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Abstract
Experiments in animals have played an integral role in furthering basic understanding of the pathophysiology, host immune response, diagnosis, and treatment of infectious 
diseases. However, competing demands of modern-day clinical training and increasingly stringent requirements to perform animal research have reduced the exposure 
of infectious disease physicians to animal studies. For practitioners of infectious diseases and, especially, for contemporary trainees in infectious diseases, it is important 
to appreciate this historical body of work and its impact on current clinical practice. In this article, we provide an overview of some major contributions of animal studies 
to the field of infectious diseases. Areas covered include transmission of infection, elucidation of innate and adaptive host immune responses, testing of antimicrobials, 
pathogenesis and treatment of endocarditis, osteomyelitis, intra-abdominal and urinary tract infection, treatment of infection associated with a foreign body or in the presence 
of neutropenia, and toxin-mediated disease.
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Introduction

The modern training of infectious disease physicians offers little 
opportunity to work with experimental animal models. Competing demands of 
clinical training requirements, acquisition of other research methodologies, 
more stringent requirements of institutional review boards and distancing 
of animal research facilities from clinical settings, have made it difficult to 
begin even a pilot study involving animal experimentation.  An emerging 
generation of infectious disease specialists may have little appreciation for 
how experimental work in animals has helped to shape the field of infectious 
diseases. The present submission attempts to give a brief overview of 
ways in which experiments in animal models have greatly broadened the 
understanding of our chosen field. 

Tuberculosis and Koch’s Postulates 

Any discussion of the importance of animal models in human 
infectious diseases must begin with the work of Robert Koch. True, 
Pasteur had recognized, in 1862 that, after burial of sheep that died of 
anthrax, microorganisms survived in soil, were carried to the surface by 
earthworms where they spread the disease to healthy animals. Within three 
years, Villemin [1] reported that sputum from patients with tuberculosis 
could transmit infection to rabbits, work that went largely unrecognized by 
the German scientific establishment [2], perhaps because of nationalist 
rivalries. But, in 1882, in a lecture that was literally stunning (there was no 
applause afterwards), Koch [3] showed that: 

(a) With appropriate staining, microorganisms could be seen 
microscopically in all tuberculous lesions; 

(b) These organisms could be cultivated in vitro on appropriate medium; 

(c) Injection of cultivated organisms into guinea pigs caused tuberculosis 
with typical tuberculous lesions; and 

(d) The causative organism could then be isolated from these lesions. 
These so-called Koch’s postulates, based on experiments in rodents, 
established the basis for the modern understanding of infectious diseases. 

Only in the middle of the twentieth century did Riley et al., [4] use animal 
experiments to establish the principle of airborne transmission of infection, 
as opposed to droplet transmission or direct contact. This work was done 
by piping air from hospital rooms that housed tuberculous patients across 
the cages of guinea pigs. Interestingly after a short course of therapy, even 
though organisms were still present in patients’ sputum, there was no 
longer a risk of contagion, a principle that may yet to be fully appreciated by 
experts in infection control.

Pneumococcus and Humoral Immunity

In 1880, the organism we have come to call Streptococcus Pneumoniae 
was discovered in animal studies by two investigators in different countries, 
in nearly the identical fashion and entirely by chance. Sternberg, who 
was studying malaria in New Orleans, injected his own saliva into rabbits, 
putatively as a negative control, and Pasteur who was studying rabies 
in Paris injected saliva from a child who had rabies into a rabbit in an 
attempt to transfer rabies. The rabbits promptly sickened and died, and the 
investigators isolated organisms from the bloodstream of infected animals. 
Pasteur cultivated these organisms in broth, identified them as cocci and 
showed that Injection into other rabbits was lethal.

In the 1890s, Felix and Georg Klemperer showed that repeated injection 
of killed pneumococci immunized rabbits against pneumococcal challenge. 
When they transferred serum from immune into non-immune rabbits, the 
recipients were no longer susceptible to challenge with the immunizing 
strain [5]. These investigators then found another pneumococcal isolate 
against which these rabbits were not protected. Repeating the same steps 
as initially, they rendered rabbits immune to this new isolate but not to the 
original one. Thus, in a series of experiments in rabbits, the Klemperers 
(1) identified two different types of S. pneumoniae, (2) showed that serum 
contained a transferable protective substance, thereby establishing 
the concept of humoral immunity, and (3) paved the way for studies of 
pneumococcal vaccination, begun in humans in 1910 by Wright [6].

In the 1920’s, Felton showed that the soluble carbohydrate of 
pneumococci was immunogenic and specifically protected mice against 
pneumococcal challenge [7]. These findings led directly to the isolation 
and purification of pneumococcal capsular polysaccharide for use as an 
effective vaccine in humans [8].
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BCG, Brucella and Cellular Immunity

In 1919, Calmette and Guerin found that vaccinating guinea pigs with 
a live, attenuated strain of M. Tuberculosis (BCG), protected them against 
challenge with unattenuated tubercle bacilli. Less than a year later, they 
reported efficacy of BCG in protecting humans against disseminated 
infection. This immunity was not transferred by serum. Mackaness [9] 
reported that activation of macrophages was responsible, and that this 
activation was not specific to the challenging organism [10]; mice infected 
with BCG were protected against challenge with unrelated organisms such 
as Brucella and Salmonella as well as M. Tuberculosis. Important later 
experiments in rodents showed that humoral immune responses were 
governed by B-lymphocytes and cell-mediated responses by T-lymphocytes 
[11, 12].  

DNA as the Genetic Principle

Griffith [13] injected pneumococci that lacked capsules subcutaneously 
into mice together with killed encapsulated pneumococci. The mice rapidly 
sickened and died, and encapsulated pneumococci were recovered from 
their blood stream. Griffith called this phenomenon reversion, attributing 
it to bacterial proteins. More than a decade later, in similar experiments in 
mice, Avery, MacLeod and McCarty [14] used purified DNA to transform 
unencapsulated pneumococci to virulent, encapsulated forms, thereby 
establishing the role of DNA as the genetic principle. 

Testing of Antimicrobials 

In the early 1930s, Domagk documented the beneficial effect and 
potential toxicity of sulfanilamide in streptococcal infections in mice. Whitby 
extended this work to S. Pneumoniae using a modified form of the drug [15]. 
These experiments established a pattern for development of antimicrobial 
drugs, in those days leading much more directly to their use in humans than 
at present.

 More recently, a model of soft tissue infection in neutropenic mice 
elucidated important principles of infectious diseases by documenting the: 

(1) Relevance of bactericidal vs bacteriostatic antibiotic activity in 
neutropenia [16]; 

(2) Relation of pharmacokinetics to outcomes of therapy [16]; 

(3) So-called ‘post-antibiotic effect’ of aminoglycosides in vivo [17]; and 

(4) Superiority of continuous antibiotic infusion for treating neutropenic 
subjects [18].

Infection and Foreign Bodies

The difficulty of curing an infection in the presence of a foreign 
body was known from the beginning of the antibiotic era.  The principle 
underlying management was simply to remove the foreign body.  But as 
implants became more common, it became clear that this often could not 
be done.  When infections developed at the site of an implant, infectious 
disease specialists recommended months, years or even lifetime treatment 
with the same cell-wall active antibiotics used to treat acute infections. At 
first, persistence of bacteria in the presence of bactericidal concentrations 
of antibiotics was attributed to survival within polymorphonuclear leukocytes 
[19]. The success of rifampin in killing S. aureus under such circumstances 
was attributed to the penetration of this drug into PMN [20], although 
emergence of resistant variant strains was also recognized as a contributor 
to bacterial survival [21].  Demonstration of biofilm, complex bacterial 
structures on the surface of implanted objects [22, 23], suggested that 
the failure to eradicate bacteria was due to poor penetration. However, 
Darouiche et al., [24] showed that antibiotics penetrated biofilm and 
suggested that altered bacterial metabolism was responsible for the failure 

to be eradicated by antibiotics; Costerton et al., [25] proposed that these 
metabolic changes mandated different antibiotic approaches. 

Accordingly, experiments were begun in animals to study infections 
associated with implanted devices. Zimmerli et al., [25] developed a model 
in which cages containing coverslips were implanted subcutaneously into 
guinea pigs and later inoculated directly with bacteria. Chuard et al., [26] 
used this model to show that the minimum bactericidal concentration of 
antibiotics for bacteria was greatly increased in the biofilm state and 
that, whereas vancomycin or fleroxacin (a fluoroquinolone) failed to clear 
bacteria, these two drugs in combination with rifampin sterilized > 90% of 
coverslips [27]. Importantly, the investigators emphasized that these results 
could not have been predicted from in vitro studies. As a result of these and 
related experiments in animals, combinations of non-beta lactam antibiotics 
have become central to treating infections associated with implants and, 
by extension, osteomyelitis (see below).  Zimmerli et al., [28] used this 
animal model to demonstrate what has become another important clinical 
principle, namely, that implanted foreign bodies can become infected during 
bacteremia.

Osteomyelitis

To some extent, the challenges of treating chronic osteomyelitis can 
be attributed to the same phenomenon, because devitalized bone acts 
as a foreign body surrounded by infection. In the late 1800s, Rodet [29] 
and Lexer [30] injected Staphylococci intravenously in rabbits resulting 
in discrete bone abscesses, but this model did not mimic the diffuse long 
bone disease seen in humans [31]. In 1926, Wilensky proposed vascular 
thrombosis as a key pathogenic factor in the development of osteomyelitis 
[32].  It took 15 years before Scheman and colleagues injected sodium 
morrhuate (a sclerosing agent designed to cause microvascular occlusion) 
into the tibial metaphysis of rabbits followed by injection of staphylococci 
either directly into bone or intravenously [33], resulting in progressive 
radiographic changes of osteomyelitis and histologic findings of suppuration 
and sequestration. Interestingly, little evidence of microvascular occlusion 
was seen leading Scheman to propose that direct trauma to the bone matrix 
was the mechanism of morrhuate. As later shown in a variety of animal 
models, this disruption of bone environment could be achieved by numerous 
methods including injection of other sclerosing agents (e.g. arachidonic 
acid) [34], open fracture [35], or placement of foreign bodies (wires [36], 
screws, intramedullary nail [37] or joint implants [38]). Importantly, such 
manipulations of the bone environment also permitted establishment of 
infection at several log-fold lower inocula of bacteria. 

In 1970, Norden and Kennedy modified Scheman’s model, reaffirming 
the necessity of morrhuate for development of osteomyelitis, and observing 
infected rabbits for up to 6 months after infection [39]. The uniformity, 
reliability and longevity of this osteomyelitis model paved the way for 
experiments evaluating antimicrobial therapy particularly focusing on 
Staphylococcus. Aureus and Pseudomonas. Aeruginosa osteomyelitis 
[40],. These experiments underscored the failure of many antibiotics to 
achieve sterility of bone after 4 weeks of therapy, except for clindamycin 
for S. aureus [41] and fluoroquinolones for Pseudomonas aeruginosa 
osteomyelitis [42]. Higher sterilization rates were achieved when rifampin 
was added to other active agents to treat S. aureus osteomyelitis even in 
the absence of prosthesis/hardware [43]. These experiments in animals 
have changed the way osteomyelitis is treated. Additional lessons included 
the discordant results of in vitro testing for synergy by adding rifampin and 
in vivo success, and the lack of correlation between bone penetration of 
antimicrobials and clinical efficacy [44]. 

Endocarditis

In 1912, Rosenow [45] claimed that he had produced endocarditis in 
rabbits using “exceedingly large” inocula of viridans streptococci. Grown 
in vitro, these organisms produce small clumps of bacteria, and Rosenow 
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hypothesized that valves were infected by bacterial emboli. But the 
hemorrhagic lesions he observed were not consistent with the vegetations 
of endocarditis, and the bacterial inoculum was so large that most of his 
animals died within 24 h, presumably from cytokine storm. Nonetheless, 
a prevailing opinion [46] through the 1960s was that endocarditis resulted 
from emboli, not from adherence of bacteria to valve surfaces. Highman 
et al., [47] perforated the right coronary cusp of the aortic valves of 15 
dogs and, at varying intervals thereafter, injected Staphylococcus aureus or 
viridans streptococci intravenously 4 times  to 5 times weekly for 1 weeks 
to 3 weeks. All dogs developed typical lesions of endocarditis. Work of the 
heart and, later [48], turbulent blood flow were offered as explanations; no 
mention was made of bacterial adherence to damaged valvular tissue. 

In 1970, Garrison and Freedman [49] developed a rabbit model of 
endocarditis, using intravenous catheters prefilled with a suspension 
containing 100 colony forming units (cfu)/ml of S. Aureus that traversed 
the tricuspid valve; endocarditis regularly resulted. Importantly, however, 
control rabbits, in which sterile catheters were placed also, developed 
valvular lesions. With remarkable prescience, Garrison and Freedman 
suggested that, should bacteria enter the bloodstream, platelet adhesion 
and serum factors would facilitate bacterial adherence, causing bacterial 
endocarditis. The following year saw the first report of bacterial endocarditis 
associated with a permanent transvenous pacemaker [50].  

Freedman’s model was used to compare antibiotic prophylactic 
regimens against bacterial endocarditis caused by viridans streptococci [51] 
and to study antibiotic synergy in treating streptococcal and staphylococcal 
endocarditis, showing a good correlation between in vitro killing by various 
antibiotics singly or together and sterilization of cardiac vegetations [52-54] 
(see below, antibiotic synergy). This animal model elucidated several other 
important principles of infectious diseases: 

(1) The role of serum factors such as fibronectin and fibrin in bacterial 
adherence to damaged valves [54]; (2) The absence of synergy between 
penicillin and an aminoglycoside in treating endocarditis due to highly 
aminoglycoside-resistant streptococci [55]; 

(3) The emergence of quinolone resistance during treatment of 
staphylococcal endocarditis with ciprofloxacin alone [56]; 

(4) Potential benefit of using rifampin [57], rifampin and a quinolone [58] 
or rifampin and vancomycin [59] in treating endocarditis; and 

(5) The use of two cell wall-active agents (ampicillin and imipenem) in 
treating endocarditis due to multidrug resistant Enterococcus Faecium [60].

Intra-abdominal Infection

Despite numerous attempts to develop an experimental model of 
intraabdominal infection, none provided consistent results until Weinstein 
et al., [61] placed pooled, filtered colonic contents of meat-fed rats 
(colonic contents of rats on grain diets do not have the requisite diversity 
of anaerobic bacteria) into gelatin capsules together with barium sulfate 
and implanted them into the peritoneal cavity of rats. Most animals died 
within 72 h of bacteremia due to coliform organisms.  Those that survived 
developed intraabdominal abscesses in which the predominant flora were 
Bacteroides [61, 62], a sequence of events replicating those, that follow 
perforation of the colon in humans. The model was then used to show 
that treatment with antibiotics directed against E. Coli (gentamicin) and 
Bacteroides (clindamycin) was effective [63]; these two drugs remained a 
staple in surgical practice for more than two decades. Bartlett et al used this 
model to compare 29 different antibiotic regimens in a remarkable study [64] 
that brought attention to the role for metronidazole or clindamycin together 
with agents effective against E. Coli in treating intraabdominal infection due 
to perforated bowel, . 

Toxin-Mediated Disease

In the 1970s, a highly morbid “antibiotic-associated Pseudomembranous 

Colitis” was correlated with the use of clindamycin [65, 66]. Experiments 
in which clindamycin was administered to hamsters resulted in a similar 
enterocolitis and showed that a clindamycin-resistant, toxin-producing strain 
of Clostridium was the etiologic agent [67]. It was subsequently shown that: 

(1) Broth cultures from the stool of patients with this disease frequently 
grew clostridia strains;  

(2) Fecal transfer from diseased patients to hamsters caused 
enterocolitis; and 

(3) Entercolitis in hamsters could be abated by concurrent use of 
gas gangrene antitoxin, implicating the role of toxin in this infection [68]. 
Experiments in hamsters finally identified toxin-producing Clostridium 
difficile as the causative agent, leading to development of the cell 
cytotoxicity assay as a diagnostic tool and to the use of oral vancomycin as 
a therapeutic option [69].

Toxin production is also central to the pathogenesis of Streptococcal 
Gangrene.  After direct injection of > 103 Streptococcus Pyogenes into the 
muscle of mice, Eagle [70] found that organisms proliferated rapidly causing 
an infection that closely resembled streptococcal myositis in humans. When 
cfu in muscle exceeded 5 x 106, penicillin was no longer curative. Eagle’s 
explanation was that beta-lactam antibiotics only act on replicating bacteria. 
But organisms that no longer replicate may continue to produce toxins, and 
these toxins cause necrotizing fasciitis. Stevens et al., [71] first showed 
in vitro that clindamycin, but not penicillin, suppressed toxin production 
by Clostridium perfringens. They then reported that, after intramuscular 
challenge of mice with > 109 C. Perfringens, antibiotics that suppressed 
protein production, such as clindamycin and rifampin enhanced survival, 
whereas penicillin or cefoxitin did not [72]. In fact, in the mouse model, 
clindamycin was more effective than penicillin in treating streptococcal 
myositis [73]. These experiments showed that, rather than persistence of 
bacteria, toxin production caused disease, leading to the present practice 
of treating severe streptococcal infections of skin and soft tissue with 
antibiotics possessing anti-toxin activity such as clindamycin and, in more 
recent years, linezolid.

The pathophysiology of an uncommon disease, scalded skin syndrome, 
was elucidated entirely through animal experiments. This disease was 
identified in 1878 and attributed to an organism now presumed to be S. 
Aureus in 1891 [74], but it received little attention until 1956 when Lyell [75] 
described toxic epidermal necrolysis. Melish and Glasgow [76] reproduced 
it by infecting newborn mice with phage group 2 strains of S. Aureus and 
subsequently isolated a toxin (only from S. aureus of this phage group) that 
reproduced the syndrome in newborn mice [77]. 

Urinary Tract Infection

The pathogenesis of pyelonephritis was elucidated in animal 
experiments that began at the end of the 19th century. In 1921, Lepper 
[78] summarized earlier studies showing that: (1) introduction of coliform 
bacteria into the bladder of rabbits followed by urethral obstruction regularly 
caused cystitis; and (2) Coliform bacteria injected intravenously could be 
isolated from the kidneys.  When she inoculated 108 Coliform bacteria 
intravenously during transient obstruction of one ureter, characteristic 
lesions of pyelonephritis appeared in the obstructed kidney but not in the 
nonobstructed one, findings that were later confirmed by Brumfitt and 
Heptinstall [79]. These experiments clarified the different pathogeneses 
of ascending and hematogenous infection of the kidneys, emphasizing the 
role of obstruction in both scenarios.  

Animal studies showed that S. Aureus and Proteus mirabilis behaved 
differently from coliforms. When S. Aureus was injected intravenously into 
rabbits [80] or mice [81], organisms initially seemed to be cleared but, within 
10 d, abscesses appeared in the kidneys in the absence of obstruction 
to urinary flow. These experiments led to the clinical observation that the 
finding of S. aureus in the urine in the absence of instrumentation should 
raise concern for prior or concurrent bacteremia [82]. Griffith and Musher 
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[83] showed that introduction of a foreign body and P. Mirabilis into the 
bladder of rats caused infection with formation of struvite stones; concurrent 
administration of a urease inhibitor prevented stone formation and greatly 
reduced the extent of kidney involvement [84] again documenting that 
bacterial products, not simply persistence of live bacteria, produce disease. 

Norden et al., [85] reported that attachment of E. Coli to uroepithelial 
lining cells was followed by loss of recoverability of the bacteria. Subsequent 
electronic microscopic studies in infected rats [86] showed, in fact, that 
uroepithelial cells actually phagocytose bacteria and that these cells 
are then shed into the urine. These findings explain the how incomplete 
emptying of the bladder increases the risk for infection.

Neutropenia and Synergistic Effect of 
Antibiotics

With the advent of novel chemotherapies in the 1960s, neutropenia 
and associated infections due to Gram negative bacilli became increasingly 
prevalent. Because of the clinical variability among patients, direct studies in 
humans were difficult, and an in vitro “checkerboard” technique to examine 
synergy in vitro yielded inconsistent results with poor applicability to 
infected patients [59]. In an important advance, Andriole [87] demonstrated 
synergy between carbenicillin and gentamicin in rats after lethal challenge 
with Pseudomonas even when in vitro synergy could not be demonstrated. 
Using neutropenic rats, Lumish and Norden [88] studied varying doses and 
dosing intervals of aminoglycosides, penicillins and cephalosporins singly 
and in combination after intraperitoneal, intrabronchial or intramuscular 
inoculation with Klebsiella or Pseudomonas [89, 90] ; synergy between 
beta-lactams and aminoglycosides was consistently demonstrated. 

The so-called post-antibiotic effect of aminoglycosides [17], now more 
clearly understood to be related to ribosomal binding at peak concentrations, 
was documented in this same model. More recently, meropenem/
vaborbactam was found to be modestly useful in treating neutropenic 
mice infected with carbapenemase-producing Enterobacteriaceae [91], 
organisms that have been notoriously difficult to eradicate and for which 
usually available in vitro testing yields inconsistent results. This same 
neutropenic mouse model has also been used to optimize dosing regimens 
for new antibiotics such as solithromycin that may have unusual volumes of 
distribution and/or pharmacodynamics [92].

Conclusion

Spanning airborne transmission of infection, immunologic response to 
pathogens, discovery of disease mechanisms, pharmacologic principles of 
antimicrobial therapy and impact of a foreign body on establishment and 
persistence of infection, animal studies have contributed immensely to the 
field of infectious diseases, and provided a foundational understanding for 
our approach to many classic infectious disease syndromes we encounter 
today including endocarditis, pyelonephritis, intraabdominal infection and 
osteomyelitis. In this article, we hope to have inspired the reader to read 
and reflect upon this important historical body of literature. 
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