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Abstract

We study a concept of a q-connection on a left module, where q is a primitive Nth root of
unity. This concept is based on a notion of a graded q-differential algebra whose differential
d satisfies dN = 0. We propose a notion of a graded q-differential algebra with involution
and making use of this notion we introduce and study a concept of a q-connection consistent
with a Hermitian structure of a left module. Assuming module to be a finitely generated
free module we define the components of q-connection and show that these components with
respect to different basises are related by gauge transformation. We also derive the relation
for components of a q-connection consistent with Hermitian structure of a module.
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1 Introduction

Let q be a primitive Nth root of unity, where N ≥ 2. A concept of a q-connection and ZN -graded
q-connection on a left module F [1, 2, 3, 4] is based on a notion of a graded q-differential algebra
A [5, 6, 7]. The differential d of a graded q-differential algebra A satisfies the graded q-Leibniz
rule and dN = 0. If N = 2, q = −1 then the graded q-Leibniz rule takes the form of graded
Leibniz rule and d2 = 0. Hence a graded q-differential algebra can be viewed as a generalization
of a graded differential algebra. If E is a left module over the subalgebra A0 = A ⊂ A of
elements of grading zero and F = A ⊗A E then a q-connection on the left A-module F is a
linear operator D of grading one satisfying the graded q-Leibniz rule. It can be shown that the
Nth power of a q-connection D is the endomorphism of the left A-module F and this allows
to define the curvature of q-connection as F = DN . It can be proved that the curvature F of
q-connection satisfies the Bianchi identity. In this paper we continue to study the concept of a
q-connection started in [2, 3, 4] and propose a notion of a q-connection on the left module F
consistent with a Hermitian structure of the module F . A Hermitian structure on the module
F requires an involution on a graded q-differential algebra A, and we introduce a notion of a
graded q-differential algebra with involution proving that the differential d is consistent with
an involution. Assuming the left A-module F0 ⊂ F to be a finitely generated free left module
we define the components of a q-connection with respect to a basis for the module and show
that the components of a q-connection with respect to different basises are related by gauge
transformation. Assuming that D is a q-connection consistent with a Hermitian structure of F
we derive the relation for the components of D. Finally we find the expressions for components
of the curvature in terms of the components of a q-connection.

1Presented at the 3rd Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Göteborg,
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2 Modules over a graded q-differential algebra

The aim of this section is to remind a concept of a graded q-differential algebra, where q is
a primitive Nth root of unity (N ≥ 2). This algebra is a basic component in our algebraic
approach to q-generalization of connection, and it may be viewed as an analog of algebra of
differential forms with exterior differential satisfying dN = 0. It should be noted that within the
framework of this analogy the subalgebra of elements of grading zero plays a role of an algebra
of functions on a base manifold. In order to have an algebraic model of differential forms with
values in a vector bundle we introduce a left module over the subalgebra of elements of grading
zero of a graded q-differential algebra. Assuming that this module is a finitely generated free
module we describe an algebraic analog of transition from one local trivialization of a vector
bundle to another.

Let q be a primitive Nth root of unity and A = ⊕iAi be an associative unital graded algebra
over the complex numbers. Let us denote the identity element of this algebra by e and the
grading of a homogeneous element ω of A by |ω|. An algebra A is said to be a graded q-
differential algebra if it is endowed with a linear mapping d of degree one, i.e d : Ai → Ai+1,
satisfying the graded q-Leibniz rule

d(ω ω′) = d(ω)ω′ + q|ω| ω d(ω′)

where ω, ω′ ∈ A, and the N -nilpotency condition dN = 0. It is easy to see that the subspace A0

of elements of grading zero is the subalgebra of an algebra A. We will denote this subalgebra by
A, i.e. A = A0. Obviously A is the associative unital algebra over C with the identity element e.
Given an associative unital algebra A we call a graded q-differential algebra A an N -differential
calculus over an algebra A, if A0 = A. Let us mention that taking N = 2, q = −1 in the
definition of a graded q-differential algebra we get a graded differential algebra (with differential
d satisfying d2 = 0). Thus a graded q-differential algebra can be considered as a generalization
of a graded differential algebra for any integer N > 2. It follows from the graded structure of an
algebra A that each subspace Ai ⊂ A of homogeneous elements of grading i can be considered
as the bimodule over the algebra A. Thus we have the following sequence of bimodules

. . .→d Ai−1 →d Ai →d Ai+1 →d . . .

The part d : A = A0 → A1 of this sequence is the first order differential calculus over the algebra
A.

We define a graded q-differential algebra with involution as a graded q-differential algebra A
which is equipped with a mapping ∗ : Ai → Ai of grading zero satisfying

(αω + ω′)∗ = ᾱ ω∗ + ω′∗, (ω ω′)∗ = ω′∗ ω∗, (dω)∗ = d(ω∗)

where α ∈ C, ω, ω′ ∈ A. It is easy to show that the involution is consistent with the graded
q-Leibniz rule. We have

(d(ω ω′))∗ = (dω ω′)∗ + q̄|ω|(ω dω′)∗ = q(|ω|+1)|ω′|ω′∗dω∗ + q̄|ω|q|ω|(1+|ω′|)dω′∗ ω∗

On the other hand,

d(ω ω′)∗ = d(q|ω||ω
′|ω′∗ω∗) = q|ω||ω

′|dω′∗ω∗ + q(|ω|+1)|ω′|ω′∗dω∗

From the above formulae and

q̄|ω|q|ω|(1+|ω′|) = q−|ω|+|ω|+|ω||ω
′| = q|ω||ω

′|

it follows that the involution ∗ is consistent with the graded q-Leibniz rule. Let E be a left
A-module. Considering a graded q-differential algebra A as the (A,A)-bimodule we take the
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tensor product A ⊗A E of modules which clearly has the structure of left A-module. Let us
denote this left A-module by F , i.e. F = A⊗A E . Obviously F inherits the graded structure of
A. Indeed for every i we have the left A-submodule F i = Ai ⊗A E of the left A-module F . It is
easy to see that the left A-module F is the direct sum of its submodules F i, i. e. F = ⊕iF i. It
is worth noting that the left A-submodule F0 of elements of grading zero is isomorphic to a left
A-module E , i. e. F0 ∼= E , where the isomorphism ϕ : E → F0 can be defined by ϕ(ξ) = e⊗ ξ.
The left A-module F can be also considered as the left A-module and in the next section we
will use this structure to describe a concept of q-connection. Let us mention that multiplication
by elements of Ai, where i 6= 0, does not preserve the graded structure of the module F .

Since A is a graded algebra the tensor product F = A ⊗C E of vector spaces is the graded
vector space F = ⊕iF i over C, where F i = Ai⊗C E . Hence we have the graded algebra of linear
operators of the graded vector space F , which we denote by L(F) = ⊕iL

i(F), where Li(F) is
the subspace of homogeneous linear operators of grading i. If A : F → F is a homogeneous
linear operator then we can extend it to the linear operator LA : L(F) → L(F) on the whole
graded algebra of linear operators L(F) by means of the graded q-commutator as follows

LA(B) = [A,B]q = A ·B − q|A||B|B ·A
where B is a homogeneous linear operator and A ·B is the product of two linear operators.

In order to have an algebraic analog of the local structure of a vector bundle in this approach
we assume E to be a finitely generated free left A-module. Let e = {eµ}r

µ=1 be a basis for a left
module E . This basis induces the basis f = {fµ}r

µ=1, where fµ = e ⊗ eµ, for the left A-module
F0. Taking into account that F0 ⊂ F and F is the left A-module we can multiply the elements
of the basis f by elements of A. It is easy to see that if ω ∈ Ai then for any µ we have ω fµ ∈ F i.
Consequently we can express any element of F i as a linear combination of fµ with coefficients
from Ai. Indeed let ω ⊗ ξ be an element of F i = Ai ⊗A E . Then

ω ⊗ ξ = (ω e)⊗ (ξµeµ) = (ω e ξµ)⊗ eµ = (ωξµ e)⊗ eµ = ωξµ (e⊗ eµ) = ωµfµ

where ωµ = ωξµ ∈ Ai.
Denote by Mr(A) the vector space of r × r-matrices whose entries are the elements of an

algebra A. This vector space is a graded vector space with graded structure induced by the
graded structure of a graded q-differential algebra A. Hence Mr(A) = ⊕iM

i
r(A), where Mi

r(A)
is the subspace of homogeneous matrices of grading i, i.e. if Ω = (ωµ

ν ) ∈ Mi
r(A) then ωµ

ν ∈ Ai.
The vector space Mr(A) of r × r-matrices becomes the associative unital graded algebra if we
define the product of two matrices Ω = (ωµ

ν ),Ω′ = (ω′µν ) by Ω ·Ω′ = (ωµ
σ ω

′σ
ν ). In the next section

we shall use the graded q-commutator of homogeneous matrices which is defined by

[Ω,Ω′]q = Ω · Ω′ − q|Ω||Ω
′|Ω′ · Ω

We extend the differential d of a graded q-differential algebra A to the algebra Mr(A) as usual:
dΩ = d(ωµ

ν ) = (dωµ
ν ).

Let f′ = {f′µ}r
µ=1 be another basis for the left A-module F0 with the same number of elements

(this will always be the case if A is a division algebra or if A is commutative). Then f′ν = gµ
ν fµ,

where G = (gµ
ν ) ∈ M0

r(A), gµ
ν ∈ A, is the transition matrix from the basis f to the basis f′. It is

well known [8] that in the case of finitely generated free module transition matrix is an invertible
matrix, and we denote the inverse matrix of G by G−1 = (g̃µ

ν ).
In order to define a Hermitian structure on the left A-module F we assume A to be a graded

q-differential algebra with involution ∗. We will call the left module F a Hermitian (left) module
if F0 is endowed with a bilinear form h : F0×F0 → A which satisfies h(ωξ, ω′ξ′) = ωω′∗h(ξ, ξ′),
where ω, ω′ ∈ A and ξ, ξ′ ∈ F0. It is easy to extend a Hermitian form h to the whole left
A-module F if we put

h(ω ⊗ ξ, ω′ ⊗ ξ′) = ω ω′∗ h(ξ, ξ′)
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where ω ∈ Ai, ξ ∈ F0, ω ⊗ ξ ∈ F i and ω′ ∈ Aj , ξ′ ∈ F0, ω′ ⊗ ξ′ ∈ F j . Consequently it holds
h : F i ×F j → Ai+j . The matrix of this Hermitian form with respect to a basis f is denoted by
H = (hµν) = (h(fµ, fν)) ∈ M0

r(A).

3 q-connection on module F
In this section we describe a concept of q-connection [2, 3, 4] on the leftA-module F , curvature of
q-connection and Bianchi identity. Assuming that graded q-differential algebra A is an algebra
with involution and F is the Hermitian module over this algebra we define a q-connection
consistent with a Hermitian structure of F . Then assuming the submodule F0 ⊂ F to be a
finitely generated free module we introduce the matrices of q-connection and its curvature.

A q-connection on the left A-module F is a linear operatorD : F → F of degree one satisfying
the condition

D(ω ξ) = dω ξ + q|ω| ωDξ (3.1)

where ω ∈ A, ξ ∈ F , and d is the differential of a graded q-differential algebra A. If the left
A-module F is the Hermitian left module with Hermitian form h a q-connection D on F is said
to be consistent with a Hermitian structure of F if it satisfies

dh(ξ, ξ′) = h(Dξ, ξ′) + h(ξ,Dξ′)

where ξ, ξ′ ∈ F0.
It can be shown that the N -th power of any q-connection D is the endomorphism of degree

N of the left A-module F . This allows us to define the curvature of a q-connection D as
the endomorphism F = DN of degree N of the left A-module F . The curvature F of any
q-connection D on F satisfies the Bianchi identity LD(F ) = 0 [3], where LD : L(F) → L(F) is
the extention of D to the algebra of linear operators of F .

Let F0 be a finitely generated free module with a basis f = {fµ}r
µ=1, and ξ = ξµfµ ∈ F0,

where ξµ ∈ A. Obviously Dξ ∈ F1. The coefficients of a q-connection D with respect to a basis
f are defined by Dfν = θµ

ν fµ. The matrix Θ = (θµ
ν ) ∈ M1

r(A) is called the matrix of q-connection
D with respect to f. Using (3.1) we obtain

Dξ = D(ξµfµ) = dξµ fµ + ξµDfµ = (dξµ + ξνθµ
ν ) fµ = (∇ξ)µfµ (3.2)

where (∇ξ)µ = dξµ + ξνθµ
ν . Let f′ = {f′µ}r

µ=1 be another basis for the left A-module F0,
and f′µ = gν

µfν , where G = (gν
µ) ∈ M0

r(A) is a transition matrix. If we denote by θ′µν the
coefficients of D with respect to basis f′ and g̃µ

ν are the entries of the inverse matrix G−1 then
θ′µν = dgσ

ν g̃
µ
σ + gσ

ν θ
τ
σg̃

µ
τ , and this clearly shows that the components of D with respect to different

basises of module F0 are related by the gauge transformation. Let A be a graded q-differential
algebra with involution ∗ : A → A, F be a Hermitian module with a Hermitian form h, and D
be a q-connection on F consistent with a Hermitian structure of F . Then the components θµ

ν

of D obey the relation

θσ
µ hσν + θ∗τν hµτ = dhµν

Our next aim is to express the components of the curvature F of a q-connection D in terms
of the coefficients of a q-connection D. We define the components of curvature F with respect
to a basis f by F (fµ) = ψν

µ fν and denote the matrix of curvature by Ψ = (ψµ
ν ). Straightforward

computation gives for different k = 1, 2, . . . , N the polynomial

Dkξ =
k∑

l=0

Cq(k, l) dk−lξµ ψl,ν
µ fν
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where Cq(k, l) are q-binomial coefficients, ψν
µ = ψN,ν

µ and ψ0,ν
µ = δν

µ e. From this polynomial we
get the recursion formula for the components of curvature

ψl,ν
µ = dψl−1,ν

µ + ql−1 ψl−1,σ
µ θν

σ

This recursion formula gives the following expressions for the first three values of k:

ψ1,ν
µ = θν

µ, ψ
2,ν
µ = dθν

µ+q θσ
µθ

ν
σ, ψ

3,ν
µ = d2θν

µ+(q+q2) dθσ
µθ

ν
σ+q2 θσ

µ dθ
ν
σ+q3 θτ

µθ
σ
τ θ

ν
σ (3.3)

Let us consider the expressions for curvature in two cases when N = 2 and N = 3. If
N = 2, q = −1 then a graded q-differential algebra A is a differential superalgebra (Z2-graded),
and we have for the components of curvature ψν

µ = ψ2,ν
µ = dθν

µ − θσ
µθ

ν
σ. Assuming A to be a

super-commutative algebra we can put the expression for components of curvature into the form
ψν

µ = dθν
µ + θν

σθ
σ
µ or by means of matrices Ψ = dΘ + Θ · Θ in which we recognize the classical

expression for the curvature.
IfN = 3 then q = exp(2πi

3 ) is the cubic root of unity satisfying the relations q3 = 1, 1+q+q2 =
0. This is the first non-classical case of a q-connection, and we have for components

ψν
µ = d2θν

µ + (q + q2) dθσ
µθ

ν
σ + q2 θσ

µ dθ
ν
σ + q3 θτ

µθ
σ
τ θ

ν
σ = d2θν

µ − dθσ
µθ

ν
σ + q2 θσ

µ dθ
ν
σ + θτ

µθ
σ
τ θ

ν
σ

= d2θν
µ − (dθσ

µθ
ν
σ − q2 θσ

µ dθ
ν
σ) + θτ

µθ
σ
τ θ

ν
σ

Finally we derive the form of Bianchi identity in terms of the components of a q-connection
and its curvature. The curvature F of a q-connection satisfies the Bianchi identity LD(F ) =
[D,F ]q = 0. If θµ

ν , ψ
µ
ν are the components of a q-connection D and its curvature F with respect

to a basis f for the module F then the Bianchi identity takes on the form

dψµ
ν = θσ

µ ψ
ν
σ − ψσ

µ θ
ν
σ
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