropeptides, discussed 
warrants research in this field. Further clarification of the molecular 
mechanisms of neuropeptides and their effects on human diseases 
may yield treatment options in the future. This review highlights 
some aspects of bidirectional co-operation of neuro-immune factors 
and their impact on etiopathogenesis and course of colitis, mainly in 
human and laboratory animals. However, data obtained from these 
animal models cannot be directly extra pooled to human regarding 
evident differences in colon anatomy and physiology between two. The 
promising prospective alternatives constitute experiments performed 
on pigs [14,39,55].
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