Constraining Modified Gravity Models Using the Thermal Sunyaev-Zeldovich Effect

Ivan De Martino*

Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Faculty of Science and Technology, Barrio Sarriena s/n, 48940 Leioa, Spain

Abstract

Some modified gravity theories add, in their weak field limit, a Yukawa-correction to the Newtonian gravitational potential. Such a correction usually depends on the two parameters, one that accounts for the modification of the gravitational constant, and another one representing the scale length on which the scalar field propagates. The thermal Sunyaev-Zeldovich temperature anisotropies can be used to test the modified gravitational potential well demonstrating that the Yukawa-like gravitational potential is able describe the distribution of the hot Intra Cluster Medium without accounting for a Dark Matter halo.

Keywords: Alternative theories of gravity; MOG; Galaxy cluster; Dark matter; Dark energy; Cosmic microwave background; Sunyaev-Zeldovich effect

Introduction

Our knowledge about the Universe was increased through the centuries, and observations have quickly improved and became more accurate in the last three decades. We have entered the era of precision cosmology where the observables have been determined within a few percent accuracy [1-6]. The observations indicate that baryons only contribute a few percents to the total amount of the matter and energy in the Universe, and the latter is ongoing a period of accelerated expansion. These data are well accommodated within the framework of the concordance cosmological model (also named ΛCDM model). The model explains the evolution of the Universe from the first fractions of a second to the present day. To account for these observations, the concordance cosmological model that is entirely based on General Relativity (GR), assumes the existence of two extra energy-density components: i) the Dark Matter (DM), and ii) a cosmological constant Λ, equivalent to a perfect fluid with negative pressure, or its generalizations usually named Dark Energy (DE). The DM is characterized by a small temperature, it interacts only gravitationally with the other components, and it constitutes about a 26% of the total amount of energy-density of the Universe. It allow us to explain the emergence of the Large Scale Structure and the dynamics of self-gravitating systems in the framework of GR. The DE accounts for a ~68% of the total energy-density, and it is required to explain the current period of accelerated expansion [6]. From one hand, the dynamical effects of both DM and DE on large scales are very well constrained; on the other hand, the lack of evidence of counterparts at the particle level can be interpreted as a breakdown of GR at scale beyond the Solar System. Thus, alternative models to GR have been proposed to explain both the dynamics of self-gravitating systems and the cosmological expansion history without resorting to extra components.

Broadly speaking, these alternative models, usually named Extended Theories of Gravity (ETGs), generalize the Hilbert-Einstein Lagrangian by including higher-order curvature invariants and minimally or non-minimally coupled terms between scalar fields and geometry. Such higher-order theories contain extra degrees of freedom that, in the weak field limit, can be recast as new gravitational scale lengths. The general paradigm for (2k+2)-order theories of gravity demonstrates that, a new characteristic scale length arises in Newtonian limit increasing the theory of two derivation orders [7]. Thus, gravity is not longer scale invariant, and DM and DE could be interpreted as the effect of high order theories on scale larger than the Solar system one. This review is focused on two ETGs: (a) the well known f(R)-gravity that replaces the Ricci scalar, R, in the Hilbert-Einstein action with a more general function of the curvature f(R) for comprehensive reviews see [8-12]; and (b) the more recent Scalar-Tensor-Vector Gravity theory (STVG), also known as MOdified Gravity (MOG), that adds scalar, tensor and massive vector fields to the standard Hilbert-Einstein action (for more details see [13,14]). Both ETGs introduce a Yukawa-like correction to the Newtonian gravitational potential in their weak field limit [13-16]. In f(R)-gravity, such correction term is characterized by two parameters the strength δ and the scale length l, of the Yukawa-term that are related to the additional degree of freedom/scalar fields arising from the theory. In MOG theory, the mass of the vector field and its strength are governed by two running constants, α and β, that are promoted to scalar fields and can be constrained by data.

Both theories have been tested from the astrophysical to the cosmological scales. Specifically, f(R)-gravity is able to describe the star formation and evolution [17,18], the emission of gravitational waves for binary systems [19,20], the galactic rotation curves in spiral galaxy [21], the dispersion velocity in elliptical galaxy [22], the dynamics of gas in galaxy clusters [23-25], and the emergence and evolution of the Large Scale Structure [26]. On the other hand, MOG is able to describe the dynamics of self-gravitating system from galactic to extragalactic scales[27-30] and, at the same time, it can explain the evolution of the Universe as a whole [31-33]. Despite their successes, there is not definitive proof about the need of modifying gravity; nowadays, ETGs

*Corresponding author: Ivan De Martino, Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Faculty of Science and Technology, Barrio Sarriena s/n, 48940 Leioa, Spain, Tel: +34 946 01 20 00; E-mail: ivan.demartino1983@gmail.com

Received September 01, 2017; Accepted September 25, 2017; Published September 29, 2017

Copyright: © 2017 De Martino I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
just represent a valid alternative to the CDM model to overcame some of its shortcomings. Nevertheless, having alternatives demand to test them in all possible physical scenarios.

Literature Review

Here we briefly review the chance offered by the thermal Sunyaev-Zeldovich (TSZ, [34]) effect in galaxy clusters to constrain both f(R) and MOG theories. We will show that the predicted effect agrees with the observed one when the intra cluster gas is in hydrostatic equilibrium within the modified Newtonian potential. There is no need, in these models, for introducing a dominant DM halo component. This review is organized as follows: in sect. II, we briefly describe the main features of galaxy clusters and the TSZ effect; in sect. III, we describe the methodology used to test ETGs [24,25,30]. Specifically, we illustrate the data, the model and the statistical analysis; in sect. IV, we highlight the results and, finally, in sect. V we give the conclusion.

Cluster of Galaxies

Galaxy clusters are the largest virialized objects in the Universe, with a virial mass in the range from 10^{15} to $10^{17} M$. The mass of baryons in cluster is composed at least by two components, diffuse Intra Cluster Medium (ICM), and stars. Nevertheless, most of baryons are not in galaxies but they are in the diffuse ICM [35-37].

Clusters contain from hundreds to up to one thousand galaxies within 2 Mpc from their center. They account for a mere 3% of the total mass of the cluster, while hot ICM gas contains most of the baryons up to 12% of the total mass. The total mass of the cluster is usually associated to a DM halo. The ICM is highly rarefied: electron number densities are typically $n_e \sim 10^{-3} - 10^{-6} \text{cm}^{-3}$, but it has a temperature in the range from 10^6 to 10^9K, thus clusters are strong X-rays sources with relativistic corrections in the electron temperature (T_e), the TSZ and KSZ components due to the proper motion of the electrons in the potential well of the cluster, and the peculiar velocity of the cluster. We denoted $d'\ell = \sigma_i n_e d\ell$ the cluster optical depth to the SZ effect, with σ_i Thomson cross section, η_i the electron density evaluated along the line of sight ℓ, T_e is the current CMB blackbody temperature and G (v') is the frequency dependence of TSZ effect that, in the non relativistic limit ($T_e \ll \text{few keV}$), is given by: $G(v') = \tanh(v'/2) - 4$. For very hot clusters ($T_e > 10 \text{keV}$), relativistic corrections must be included [57-59].

Methodology

The TSZ temperature anisotropies are usually expressed as the integral of the pressure profile along the line of sight:

$$\frac{\Delta T_{\text{SZ}}(\theta)}{T_e} = G(v') \frac{\sigma_i}{m_e c^2} P_{\text{SZ}}(l) dl$$

To test modified theories of gravity using TSZ effect, the pressure profile (P_{SZ}) must be specified. It can be computed integrating the following system of differential equations

$$\frac{dP(r)}{dr} = -\rho_{\text{gas}}(r) \frac{d\Phi_{\text{eff}}(r)}{dr}$$

$$P(r) \propto \rho_{\text{gas}}(r)$$

$$\frac{dM(r)}{dr} = 4 \pi r^2 \rho_{\text{gas}}$$

$$P_{\text{SZ}}(r) = P \Phi_{\text{eff}}(r)$$

where in the case of f(R)-gravity, the effective gravitational potential takes the following functional form [15,16]

$$\Phi_{\text{eff}}(r) = \frac{\Phi_0(r)}{1 + \delta} = \frac{\Phi_0(r)}{1 + \delta} \left[1 - \frac{r}{\delta} \right]$$

Clusters containing from hundreds to up to one thousand galaxies within 2 Mpc from their center. They account for a mere 3% of the total mass of the cluster, while hot ICM gas contains most of the baryons up to 12% of the total mass. The mass of the cluster is usually associated to a DM halo. The ICM is highly rarefied: electron number densities are typically $n_e \sim 10^{-3} - 10^{-6} \text{cm}^{-3}$, but it has a temperature in the range from 10^6 to 10^9K, thus clusters are strong X-rays sources with relativistic corrections in the electron temperature (T_e), the TSZ and KSZ components due to the proper motion of the electrons in the potential well of the cluster, and the peculiar velocity of the cluster. We denoted $d'\ell = \sigma_i n_e d\ell$ the cluster optical depth to the SZ effect, with σ_i Thomson cross section, η_i the electron density evaluated along the line of sight ℓ, T_e is the current CMB blackbody temperature and G (v') is the frequency dependence of TSZ effect that, in the non relativistic limit ($T_e \ll \text{few keV}$), is given by: $G(v') = \tanh(v'/2) - 4$. For very hot clusters ($T_e > 10 \text{keV}$), relativistic corrections must be included [57-59].

Methodology

The TSZ temperature anisotropies are usually expressed as the integral of the pressure profile along the line of sight:

$$\frac{\Delta T_{\text{SZ}}(\theta)}{T_e} = G(v') \frac{\sigma_i}{m_e c^2} P_{\text{SZ}}(l) dl$$

To test modified theories of gravity using TSZ effect, the pressure profile (P_{SZ}) must be specified. It can be computed integrating the following system of differential equations

$$\frac{dP(r)}{dr} = -\rho_{\text{gas}}(r) \frac{d\Phi_{\text{eff}}(r)}{dr}$$

$$P(r) \propto \rho_{\text{gas}}(r)$$

$$\frac{dM(r)}{dr} = 4 \pi r^2 \rho_{\text{gas}}$$

$$P_{\text{SZ}}(r) = P \Phi_{\text{eff}}(r)$$

where in the case of f(R)-gravity, the effective gravitational potential takes the following functional form [15,16]

$$\Phi_{\text{eff}}(r) = \frac{\Phi_0(r)}{1 + \delta} = \frac{\Phi_0(r)}{1 + \delta} \left[1 - \frac{r}{\delta} \right]$$

Clusters containing from hundreds to up to one thousand galaxies within 2 Mpc from their center. They account for a mere 3% of the total mass of the cluster, while hot ICM gas contains most of the baryons up to 12% of the total mass. The mass of the cluster is usually associated to a DM halo. The ICM is highly rarefied: electron number densities are typically $n_e \sim 10^{-3} - 10^{-6} \text{cm}^{-3}$, but it has a temperature in the range from 10^6 to 10^9K, thus clusters are strong X-rays sources with relativistic corrections in the electron temperature (T_e), the TSZ and KSZ components due to the proper motion of the electrons in the potential well of the cluster, and the peculiar velocity of the cluster. We denoted $d'\ell = \sigma_i n_e d\ell$ the cluster optical depth to the SZ effect, with σ_i Thomson cross section, η_i the electron density evaluated along the line of sight ℓ, T_e is the current CMB blackbody temperature and G (v') is the frequency dependence of TSZ effect that, in the non relativistic limit ($T_e \ll \text{few keV}$), is given by: $G(v') = \tanh(v'/2) - 4$. For very hot clusters ($T_e > 10 \text{keV}$), relativistic corrections must be included [57-59].

Methodology

The TSZ temperature anisotropies are usually expressed as the integral of the pressure profile along the line of sight:

$$\frac{\Delta T_{\text{SZ}}(\theta)}{T_e} = G(v') \frac{\sigma_i}{m_e c^2} P_{\text{SZ}}(l) dl$$

To test modified theories of gravity using TSZ effect, the pressure profile (P_{SZ}) must be specified. It can be computed integrating the following system of differential equations

$$\frac{dP(r)}{dr} = -\rho_{\text{gas}}(r) \frac{d\Phi_{\text{eff}}(r)}{dr}$$

$$P(r) \propto \rho_{\text{gas}}(r)$$

$$\frac{dM(r)}{dr} = 4 \pi r^2 \rho_{\text{gas}}$$

$$P_{\text{SZ}}(r) = P \Phi_{\text{eff}}(r)$$

where in the case of f(R)-gravity, the effective gravitational potential takes the following functional form [15,16]

$$\Phi_{\text{eff}}(r) = \frac{\Phi_0(r)}{1 + \delta} = \frac{\Phi_0(r)}{1 + \delta} \left[1 - \frac{r}{\delta} \right]$$
while, for MOG gravity model, it becomes

\[\Phi_{\text{MOG}}(r) - \Phi_{\text{Newton}}(r) = \frac{GM(r)}{r} \]

In both cases, \(\Phi_{\text{Newton}}(r) = -\frac{GM(r)}{r} \) is the classical Newtonian potential.

Let us remark that the model does not include any DM component, but it assumes that baryons follow the modified gravitational potential well described in Equations (9) and (10) for \(f(R) \)-gravity and MOG models, respectively. When integrating the system of equations (5)-(8), one is assuming that: (i) the gas is in hydrostatic equilibrium within the modified potential well; (ii) the gas distribution is spherically symmetric; and (iii) the state of gas can be described with a polytropic equation of state (equation (6)). Under these assumptions, the system of equations (5)-(8), plus the equation for the modified gravitational potential, constitutes a closed system that can be integrated numerically to compute the pressure profile in ETGs, and to use TSZ anisotropies to constraint the theoretical parameters.

Foreground cleaned Planck 2013 nominal data: Coma cluster

Planck 2013 Nominal maps were used to measure the TSZ cluster profile and constrain the parameters of the modified gravitational potential of both theories. The publicly available Planck Nominal maps contain the cosmological CMB signal, instrumental noise, TSZ and KSZ emissions, point and extended infrared sources, thermal dust maps. The Coma cluster was assumed to be spherically symmetric and the ICM to be in hydrostatic equilibrium. The model predictions have been computed at the same apertures to compute the likelihood -2logL = \(\chi^2(p,v_i) \)

\[-2\log L = \chi^2(p,v_i) = \sum_{i=1}^{N} \Delta T_{\text{CMB}}(p)^2 / \Delta T_{\text{CMB}}(p)^2 \]

Patches of sky centered at the position of A1656 (Coma cluster) at 100–545 GHz. Patches have size of \(2^\circ \times 2^\circ \). First row: Planck Nominal maps. Second row: foreground cleaned data.

Table 1: MCMC priors of the explored parameter space.

<table>
<thead>
<tr>
<th>Theory</th>
<th>Parameter</th>
<th>Units</th>
<th>Priors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4(^{\circ})90 f (R)</td>
<td>(p_0)</td>
<td>(10^2 \text{ cm}\text{-keV})</td>
<td>[0.0,3.0]</td>
</tr>
<tr>
<td>4(^{\circ})90 f (R)</td>
<td>(\gamma)</td>
<td>-</td>
<td>1.0,5</td>
</tr>
<tr>
<td>4(^{\circ})90 f (R)</td>
<td>(L)</td>
<td>Mpc</td>
<td>[0.1,20.0]</td>
</tr>
<tr>
<td>4(^{\circ})90 f (R)</td>
<td>(\delta)</td>
<td>-</td>
<td>[-99,1]</td>
</tr>
<tr>
<td>90MOG</td>
<td>(P_{\text{c}})</td>
<td>(10^2 \text{ cm}^2\text{-keV})</td>
<td>[0.0,3.0]</td>
</tr>
<tr>
<td>90MOG</td>
<td>(\gamma)</td>
<td>-</td>
<td>1.0,5</td>
</tr>
<tr>
<td>90MOG</td>
<td>(\mu^*)</td>
<td>Mpc</td>
<td>[0.01,20.0]</td>
</tr>
<tr>
<td>90MOG</td>
<td>(\alpha)</td>
<td>-</td>
<td>[0.1,20.0]</td>
</tr>
</tbody>
</table>
Results and Discussion

MCMC were run to fit separately the data at each frequency channel. Then, the joint likelihood has been computed. The best fit parameters are summarized in Table 2, and the best fit models are shown in Figure 2 [24,25,30].

\(\text{f}(R)\)-gravity MOG

Best fitting model of \(\text{f}(R)\)-gravity and MOG in panels left and right, respectively. The black lines represent the best-fit models, the blue lines show the GNFW profile with best fit parameter from [43], and the red line in the right panel illustrates the MOG model with parameter fixed to their "universal" values [75].

The analysis gave rise to some interesting results that can be summarized as follows:

- \(\text{f}(R)\)-theory: the strength of the modified potential in eq. (9) is \(\delta \neq 0\) at the 95% of confidence level (CL). Therefore, the data are compatible with \(\text{f}(R)\)-gravity plus baryons. Next, the scale length of the potential \(L\) is not equal to zero at the 95% CL. This limit corresponds to a Newtonian gravitational potential generated by an effective mass \(M = M_\bullet (1 + \delta)\). Since the data favors models with \(\delta < 0\), \(M_{\bullet}\) would be analogue to the field generated by a cluster containing a large fraction of DM distributed like the baryonic gas [24,25].

- MOG theory: the strength of the Yukawa potential in eq. (10), \(\alpha\), is compatible at 68% CL with its universal value \(\alpha \approx 8.89\) [14,67].

Whereas the universal value of scale length \(\mu\) is ruled out at more than 3.5\(\sigma\). Therefore, the assumption that the parameters of the Yukawa-potential can be assumed scale independent is also ruled out [30]. In fact, with this assumption, MOG is capable to fit only the central region (815 arcminutes) of the galaxy cluster, while it overestimates the TSZ emission at larger apertures: at \(0\)–1 degree the departure from the data is almost one order of magnitude (red dashed line in Figure 2).

For both theories, \(f (R)\) and MOG, the polytropic index is consistent at \(\sim 1.5\sigma\) level with the value \(\gamma = 1.2\) preferred by observations and numerical simulations within the \(\Lambda\)CDM concordance model. Since the physical state of the gas in a galaxy cluster is determined by its formation and evolution [68], the results could be interpreted as an indication that both \(f (R)\) and MOG could be able to explain the emergence of the large scale structure as well as the concordance model.

Conclusion

Several theories of gravity have been constrained using cluster of galaxies such as chameleon \(f (R)\) models [69-71], Galileon model [72], and K-mouflage gravity [73]. Here, we have reviewed the analysis that has been done to constrain those theories that modify the Newtonian potential in their weak filed limit by adding a Yukawa-like term. Specifically, we have reviewed the analysis on analytical \(f (R)\)-gravity and MOG models presented in [24,25,30]. Such a particular class of ETGs have been constrained using the TSZ temperature anisotropies due to the Coma cluster. While it is well described by the polytropic equation of state. These models have been tested using a foreground cleaned version of the 2013 data release of Planck Nominal maps. The measured TSZ profile at the location of Coma cluster has been used to constrain the model parameters employing a MCMC algorithm. Both analyses, for \(f (R)\) and MOG, show the capability of the two theories to describe galaxy cluster without accounting for a DM component. However, the analyses are based on the assumptions of hydrostatc equilibrium and spherical symmetry of the cluster. Although such assumptions hold in the intermediate region of the Coma cluster where models are tested, they do not hold in general due to the presence of substructures, turbulences, and physical processes that can heat up or cool down the gas in the cluster core [74-81]. The departure from the spherical symmetry could affect both the innermost and outermost regions of Coma cluster. This is figured out in the the degeneracy between the strength of the gravitational potential, \(\delta\) and \(\alpha\), and the polytropic index of the gas [25,30]. Nevertheless, a deeper study of this degeneracy should use N-body hydrodynamical simulations carried out for each set of parameter. Another limitation of the analysis was the angular resolution of the foreground cleaned data (FWHM =10 arcminutes). This could be overcome with the next-generation of full sky CMB missions such as CorE/PRISM [82] that will have a much higher angular resolution and frequency coverage providing a powerful tool to properly investigate the relation between the underlying theory of gravity and the baryonic processes.

References

<table>
<thead>
<tr>
<th>Theory</th>
<th>Parameter</th>
<th>Units</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{f}(R))</td>
<td>(P_G)</td>
<td>(10^2) cm(^{-3}) keV</td>
<td>(0.90 \pm 0.04)</td>
</tr>
<tr>
<td></td>
<td>(\gamma)</td>
<td>-</td>
<td>(1.44_{-0.13}^{+0.10})</td>
</tr>
<tr>
<td></td>
<td>(L)</td>
<td>Mpc</td>
<td>(2.19 \pm 1.02)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>-</td>
<td>-</td>
<td>(-0.48 \pm 0.22)</td>
</tr>
<tr>
<td>(\rho_{\bullet})</td>
<td>(10^2) cm(^{-3}) keV</td>
<td>-</td>
<td>(0.773 \pm 0.03)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-</td>
<td>-</td>
<td>(1.40_{-0.10}^{+0.10})</td>
</tr>
<tr>
<td>(\mu^*)</td>
<td>Mpc</td>
<td>-</td>
<td>(4.2_{-1.3}^{+1.4})</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-</td>
<td>-</td>
<td>(6.6_{-1.3}^{+1.4})</td>
</tr>
</tbody>
</table>

Table 2: Best fit parameters for both \(\text{f}(R)\)-gravity and MOG.