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Consistence Condition of Kernel Selection in Regular Linear 
Kernel Regression and Its Application in COVID-19 High-risk 
Areas Exploration

Abstract
With the long-term outbreak of the COVID-19 around the world, identi- fying high-risk areas is becoming a new research boom. In this paper, we propose a novel 
regression method namely Regular Linear Kernel Regression (RLKR) for COVID-19 high-risk areas exploration. We explain in detail how the canonical linear 
kernel regression method is linked to the identification of high-risk areas for COVID-19. Furthermore, the consistence condition of Kernel Selection, which is 
closely related to the identification of high-risk areas, is given with two mild assumptions. Finally, the RLKR method was verified by simulation experiments and 
applied for COVID-19 high-risk area Exploration.
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Introduction

COVID-19 was recognized in December 2019 [1]. Since then, the 
COVID-19 out-break has posed critical challenges for the public health, 
research, and medical communities. Currently, it was recognized that 
human to human transmission played a major role in the subsequent 
outbreak [2]. Based on this knowledge, in the data collection stage, we 
try to extract data related to the flow of people as much as possible. At 
present, the research on the COVID-19 mainly focuses on the treatment of 
the epidemic [3,4]; the transmission of the epidemic [5,6] and the prevention 
of the epidemic [7,8]. In F. Ndairou 2020, the concept of super-spreaders, 
who contribute disproportionately to a much larger number of cases in the 
ongoing COVID-19 pandemic, was proposed for modeling the COVID-19 
transmission. We focus our attention on high-risk areas exploration from 
“sky” perspective. Which means that, we ignore different regional political 
factors and medical level factors? All the factors we can know come from 
aerial monitoring. We imagine ourselves as a space traveler. Before landing 
on the earth, determining which areas are high-risk areas and which areas 
are low- risk areas through detection in the sky is actually our task. In order 
to make a decision, we had to count the number of outbreaks in each region, 
as well as all the data related to the spread of the outbreak, e.g. population, 
population density per square kilometer, population transmission, people 
gathering frequency, distances between regions, etc. Given this information 
of different areas, we cannot decide the risk level of one area, just by the 
outbreaks. Because, for several adjacent areas, the surrounding areas are 
likely to be only the victim and only one area is the source of the outbreak. 
One the other hand, for areas of high volume of population transmission 
and people gathering frequency, its low-risk label may only be temporary. 
Along the continuous outbreak of COVID-19, those areas are much like to 
become high-risk areas.

The inspiration of Regular Linear Kernel Regression, which is used for 
high risk area detection of COVID-19 in this paper, comes from a variable 
selection method, called Lasso [9], which is firstly proposed for solving 
S-sparse linear regression model in high-dimensional statistics. Actually the 

proof framework of Kernel Selection Consistence origins from the variable 
selection consistence of Lasso [10], but a slightly modification for suitable 
for Kernel Selection. To gain an intuition of the link between Kernel Selection 
and high-risk areas exploration, let us see inside of Kernel Regression. 
Denote Kα(x)=K(α, x) be a measure of the distance between α and x, 
where the Gaussian RBF(Radial Basis Function) Kernel and Linear Inner 
Product Kernel are most widely used. In this paper, the kernel selection 
consistence condition of Regular Linear Kernel Regression was given. For 
a given group of kernels, Kα (.), α£α ¯, where α¯ stands for an index set, 
Kernel Regression model has the form,

( ) ,y K wα α
α α

θ χ
∈

= +∑   (1)

Where, y stands for outbreaks and w stands for observation noise. From 
the model, y is actually a linear combination of the characteristic Kernels at 
the point of x. We see a Kernel Kα(x) as a spread function of a high-risk area 
characterized by α. As stated, Kα(x) is a measure of the distance between α 
and x. For a long distance area x from high-risk area α, the influence from α, 
source of transmission, shall be small, which is coincident with the property 
of Kα(x). Upper to now, we explain the link between the spreading mode of 
COVID-19 and the Kernel Regression, that’s high-risk areas were seen as 
emission sources characterized by Kα(.) in the model and the outbreaks 
in one area is actually the combination of the influences of those emission 
sources. Still, there are problems that must be check carefully. First, the 
number of high-risk areas can be unlimited? For a given design matrix X ∈ 
Rn×d, and a candidate set Card (α)=m, the number of high-risk areas s must 
be less than or equal to min (n, d, m), otherwise the true high-risk areas 
will not be check out entirely. Second, for a given estimation of (θ) with 
a support set of Sˆ, under which conditions the support set is consistent 
with the true support set S of true θ? This question is crucial, as it means 
whether we have got the true high-risk areas or COVID-19 sources. As a 
non-zero θα means that the candidate area of Kα (.) influences other areas.

Notice that, Interpolation learning has recently attracted growing 
attention in the machine learning community [11,12]. Linear Kernel 
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So the method of estimating θˆ is not the focus of this paper. The 
explanation of the estimation result of θˆ and the condition of consistence 
between the estimation and the truth θ is our focus. Here we give the 
explanation of θˆ. From the model(2), for a zero θj=0, which means y is 
irrelevant with αj, the location of αj shall not be the emission source. For a 
non-zero θj, which means y is relevant with αj, the location of αj shall be the 
emission source. For a positive θj, the corresponding location of αj shall be 
seen as pollution source in the pathogen exploration case. And a negative 
θj, the corresponding location of αj shall be seen as purification source.

Results

Condition of consistence
Consider an S-sparse linear kernel regression model and the true 

support of θ٨ is S. Given an estimation θˆ with support Sˆ. The question 
is by which condition the estimation Sˆ is consistent with S We begin by 
assuming X be deterministic design matrices. Let S stands for the supports 
of truth θ٨ and αS stands for the subset of α=[α1, αm]T with indices of S. 
First the truth emission source αS cannot be linearly correlated, in order 
to ensure that the model is identifiable, even if the support set S were 
known a priori. Second the fake source αSC shall be irrelevant with the 
truth emission source αS, which makes it possible to exclude irrelevant 
areas. In general, we cannot expect this orthogonality to hold, but a type of 
approximate orthogonality. In particular, consider the following conditions:

Lower eigenvalue: The smallest eigenvalue of the sample covariance 
submatrix indexed by S is bounded below:

min min 0
T T

s SX X c
n

α αγ
 

≥ > 
  (5)

Mutual incoherence: There exists some p ∈ [0, 1) such that

( ) 1

1
max

c

T T T
s S S j

j s
X X X X pα α α α

−

∈
< (6)

With this set-up, the following results follow applied to the lagrange 
form Linear Kernel Lasso (4) when applied to an instance of the linear 
kernel model (2) such that the true parameter θ* is supported on a subset S 
with cardi- nality s. In order to state the result, we introduce the convenient 
shorthand 1(X ) ( )T T T T T

n S S S S
s

I X X X Xα α α α α−⊥ = −∏  a type of orthogonal 
projection matrix.

Theorem 1 

Consider an S-sparse linear kernel regression model for which the 
design matrix satisfies conditions (5) and (6). Then for any choice of 
regularization parameter such that

 ( )

2
1 C T

T
n S S X

wX
p nα

λ α
⊥

∞

≥ ∏
−

   (7)

the Lagrangian Kernel Lasso (3) has the following properties: 

(a)Uniqueness: There is a unique optimal solution ∈ˆ 

(b)No false inclusion: The solution has its support set Sˆ contained 
within the true support set S.

c) l∞-bounds: The error ˆθ – θ* satisfies

 

1
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n

T T
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S S S S S n
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n α

λ α
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∞

 
− ∞ ≤ +  

 
        (8)

(d)No false exclusion: The solution’s support set Sˆ includes all indices 
i∈S such that |θi*|>B(λn; XT), and hence is sample selection consistent if 
mini∈S | θi*|>B(λn; XαT),

The prove of this result utilizes a technique called a primal-dual witness 
method, which constructs a solution and then the solution was shown be 
optimal and unique, see Appendix. Here let us try to interpret its main 

Regression model has been around for decades, whose continued 
popularity stems from its excellent properties, well generalization along with 
good interpolation, in high- dimensional statistics. Due to the derivability, 
Kernel Ridge Regression with l2-norm penalization is very popular in the 
High-dimensional area, including the converge rate [13], generalization 
risk [14] and variable selection [15]. While the Consistence condition of 
Kernel Regression with l1-norm penalization is the novelty of this paper, 
that’s the topic of Kernel selection consistency under l1-norm regularization 
is first proposed in this paper. We compliment the consistence condition for 
Kernel Regression with l1-norm penalization, along with the generalization 
risk. Due to the interpolation of Kernel regression [16], the connection 
between Kernel selections with high-risk areas detection of COVID-19 is 
our innovation. Around those questions, we structured our paper as follows. 
In the introduction, we briefly introduce the background of COVID-19 
transmission and give the inspiration of high-risk areas exploration. In 
the second section, some remarks were introduced and Linear Kernel 
Regression Model was proposed for the spreading mode of COVID-19 
on high-risk areas influence view. As we have no hope for estimating 
an unique solution of θˆ with the optimal least square method. Regular 
technique was suggested for estimating an unique solution. In the third 
section, the conditions of Kernel Selection Consistence were given. Finally 
the simulation experiment was conduct for supplements of consistence 
checking. Then the Kernel Selection Method was applied for COVID-19 
high-risk areas detection with outbreaks of COVID-19 up to year 2021 along 
with some other features that influence the transmission of COVID-19.

Materials and Methods

Model construction
Suppose we are given relevant features in observation regions, xi=(xi1, 

xi2,… xid)T and corresponding response values yi, for i=1, …, n, which 
stands for the most concerned variable, e.g. the number of epidemic out 
breaks. A significant research is to find possible emission sources or high-
risk areas from many candidate areas αj=(αj1,…, αjd)T , for j=1,… , m. The 
true high-risk areas αS is supposed to be contained in those candidate 
areas α¯=(αT1 , . . . , αTm )T indexed by S and S ⊆ (m) stands for the true 
support of high-risk areas. Here (m) is a simplified notation of (1, … , m).

Intuitively, the response variable y at observation point x is the linear 
superimposed effects of each real high-risk areas, that’s

   ,j j
j s

y x wθ α
∈

= < > +∑ (2)

where S (1, . . . , m) stands for the supports of truth emission sources, 
and w stands for observation noise. <. , .> stands for inner product. Since S 
is unknown in practice, the estimation problem of S will be more meaningful, 
except for the estimation of ^j, j ∈ S. Actually if the support S of the truth 
emission sources was given, we can estimate ˆθ very well. With the true S 
unknown, there is no hope for obtaining an unique solution of j , when m ≥ 
min(n, d), from Lemma 1 in Appendix. Without uniqueness, there is no way 
to talk about the Kernel Selection Consistence. Inspired by Lasso of l1 norm 
regularization, consider the following optimization, 

 2
, 1

1 [ ]

1ˆ argmin ( )
2

n

j i j n
i j m

yi x
n

θ θ α λ θ
= ∈

← − < > +∑ ∑      (3)

Here, [m]={1, . . . , m} is a simple notation and λn is a given parameter. 
Denote X=[x1,…, xn]

T ∈ Rn×d, α=[α1,…, αm]T ∈ Rm×d, θ=[θ1,… , θm]T Rm 
and Y=[y1,…, yn]

T ∈ Rn. Therefore a matrix form alternative of equation (3), 
namely Regular Linear Kernel Regression, is given by,

  
2

12

1ˆ arg min
2

T
nY X

n
θ α θ λ θ← − + (4)

For the not differentiable of l1- norm, due to its sharp point at the origin, 
there’s no hope for a close form solution. Since this is a convex optimization 
problem, many optimization methods can be used to solve the problem, e.g. 
Gradient descent or Least Angel Regression. 



Page 3 of 8

Chao W, et al. Virol Curr Res, Volume 7: S4, 2023

claims. First the uniqueness claim in part(a) is not trivial. Although the 
Lagrange objective is convex, it can never be strictly convex when m>min{d, 
n}. Based on the uniqueness claim, we can talk unambiguously about the 
support of the Kernel Lasso estimate θˆ. Part (b) guarantees that the kernel 
lasso does not falsely include linear kernels that are not in the support of 
θ*, or equivalently that θˆsC=0. Part (d) is a consequence of the l∞-norm 
bound from part (c): as long as the minimum value of |θi*|over indices i∈S 
is not too small, then the Kernel Lasso is kernel selection consistent in the 
full sense.

Further more, if we make specific assumptions about the noise vector 
w, more concrete results can be obtained. Before giving the results, we give 
the definition of the Sub-Gaussian variable.

Definition 1 

A random variable w with mean µ=E(w) is sub-Gaussian if there is a 
positive number σ such that

( ) 2 /2w µE e e
λλ σ−  ≤      For all  R.

With this in mind, we given a third assumption, that’s (A3) The 
observation noise wi, i, ∈(1,. . . , n)is i.i.d. σ-sub-Gaussian variables. Before 
given the concrete corollary about Linear Kernel Regression, a Lemma 
about lower bounds for sub-Gaussian variables is needed.

Lemma 2: Let (Zi)n i=1 be a sequence of zero-mean random variables, 
each sub Gaussian with parameter σ. (No independence assumptions are 
needed). Consider the lower bound of Z=maxi=1,. . . ,n X _i, we have

 
2

22P[Z t] 2ne  
t
σ

−
≥ ≤  Valid for all n 2.          (9)

Corollary 3: Consider the S-sparse linear kernel regression model 
based on a noise vector w that assumption (A3) holds, and a deterministic 
design matrix X that satisfies assumptions (A3) and (A4). And the character 
Kernel satisfies the C-Column normalization condition: maxk=1, . . . ,

2/km X n Cα ≤  . Suppose that we solve the Regular Linear Kernel 
Regression (3) with regularization parameter

   
2 2log( )

1n
c m s

p n
σλ δ
 − = + −   

    (10)

for some ∈ > 0. Then the optimal solution θˆ is unique with its support 
contained within S, and satisfies the l∞-error bound.

   
1

2 logˆ
min

T T
s S

s s nc

X Xs
n n

α ασθ θ δ λ
−

∗

∞

    − ∞ ≤ + +   
    

     (11)

With probability at least 1−4e  
2

2
nδ

−  

Proof: First, let us show that the given choice of λn(10) of the 
regularization parameter satisfies the bound(7) with high probability. It 
suffices to bound the maximum absolute value of the random variables
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  For k ∈ SC.

Since ΠSc (X) is an orthogonal projection matrix, we have

 
2S k kX X C nα α⊥∏ ≤ ≤

where the last inequality follows from the C-Column normalization 
condition. Therefore, each variable Zj is sub-Gaussian with parameter at 
most C2σ2/n. By Lemma 2, it holds that,
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Transforming this to the l∞-norm form, we have
2 2

2 2
(1 )
8
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Substitute the choice of λn (10), we have 

2 (x )
1

T T
n S S

wcX
p n

λ α α⊥
∞
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−

 with probability at least 1−2e−

nδ2/2.

It remains to simplify the l∞-bound (8). Consider the random variables        11: /T T T T
i i S s SZ e X X X w n

n
α α α

−
 =  
 



Since the elements of the vector w are i.i.d. σ- sub-Gaussian, the 
variable Z˜i is zero-mean and sub-Gaussian with parameter at most

12 2

2

1
min

T T
S S c nX X

n n
σ σα α

−
  ≤ 
 

where we have used the eigenvalue condition (5). Consequently, for 
any δ > 0, we have

 2

2

min

2 logmax
2

1,...,

n
i

sz
P enc

i s

δσ
−

   >   ≤   
 = 



Then the claims follows from (1 − 2e;− nδ2/2)2 1-4e- nδ2/2

Upper to here, we have given the Kernel selection consistence 
conditions. By careful analysis of the original optimization problem (3), 
we find that the values of (θˆk)km=1 gradually diminish, as the penalize 
parameter λn is large enough. From condition (7), if the given parameter λn 
is too small, (7) condition is violated, we have no hope for excluding all fake 
Kernels. From part (d) of Theorem 1, the θˆi, i ∊ S, which cannot be zero, 
may be miscalculated as zero. In real world data detection, the choice of λ 
shall be carefully checked. Besides, Cross-validation methods are usually 
utilized for the decision of λn, or other improved methods [17].

Prediction error or risk assessment
Another interesting twist is to do a risk assessment for all areas. 

Consider the Linear Kernel Regression Model (2). Given an estimation of ∈ˆ, 
the prediction of outbreaks yˆ is the superposition summation of the Kernels 
at the position of x, that’s

 ,
[ ]

ˆˆ k k x
k m

y θ α
∈

= < >∑
As this prediction yˆ is the linear combination of the Kernel functions, 

radiation effects of the true high-risk areas, at the point x, not just the 
number of the local outbreaks. We see yˆ as the risk assessment of the 
area x. Given a S- Sparse Linear Kernel Regression model, we devoted 
ourselves to bound on the mean-squared prediction error

2
2

2
,

1 1

ˆ( ) 1 ˆ(
i

T
n m

k x k k
i k

X

n n

α θ θ
α θ θ ∗

= =

− ∗  = < > −  
∑ ∑

   (12)

Before giving the results, some more constraints about the design 
matrix, namely Restricted Eigenvalue (RE) condition shall be advertised 
here.

Definition 2
The matrix X satisfies the Restricted Eigenvalue (RE) condition over S 

with parameters (κ, γ) if

2 2

2 2

1 X k
n

∆ ≥ ∆    for all ∆∊c γ(s)

Here the subset Cγ(S)={∆ ∈ Rd|∥∆Sc ∥1 ≤ γ∥∆S∥1}, is a collection 
of vectors. whose l1-norm off the support is dominated by the l1-norm on 
the support.

The Restricted Eigenvalue (RE) condition constructs a link between the 
recovering error ∥ˆθ−θ∥2 and the prediction error ∥XαT(ˆθ – θ*)∥2. With 
these set-ups, we give the bounds on prediction errors as follows.

Theorem 4
(Prediction error bounds) Consider the Regular Linear Kernel 

Regression Optimization Problem(3) with a strictly positive regularization 
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parameter λn ≥2∥αXT w/n∥∞. (a) Any optimal solution ̂ θ satisfies the bound 

 ( ) 2

2
1

ˆ
12

T

n

X

n

α θ θ
θ λ

− ∗
≤ ∗

(b) If θ*is supported on a subset S of cardinality s, and the design 
matrix XαT satisfies the (κ; 3)-RE condition over S, then the optimal 
solution satisfies the bound

 
( )

2

2

ˆ
9 2

TX
s

n k n

α θ θ
λ

− ∗
≤

The proof of this prediction bounds can be seen in Appendix. Before 
that, let’s see what we are informed from the bounds. The two upper bounds 
are all related to λn. In order to reduce the forecast errors, a critical step is 
to reduce the regularization parameter λn.

Simulation studies
Consider a S-sparse Linear Kernel Regression model (2). Suppose 

each row xi of the design matrix X ∈ Rn×d is independently draw from a 
Gaussian distribution N(0, Id). And each αj of the candidates kernels α ∈ 
Rm×d is also i.i.d of Gaussian distribution N(0, Id). The true support S is a 
subset of {1, • • • , m} uniformly distributed in [m]. The real parameter of θj*, 
j ∈ S is uniformly distributed on [−1,−0.1] ∪ [0.1, 1], and θj* = 0 for j ∈ Sc. 
Let the entries of the noise vector w follow i.i.d of a Gaussian distribution 
of N(0, 0.01).

Then the response variable Y is calculated by

Y=XαTθ+w.

Applied by the regular method of l1-norm, we are interested in the 
falseinclusion rate and consistency. False-inclusion rate is defined as,

False−inclusion=  
ˆ /

ˆ
s s

s
                 (13)

Where ŝ stands for the support of estimation θˆ. And the consistency 
between Ŝ and S, is given by

Consistency=   ˆ
ˆ
s s
s s
∩
∪

           (14)

(F) and consistency (Con) under given levels of λn in Table 1. From 
Table 1, we known that the best result is F=0, which means no false inclusion 
and Con = 1, which means the estimation support Ŝ is identical with the true 
kernel support S. For λn that’s not too small, the no false inclusion holds. 
And the consistence grows up and down, as λn increases. The consistence 
holds for a long time as we increase the value of λn, which means that for 
a long period, the support of θˆ makes no changes. And this information will 
be useful for empirical selection of the regularization parameter λn.

Further, we find that the sample dimension has an important relationship 
with the consistency. We calculated the average consistency under different 
dimensions of d ∈ [40, 100, 200, 300, and 500]. The average is the result of 
100 replicates, where the λn is chosen according to maximizing consistence. 
From the results in Table 2, it’s easy to find that as the dimension increases, 
the average consistency increases steadily. As the number of candidate 
Kernels increase, picking out exactly the true supports becomes more 
difficult. From here, we get the revelation that increasing the dimension 
of the data is of great significance to correctly pick out the Kernels. And 
reducing the number of candidate kernels is also useful for reducing false 
inclusion rates and improving consistency.

Finally, we care about the changing law of the prediction error, by 
adding tests check. We draw the test data-set by choosing a test design 
matrix Xtest ∊RT ×d, with each row xi

test follows a Gaussian distribution N (0, 
Id). And the test response variable Y test is calculated by

Ytest=Xtest αTθ+w

The prediction error is calculated by equation (12). The curves of 
prediction error along λn were plotted in Figure 1 under given levels of s 
[5, 10, 15, 20], which stands for the number of true Kernels. Here n=1000, 
m=1000, d=500, T=500, where T stands for the size of test data-set. From 
the results of the Figure 1, the prediction error grows as λn goes beyond 
some fixed point. And for the different levels of s, the prediction error grows 
proportional to s, which is coincident with the result from part (b) of Theorem 4.

Table 1. The False-inclusion rate and consistency of given levels of λn, where n=m =1000, d=500.   
s λn F Con s λn F Con

s=5 0 ~ 0.03 0.992 0.007 s=15 0 0.05 0.97 0.029
0.03 ~ 55.5 0 1 0.05 ~ 68.7 0 1
55.5 ~ 95.9 0 0.8 68.7 ~ 72.7 0 0.933
95.9 ~ 242 0 0.6 72.7 ~ 103 0 0.867

s=10 0 ~ 0.10 0.988 0.011 s=20 0 ~ 0.05 0.964 0.035
0.10 ~ 103 0 1 0.05 ~ 82.8 0 1
103 ~ 254 0 0.9 82.8 ~ 105.5 0 0.95

254 ~ 263.6 0 0.8 105.5 ~ 128.3 0 0.9

Table 2. The average False-inclusion rate and consistency of dimensions of d ∈ [40, 100, 200, 300, 500]. Here n=1000, s=20 and the average is calculated over 100 replicates.
d F¯ C¯on m d F¯ C¯on

m=40 d=40 0.205 0.772 m=300 d=40 0.603 0.234
d=100 0.043 0.956 d=100 0.33 0.593
d=200 0.004 0.995 d=200 0.074 0.923
d=300 0.001 0.998 d=300 0.014 0.984
d=500 0 1 d=500 0.001 0.999

m=100 d=40 0.462 0.43 m=1000 d=40 0.731 0.118
d=100 0.158 0.83 d=100 0.475 0.366
d=200 0.019 0.98 d=200 0.169 0.8
d=300 0.002 0.997 d=300 0.049 0.948
d=500 0 1 d=500 0.002 0.997
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Discussion

High-risk areas selection and risk assessment of 
COVID-19

In this section, we try to explore high-risk areas of COVID-19 with the 
outbreaks of COVID-19, provided by https://fy.onesight.com/. This data 
includes the number of confirmed cases in each country since the outbreak 
of COVID-19. As the data collection deadline is September 2021, we had to 
collect the relevant covariates of each country up to that point in time. First, 
we collected the coordinates of the capital of each country, from the latitude 
βt and longitude βg, by

{x=cos(βt)cos(βg), y=cos(βt) sin(βg), z=sin(βt)}

As mentioned earlier, the COVID-19 now spreads mainly in the form 
of person-to-person spread. So in the second part of date collection, the 
variables of population transmission were collected, including population, 
population density per square kilometer, population birth rate and Gross 
Domestic Product (GDP), which concerns the activity of each country.

And in the third part of the data collection, the history of death toll of 
COVID-19 by weeks is also collected from https://www.kaggle.com/tarunkr/ 
COVID-19-case-study-analysis-viz-comparisons from January 2020 to 
September 2021. In summary, we collected outbreaks and associated 
covariates of 114 dimensions for 189 countries.

The first concern is the selection of high-risk areas. We make all 189 
countries or regions be candidates of Kernels. Before the regular Linear 
Kernel Regression model being implemented, a normalize scale of data set 
is employed, as follows

 2 (x)
scale

x xx
s
−

=

Here, x¯ stands for sample mean of x and S2(x) stands for sample 
covariates, S2(x)=1 Σn (xi − x¯) 2. Given several levels of λn, the Kernel 
areas selected were given in Table 3. In the table, high-risk areas are 
countries whose coefficients are positive. Purification areas are countries, 
whose coefficients are negative.

Another meaningful task is to carry out a risk assessment of all 
candidate areas. Given λn=0.5, we made a risk assessment for all 189 
countries or areas. The risk is calculated by

1

ˆ ,
m

risk k
k k

Y xθ α
=

= < >∑
 

As all variables of covariates were scaled with zero-mean and standard 
deviation S2(x)=1, including the number of outbreaks. So the risk Yrisk of 
each area takes values around 0. For high-risk areas, the response Yrisk 
is also large. In particularly, the assessment results are presented in Table 
4, 5. From the risk assessment table, we see that Brazil, United Kingdom 
and Russia are of high risk in risk assessment program. While in purification 
areas selection, they are viewed as purification areas. The reason lies in 
the those areas are close in ”distance” with high-risk areas and actually 
they are victims. They are surrounded by the true COVID-19 emission 
sources. The relation between high-risk selections with risk assessment is 
that high-risk selection is finding the causes or emission sources and risk 
assessment is the presentation of spreading of COVID-19. For some areas 
that are judged to be of great risk assessment, they are likely to be innocent 
and may be purification areas. With Kernel selection of high-risk areas, only 
then can we decide whether an area is a true source of transmission, not 
just by risk assessment. 

FIigure 1. The Prediction error of Regular Linear Kernel Regression. Note: (       ) S=5; (       ) S=10; (       )  S=15; (       ) S=20.

Table 3. The high-risk areas and purification areas selected by regular linear kernel regression.

High − risk area Purification area
n=2 United States, India,

Malaysia, Indonesia
Brazil, Russia, 

Mexico, Peru, China

λn=1 United States, India, Malaysia, Indonesia, Brazil, United Kingdom, Russia, Mexico, Peru, Iraq, 
Czechia, Chile, Israel, Portugal, Jordan, United Arab 

Emirates, Oman, Bahrain, Equatorial Guinea,
Saudi Arabia, China, Italy, Monaco.

λn=0.5 United States, India, Malaysia, Indonesia, Turkey, 
Japan

Brazil, United Kingdom, Russia, Mexico, Peru, Iraq, 
Czechia, Chile, Israel, Portugal, Jordan, United Arab 
Emirates, Oman, Bahrain, Equatorial Guinea, Saudi 

Arabia, China, Italy, Monaco.
Poland, Ukraine, Netherlands, Czechia, Libya, Egypt, 

Zambia,
Democratic Republic of Congo
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Table 4 The risk assessment of all 189 countries or areas. 
Index Area Risk Index Area Risk

1 United States 17.62 47 Egypt -1.29
2 India 13.6 48 Czechia -1.29
3 Brazil 7.31 49 Georgia -1.31
4 Russia 2.59 50 Portugal -1.31
5 United Kingdom 2.49 51 Israel -1.31
6 France 1.92 52 Austria -1.32
7 Argentina 1.39 53 Saudi Arabia -1.33
8 Colombia 1.15 54 China -1.33
9 Mexico 0.98 55 Croatia -1.34

10 Spain 0.98 56 Kenya -1.34
11 Peru 0.87 57 Bosnia and Herzegovina -1.35
12 Italy 0.69 58 Cameroon -1.36
13 Germany 0.66 59 Serbia -1.36
14 Iran 0.44 60 Afghanistan -1.37
15 Indonesia 0.37 61 Kazakhstan -1.37
16 Turkey 0.3 62 Nigeria -1.37
17 South Africa -0.18 63 Oman -1.38
18 Poland -0.18 64 Chile -1.38
19 Ukraine -0.25 65 Uganda -1.38
20 Philippines -0.54 66 Algeria -1.39
21 Belgium -0.55 67 Jordan -1.39
22 Romania -0.66 68 Zimbabwe -1.39
23 Canada -0.67 69 Zambia -1.39
24 Netherlands -0.9 70 Ireland -1.4
25 Malaysia -0.91 71 Azerbaijan -1.4
26 Japan -0.96 72 Namibia -1.4
27 Vietnam -0.99 73 Tanzania -1.41
28 Bangladesh -1.06 74 Democratic Republic of 

Congo
-1.41

29 Tunisia -1.09 75 Angola -1.41
30 Pakistan -1.12 76 Bahrain -1.41
31 Hungary -1.14 77 Libya -1.42
32 Nepal -1.15 78 Sudan -1.42
33 Sweden -1.15 79 United Arab Emirates -1.42
34 Ecuador -1.16 80 Mozambique -1.42
35 Bulgaria -1.17 81 Lebanon -1.42
36 Thailand -1.17 82 North Macedonia -1.43
37 Bolivia -1.19 83 Moldova -1.43
38 Greece -1.19 84 Slovakia -1.43
39 Iraq -1.2 85 Malawi -1.43
40 Pakistan -1.21 86 Rwanda -1.44
41 Paraguay -1.21 87 Somalia -1.44
42 Sri Lanka -1.23 88 Kuwait -1.44
43 Morocco -1.23 89 Lithuania -1.44
44 Switzerland -1.24 90 Armenia -1.44
45 Myanmar -1.26 91 Syria -1.44
46 Ethiopia -1.28 92 Botswana -1.45

Table 5. The risk assessment of all 189 countries or areas. 

Index Area Risk Index Area Risk
93 Belarus -1.45 142 Liberia -1.52
94 Yemen -1.45 143 Senegal -1.52
95 Burundi -1.45 144 Vatican -1.52
96 Comoros -1.45 145 Honduras -1.52
97 Maldives -1.46 146 Sierra Leone -1.52
98 South Korea -1.46 147 Gibraltar -1.53
99 Uruguay -1.46 148 Mauritania -1.53
100 Singapore -1.46 149 Gambia -1.53
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101 Monaco -1.46 150 Luxembourg -1.53
102 Qatar -1.46 151 Guinea-Bissau -1.54
103 Denmark -1.46 152 San Marino -1.54
104 Slovenia -1.46 153 Brunei -1.54
105 South Sudan -1.46 154 Estonia -1.54
106 Eritrea -1.46 155 Venezuela -1.54
107 Seychelles -1.46 156 Liechtenstein -1.54
108 Uzbekistan -1.46 157 Andorra -1.55
109 Australia -1.46 158 Martinique -1.55
110 Mauritius -1.46 159 Cuba -1.55
111 Djibouti -1.47 160 Timor -1.56
112 Cambodia -1.47 161 Cape Verde -1.56
113 Chad -1.47 162 Dominican Republic -1.58
114 Lesotho -1.47 163 Panama -1.58
115 Norway -1.47 164 Trinidad and Tobago -1.59
116 Congo -1.47 165 Papua New Guinea -1.59
117 Niger -1.47 166 Iceland -1.6
118 Equatorial Guinea -1.48 167 Suriname -1.61
119 Central African 

Republic
-1.48 168 Guyana -1.63

120 Gabon -1.48 169 New Zealand -1.64
121 Ghana -1.49 170 New Caledonia -1.64
122 Sao Tome and 

Principe
-1.49 171 Jamaica -1.65

123 Cyprus -1.49 172 Barbados -1.65
124 Burkina Faso -1.49 173 Saint Lucia -1.65
125 Cote d’Ivoire -1.49 174 Grenada -1.65
126 Albania -1.5 175 Antigua and Barbuda -1.65
127 Benin -1.5 176 Dominica -1.66
128 Togo -1.5 177 Saint Kitts and Nevis -1.66
129 Mali -1.5 178 Anguilla -1.66
130 Tajikistan -1.5 179 El Salvador -1.66
131 Latvia -1.5 180 Haiti -1.66
132 Guatemala -1.5 181 Montserrat -1.66
133 Finland -1.5 182 Bahamas -1.67
134 Montenegro -1.5 183 Aruba -1.67
135 Costa Rica -1.51 184 Turks and Caicos 

Islands
-1.67

136 Kyrgyzstan -1.51 185 Fiji -1.67
137 Mongolia -1.51 186 Belize -1.69
138 Malta -1.51 187 Nicaragua -1.69
139 Guinea -1.51 188 Samoa -1.7
140 Laos -1.52 189 French Polynesia -1.72
141 Bhutan -1.52    

Conclusion

In this paper, we considered the condition of Kernel selection 
consistence, in Regular Linear Kernel Regression Model with l1-norm. And 
bounds on the prediction error of RLKR are also given with mild conditions. 
Then we applied the RLKR to high-risk selection and risk assessment for 
COVID-19, in a view point of area-to-area spreading mode. In the simulation 
of random design matrix, we explored the F alse−inclusion and Consistency 
under different levels of λn and the number m of candidate kernels. The 
prediction error bounds were also checked with a no-wise result. In real 
world data of COVID-19, the risk assessments of 189 numbers of countries 
or areas were given. We believe this will provide valid advices on traveling.
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