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Introduction
Our knowledge about the Universe was increased through the 

centuries, and observations have quickly improved and became more 
accurate in the last three decades. We have entered the era of precision 
cosmology where the observables have been determined within a 
few percent accuracy [1-6]. The observations indicate that baryons 
only contribute a few percents to the total amount of the matter and 
energy in the Universe, and the latter is ongoing a period of accelerated 
expansion. These data are well accommodated within the framework of 
the concordance cosmological model (also named ΛCDM model). The 
model explains the evolution of the Universe from the first fractions 
of a second to the present day. To account for these observations, the 
concordance cosmological model that is entirely based on General 
Relativity (GR), assumes the existence of two extra energy-density 
components: i) the Dark Matter (DM), and ii) a cosmological constant Λ, 
equivalent to a perfect fluid with negative pressure, or its generalizations 
usually named Dark Energy (DE). The DM is characterized by a small 
temperature, it interacts only gravitationally with the other components, 
and it constitutes about a 26% of the total amount of energy-density of 
the Universe. It allow us to explain the emergence of the Large Scale 
Structure and the dynamics of self-gravitating systems in the framework 
of GR. The DE accounts for a ∼68% of the total energy-density, and it 
is required to explain the current period of accelerated expansion [6]. 
From one hand, the dynamical effects of both DM and DE on large 
scales are very well constrained; on the other hand, the lack of evidence 
of counterparts at the particle level can be interpreted as a breakdown 
of GR at scale beyond the Solar System. Thus, alternative models to GR 
have been proposed to explain both the dynamics of self-gravitating 
systems and the cosmological expansion history without resorting to 
extra components.

Broadly speaking, these alternative models, usually named Extended 
Theories of Gravity (ETGs), generalize the Hilbert-Einstein Lagrangian 
by including higher-order curvature invariants and minimally or non-
minimally coupled terms between scalar fields and geometry. Such 
higher-order theories contain extra degrees of freedom that, in the weak 
field limit, can be recast as new gravitational scale lengths. The general 
paradigm for (2k+2)-order theories of gravity demonstrates that, a 
new characteristic scale length arises in Newtonian limit increasing the 
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Some modified gravity theories add, in their weak field limit, a Yukawa-correction to the Newtonian gravitational 
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thermal Sunyaev-Zeldovich temperature anisotropies can be used to test the modified gravitational potential well 
demonstrating that the Yukawa-like gravitational potential is able describe the distribution of the hot Intra Cluster 
Medium without accounting for a Dark Matter halo. 
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theory of two derivation orders [7]. Thus, gravity is not longer scale 
invariant, and DM and DE could be interpreted as the effect of high 
order theories on scale larger than the Solar system one. This review 
is focused on two ETGs: (a)the well known f (R)-gravity that replaces 
the Ricci scalar, R, in the Hilbert-Einstein action with a more general 
function of the curvature f (R) for comprehensive reviews see [8-12]; 
and (b) the more recent Scalar-Tensor-Vector Gravity theory (STVG), 
also known as MOdified Gravity (MOG), that adds scalar, tensor and 
massive vector fields to the standard Hilbert-Einstein action (for more 
details see [13,14]. Both ETGs introduce a Yukawa-like correction to the 
Newtonian gravitational potential in their weak field limit [13-16]. In f 
(R)-gravity, such correction term is characterized by two parameters the 
strength δ and the scale length L of the Yukawa-term that are related to 
the additional degree of freedom/scalar fields arising from the theory. In 
MOG theory, the mass of the vector field and its strength are governed 
by two running constants, α and µ, that are promoted to scalar fields and 
can be constrained by data.

Both theories have been tested from the astrophysical to the 
cosmological scales. Specifically, f (R)-gravity is able to describe the star 
formation and evolution [17,18], the emission of gravitational waves 
for binary systems [19,20], the galactic rotation curves in spiral galaxy 
[21], the dispersion velocity in elliptical galaxy [22], the dynamics of 
gas in galaxy clusters [23-25], and the emergence and evolution of the 
Large Scale Structure [26]. On the other hand, MOG is able to describe 
the dynamics of self-gravitating system from galactic to extragalactic 
scales[27-30] and, at the same time, it can explain the evolution of 
the Universe as a whole [31-33]. Despite their successes, there is not 
definitive proof about the need of modifying gravity; nowadays, ETGs 
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just represent a valid alternative to the Ë  CDM model to overcame 
some of its shortcomings. Neverthless, having alternatives demand to 
test them in all possible physical scenarios.

Literature Review
Here we briefly review the chance offered by the thermal Sunyaev-

Zeldovich (TSZ, [34]) effect in galaxy clusters to constrain both f (R)and 
MOG theories. We will show that the predicted effect agrees with the 
observed one when the intra cluster gas is in hydrostatic equilibrium 
within the modified Newtonian potential. There is no need, in these 
models, for introducing a dominant DM halo component. This review 
is organized as follows: in sect. II, we briefly describe the main features 
of galaxy clusters and the TSZ effect; in sect. III, we describe the 
methodology used to test ETGs [24,25,30]. Specifically, we illustrate the 
data, the model and the statistical analysis; in sect. IV, we highlight the 
results and, finally, in sect. V we give the conclusion.

Cluster of Galaxies
Galaxy clusters are the largest virialized objects in the Universe, 

with a virial mass in the range from 1013  to (few) 1015 Me. The mass 
of baryons in cluster is composed at least by two components, diffuse 
Intra Cluster Medium (ICM), and stars. Neverthless, most of baryons 
are not in galaxies but they are in the diffuse ICM [35-37].

Clusters contain from hundreds to up to one thousand galaxies 
within 2 Mpc from their center. They account for a a mere 3% of 
the total mass of the cluster, while hot ICM gas contains most of the 
baryons up to 12% of the total mass. The remaining 85% is usually 
associated to a DM halo. The ICM is highly rarefied: electron number 
densities are typically 4 2 3~ 10 10 cm− − −−en , but it has a temperature in the 
range from 107 to 108K, thus clusters are strong X-rays sources with 
a luminosity 43 45~ 10 10 e /−XL rg s . The size of the cluster are typically 
given in term of the radius r500, defined as the radius at which the 
mean overdensity of the cluster is 500 times the critical density of the 
Universe at the same redshift ( ( )ρc z ), and the corresponding enclosed 

mass is ( ) 3
500 500

4 500
3
π ρ≡   cM z r . These definitions are rather convenient 

since scaling relations based on numerical simulations and X-ray 
observations allow to determine r500 for individual clusters [38,39]. 
Scaling relations can be also used to test the physics of clusters of 
galaxies[40-47].

The interest for obtaining a good description of the distribution of 
the ICM within the gravitational potential well generated by the DM 
distribution, led to propose phenomenological parameterizations based 
on the generalized Navarro-Frank-White profile (GNFW) [43,48]. The 
functional form of the proposed profile is 
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The parameters were firstly derived using 33 X-Ray 
selected massive clusters (M500=[1014 −1015]) up to redshift 
Z≤0.2. Their best fit values were the following ones:
[ ] ( )3/ 2

500 0 70, , , , 1.177,1.051,5.4905,0.3081,8.403α β γ =c P h . Recently, 

combining TSZ and X-Ray data, the Planck Collaboration had fit 
the pressure profiles out to 3r500  for a sample of 62 nearby massive 

clusters obtaining: [C500,α,β,γ,P0]=(1.81,1.33,4.13,0.31,6.41) [49-
51]. Similarly, a study carried on 45 massive clusters with median 
mass 14

500 e9 10= ×M M  and median redshift Z=0.42 found[C500,α,β,γ
,P0]=(1.18,0.86,3.67,0.67,4.29) [52]. 

TSZ surveys, such as the ones carried out by the Atacama 
Cosmology Telescope (ACT, [53]) the South Pole Telescope (SPT, 
[54]) and the  Planck satellite [55], will provide new observational 
dataset, and they will offer new possibilities of testing modified gravity 
models on Mpc scales by fitting the distribution of the ICM within the 
modified gravitational potential well.

Thermal Sunyaev-Zeldovich effect
Cosmic Microwave Background (CMB) photons cross galaxy 

clusters, and they are scattered off by the free electrons of the ICM via 
an inverse Compton scattering. Thus, galaxy clusters distort the CMB 
blackbody spectrum, and produce secondary temperature anisotropies 
that are imprinted on the CMB radiation. Two components can 
distinguished: the thermal component (TSZ, [34]) due to the thermal 
motion of the electrons in the potential well of the cluster, and the 
kinematic (KSZ, [56]) component due to the proper motion of the 
galaxy cluster as a whole with respect to the CMB rest frame. Neglecting 
relativistic corrections in the electron temperature (Te), the TSZ and 
KSZ effects are given by 
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where, n̂  is the direction of the cluster, KB is the Boltzmann 
constant, me c

2 is the electron annihilation temperature, c is the speed of 
light, /ν ν= B eh k T is the reduced frequency of observation, and 


clv  is 

the peculiar velocity of the cluster. We denoted τ σ= T ed n dl the cluster 
optical depth to the SZ effect, with σT Thomson cross section,ne(l) the 
electron density evaluated along the line of sight l; T0 is the current 
CMB blackbody temperature andG(ν ) is the frequency dependence of 
TSZ effect that, in the non relativistic limit (Te ≈few keV), is given by:

( ) ( )c / 2 4ν ν ν= − G oth . For very hot clusters (Te >10 keV), relativistic 
corrections must be included [57-59].

Methodology
The TSZ temperature anisotropies are usually expressed as the 

integral of the pressure profile along the line of sight: 
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                                                                 (4)

To test modified theories of gravity using TSZ effect, the pressure 
profile (pe) must be specified. It can be computed integrating the 
following system of differential equations 
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( ) ( )  =e cP r P r 	                                                                           (8)

where in the case of f(R)-gravity, the effective gravitational potential 
takes the following functional form [15,16] 
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while, for MOG gravity model, it becomes 
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In both cases ( ) ( )
NΦ = −

GM r
r

r  is the classical Newtonian potential. 

Let us remark that the model does not include any DM component, 
but it assumes that baryons follow the modified gravitational potential 
well described in Equations (9) and (10) for f(R) -gravity and MOG 
models, respectively. When integrating the system of equations (5)-(8), 
one is assuming that: (i) the gas is in hydrostatic equilibrium within 
the modified potential well; (ii) the gas distribution is spherically 
symmetric; and (iii) the state of gas can be described with a polytropic 
equation of state (equation (6)). Under these assumptions, the system 
of equations (5)-(8), plus the equation for the modified gravitational 
potential, constitutes a closed system that can be integrated numerically 
to compute the pressure profile in ETGs, and to use TSZ anisotropies to 
constraint the theoretical parameters.

Foreground cleaned Planck 2013 nominal data: Coma cluster

Planck 2013 Nominal maps were used to measure the TSZ cluster 
profile and constrain the parameters of the modified gravitational 
potential of both theories. The publicly available Planck Nominal 
maps contain the cosmological CMB signal, instrumental noise, TSZ 
and KSZ emissions, point and extended infrared sources, thermal dust 
and CO emissions, and other foreground contributions. Although 
TSZ has a unique frequency dependence, it is not possible to detect 
the TSZ anisotropies at cluster location in the Planck Nominal maps. 
The technique used to reduce such foregrounds emissions provides a 
cleaned patch of sky centered at the cluster position x, P(v,x) , of size 2° 

× 2°. Before the cleaning procedure is applied, publicly available Planck 
CO maps must be subtracted to each frequency channels [60], then the 
highest frequency channel could be used as a template for the thermal 
dust emission [61]. Then, the cleaning procedure uses the highest 
frequency channel as a thermal dust template; at the frequency channel 
v the cleaned patch is obtained as follows 

( ) ( ) ( ) ( ), , 857G ,ν ν ν= −x P x w P Hz x 	                                     (11)

where the weight w(v) are given by 
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with ,θ θ =  cl patch denoting the area where the weights are 
computed. Since the instruments operating at the frequencies (30-70 
GHz) have angular resolution higher than 10 arcminutes, only High 
Frequency Instrument (HFI) data at frequencies from 100 to 857 GHz 
were considered.

As first attempt to build a new test, the study was particularized 
to the Coma cluster since is located close to the galactic pole where 
the foreground emission is comparatively low. The TSZ cluster profile 
was measured at 100, 143, and 353 GHz channels, since the data at 
545 GHz were still dominated by the residuals of the dust emission. 
In Figure 1, it is shown a patch around the Coma cluster before (first 
row) and after (second row) the cleaning procedure was applied to 
remove foregrounds. The patches clearly show that the Nominal data 
are dominated by the the intrinsic CMB temperature fluctuations and 
dust emission, while TSZ signal dominates in the cleaned ones.  

Patches of sky centered at the position of A1656 (Coma cluster) at 

100-545 GHz. Patches have size of 2° × 2° First row: Planck Nominal 
maps. Second row: foreground cleaned data.

MCMC priors

T﻿he model parameters were constrained using a Monte Carlo 
Markov chain (MCMC) technique. The pipeline employed a 
Metropolis-Hastings sampling algorithm and used the Gelman-Rubin 
criteria to test the mixing and convergence of the runs. For each model, 
four independent chains have been run and the starting points of the 
parameter space have been randomly chosen. Each run contains at least 
40,000 steps with an adapted step size to reach an optimal acceptance 
rate and to avoid poor mixing and slow convergence [62- 66]. The 
parameter space explored for both f (R)-gravity and MOG models is 
given in Table 1. 

The TSZ data have been measured averaging the emission over 
disc/rings out to ∼100 arcminutes from center of the Coma cluster. 
The galaxy cluster was assumed to be spherically symmetric and the 
ICM to be in hydrostatic equilibrium. The model predictions have 
been computed at the same apertures to compute the likelihood

( )22log ,χ ν− = kL p : 

( ) ( ) ( )2 1
, 02log ,χ ν −

=− = = Σ ∆ ∆N
k i j ki ij kjL p T p C T p 	               (13)

In the previous equation, ( ) ( ) ( )
0 0

, , ,
Ä

δ ν θ δ ν θ
≡ −k i k i

ki

T p T
T p

T T
, where ( ) 0, , /δ ν θk iT p T are the data and ( ) 0, , /δ ν θk iT p T are the 
theoretical counterpart. Then, N=22 is the number of data points, p are 
the parameters of the model, 

ijC denotes each  Planck channel and ijC  

is the correlation matrix [24,25, 30].

Figure 1: Patches of sky centered at the position of A1656 (Coma cluster) at 
100-545 GHz. Patches have size of 2◦ × 2◦. First row: Planck Nominal maps. 
Second row: foreground cleaned data.

Theory Parameter Units Priors 

 4*90 f (R) 

 pc  10-2 cm-3keV [0.0,3.0] 

 γ  - 
 
1.0,5

3

 L  Mpc [0.1,20.0] 
δ  -   [-0.99,1.0] 

*90MOG 

 PC  10-2  cm-3 keV  [0.0,3.0]

γ  - 
 
1.0,5

3

1*µ
−  Mpc  [0.01,20.0]

α  - [0.1,20.0]

Table 1: MCMC priors of the explored parameter space.
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Results and Discussion
MCMC were run to fit separately the data at each frequency 

channel. Then, the joint likelihood has been computed. The best fit 
parameters are summarized in Table 2, and the best fit models are 
shown in Figure 2 [24,25,30]. 

f(R)-gravity MOG 

Best fitting model of f(R) -gravity and MOG in panels left and right, 
respectively. The black lines represent the best-fit models, the blue lines 
show the GNFW profile with best fit parameter from [43], and the red 
line in the right panel illustrates the MOG model with parameter fixed 
to their “universal" values [67].

The analysis gave rise to some interesting results that can be 
summarized as follows:

• f(R)-theory: the strength of the modified potential in eq. (9) is 
0δ ≠ at the 95% of confidence level (CL). Therefore, the data are 

compatible with f(R)-gravity plus baryons. Next, the scale length of the 
potential  L is not equal to zero at the 95% CL. This limit corresponds 
to a Newtonian gravitational potential generated by an effective mass

( )' / 1 δ= +M M . Since the data favors models with 0δ < , ' �M M would be 
analogue to the field generated by a cluster containing a large fraction 
of DM distributed like the baryonic gas [24,25].

• MOG theory: the strength of the Yukawa potential in eq. (10), 
α , is compatible at 68% CL with its universal value α ≅ 8.89 [14,67]. 

Whereas the universal value of scale length 1*µ
−  is ruled out at more 

than3.5σ. Therefore, the assumption that the parameters of the Yukawa-
potential can be assumed scale independent is also ruled out [30]. In 
fact, with this assumption, MOG is capable to fit only the central region 
(θ15 arcminutes) of the galaxy cluster, while it overestimates the TSZ 
emission at larger apertures: at θ~1degree the departure from the data 
is almost one order of magnitude (red dashed line in Figure 2).

For both theories, f (R) and MOG, the polytropic index is 
consistent at ∼1.5σ level with the value γ∼1.2 preferred by observations 
and numerical simulations within the ΛCDM concordance model. 
Since the physical state of the gas in a galaxy cluster is determined by 
its formation and evolution [68], the results could be interpreted as 
an indication that both f (R) and MOG could be able to explain the 
emergence of the large scale structure as well as the concordance model.

Conclusion
Several theories of gravity have been constrained using cluster of 

galaxies such as chameleon f (R) models [69-71], Galileon model [72], 
and K-mouflage gravity [73]. Here, we have reviewed the analysis that 
has been done to constrain those theories that modify the Newtonian 
potential in their weak filed limit by adding a Yukawa-like term. 
Specifically, we have reviewed the analysis on analytical f (R)-gravity 
and MOG models presented in [24,25,30]. Such a particular class of 
ETGs have been constrained using the TSZ temperature anisotropies 
due to the Coma cluster. With respect to other works, the model 
assumes that: (a) the hot ICM is in hydrostatic equilibrium within 
the modified gravitational potential wells described by the Equations 
(9) and (10) for f (R)-gravity and MOG, respectively; (b) the physical 
state of the gas is well described by a polytropic equation of state. 
These models have been tested using a foreground cleaned version of 
the 2013 data release of  Planck Nominal maps. The measured TSZ 
profile at the location of Coma cluster has been used to constrain the 
model parameters employing a MCMC algorithm. Both analyses, for 
f (R) and MOG, show the capability of the two theories to describe 
galaxy cluster without accounting for a DM component. However, 
the analyses are based on the assumptions of hydrostatic equilibrium 
and spherical symmetry of the cluster. Although such assumptions 
hold in the intermediate region of the Coma cluster where models are 
tested, they do not hold in general due to the presence of substructures, 
turbulences, and physical processes that can heat up or cool down 
the gas in the cluster core [74-81]. The departure from the spherical 
symmetry could affect both the innermost and outermost regions of 
Coma cluster. This is figured out in the the degeneracy between the 
strength of the gravitational potential,δ and α , and the polytropic 
index of the gas [25,30]. Neverthless, a deeper study of this degeneracy 
should use N-body hydrodynamical simulations carried out for each 
set of parameter. Another limitation of the analysis was the angular 
resolution of the foreground cleaned data (FWHM =10 arcminutes). 
This could be overcame with the next-generation of full sky CMB 
missions such as COrE/PRISM [82] that will have a much higher 
angular resolution and frequency coverage providing a powerful tool 
to properly investigate the relation between the underlying theory of 
gravity and the baryonic processes.
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