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Introduction
The subject of the study is the following variation of the general 

three-body problem in astrophysics. There are two relatively heavy 
bodies rotating around their barycentre, one of the bodies being 
significantly heavier than the other one. In addition, there is a third, 
much lighter body whose orbit is relatively close to the lighter of the 
two heavy bodies, the orbit being not in the plane of the rotation of the 
two heavy bodies, so that the motion of the entire three-body system 
is really three-dimensional. One particular kind of such systems are 
star-planet- moon systems. Another particular kind of such systems 
are binary-star-planet systems (i.e., a planet around a binary star). For 
brevity, we call such 3-dimensional 3-body systems “3D3BS”.

Conic-helical orbits in 3D3BS-the astrophysical analogue of 
1-electron Rydberg quasi molecules studied previously by Oks [1,2]
are of interest for several reasons. First, the possibility of stable (or
metastable) conic-helical orbits in 3D3BS is a fundamental problem in
its own right, as a relatively new chapter of the centuries-old classical
three-body problem. Second, one of its applications-namely, to binary-
star-planet systems-is especially significant for the search of an extra-
terrestrial life. Indeed, according to estimates [3-5], approximately 50% 
of binary stars could support habitable terrestrial planets within stable
orbital ranges.

In paper by Oks [6], referred hereafter as paper I, it was shown 
that stable (or metastable) conic-helical orbits are possible for 3D3BS. 
Previously the scope of papers on the binary-star-planet systems was 
typically limited to the motion of these three bodies in the same plane 
[3-12].

The result in paper I was obtained by applying the standard general 
analytical method for systems that can be separated into rapid and 
slow subsystems. The method was applicable because there are ranges 
of parameters, specified in paper I, where the primary frequency Ω of 
the conic-helical motion of the planet in binary-star-planet systems 
is much greater than the Kepler frequency ω of the star’s revolution 
around their barycentre. Even with the allowance for the star’s rotation, 
the trajectory of the planet is still conic-helical. The plane of the quasi-
circular planetary orbit undergoes relatively small oscillations along 

the rotating interstellar axis and the radius of the planetary orbit also 
undergoes relatively small oscillations. The last, but not least: in paper 
I, there were also obtained positive results concerning the transitability 
(and thus, detectability) of such planets.

In the present paper, first, we extend that study to star-planet-
moon systems-also in frames of the nonrelativistic classical mechanics. 
We complement analytical results, obtained by the standard accurate 
approximate method based on the separation of rapid and slow 
subsystems, by exact simulations showing that the moon can have 
practically stable conic helical orbits around the planet, the average 
plane of the orbits being perpendicular to the axis connecting the planet 
and the star. Second, we extend that study to the relativistic classical 
mechanics. We show that relativistic effects can become significant in 
conic-helical orbits of a planet around a binary star for the situations 
where the mass of the planet is relatively small (such planets are so-
called planetoids). Again, we complement analytical results, obtained 
by the standard accurate approximate method based on the separation 
of rapid and slow subsystems, by exact simulations showing that 
the planet can have relatively stable conic helical orbits around the 
lighter star, the average plane of the orbits being perpendicular to the 
interstellar axis.

The paper is organized as follows. In Section 2 we apply those non-
relativistic results to star-planet-moon systems and demonstrate the 
stability of the moon in conic-helical orbits. In Section 3 we present 
the relativistic study of OBSS and of the stability of planetoids in conic 
helical orbits. In Section 4 we summarize the results into conclusions.
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Application of the Non-Relativistic Results to Star-
Planet-Moon Systems

We consider, as an example, an Earth-like planet around a Sun-like 
star, so that the ratio of the masses 𝜇/𝜇′ of the planet and the star is 3 
× 10–6. The separation between the planet and the star is R=1 AU. The 
planet has a moon.

Figure 1 shows the ratio Ω/ω of the frequency Ω of the moon 
revolution around the planet-star axis to the frequency ω of the planet 
rotation around the star versus the scaled projection w=z/R of the 
average plane of the moon’s orbit on the planet-star axis. We use the 
cylindrical coordinates with the z-axis along the planet-star axis in 
the direction from the planet to the star. It is seen that in the range 

of 0<w<10-4 presented in Figure 1, the ratio Ω/ω >> 1, so that the 
separation of rapid and slow subsystems is justified. 

Figure 2 presents the scaled amplitude δw0 of the oscillations of 
the moon’s orbit along the planet-star axis versus the scaled coordinate 
w=z/R. Figure 3 similarly shows the scaled amplitude δv0 of the 
oscillations of the scaled radius v=ρ/R of the moon’s orbit in the plane 
perpendicular to the planet-star axis versus the scaled coordinate w. It 
is seen that these oscillations are small.

In addition to the above analytical results, obtained by the standard 
accurate approximate method based on the separation of rapid and 
slow subsystems, we also performed exact simulations of the moon’s 
motion, as the moon revolves around the planet-star axis while this axis 
rotates with the Kepler frequency corresponding to the star-planet two-
body problem. Figure 4 shows the dependence of m, the scaled (by R) 
y-coordinate in the Cartesian righthanded xyz-system with the z-axis 
being the planet-star axis, on the scaled time τ defined in Equation 
(A.4) from Appendix, for the initial value of the scaled projection of 
the average plane of the moon’s orbit on the planet-star axis w0=10-4, 
i.e., 150000 km, which is of the same order of magnitude as the distance 
between the Earth and the Earth’s Moon. 

Figure 5 similarly presents the dependence of n, the scaled 
x-coordinate in the Cartesian right-handed xyz-system with the z-axis 
being the planet-star axis, on the scaled time τ defined in Equation 
(A.4), for the initial value of the scaled projection of the average plane 
of the moon’s orbit on the planet-star axis w0=10-4.

Figure 6 shows the dependence of w, the scaled planet-star axial 
coordinate of the moon (co-ordinate in the above-mentioned Cartesian 
system), on the scaled time τ defined in Equation (A.4) for the initial 
value of the scaled projection of the average plane of the moon’s orbit 
on the planet-star axis w0=10–4.

 

Figure 1: The ratio Ω/ω versus the average scaled axial coordinate w=z/R of 
the moon.

 

Figure 2: Scaled amplitude δw0 of the axial oscillations of the moon’s orbit 
versus the scaled axial coordinate w=z/R of the moon.

Figure 3: Scaled amplitude δv0 of the radial oscillations of the moon’s orbit 
versus the scaled axial coordinate w=z/R of the moon.

Figure 4: Dependence of m=y/R, the scaled y-coordinate of the moon, on the 
scaled time τ defined in Equation (A.4) from Appendix.

Figure 5: Dependence of n=x/R, the scaled x-coordinate of the moon, on the 
scaled time τ defined in Equation. (A.4).
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It is clearly seen from Figures 4-7 that the conic-helical orbit of 
the moon in the star-planet-moon system is stable. Thus, under the 
influence of a relatively distant star, the plane of the moon’s orbit could 
orient itself to be perpendicular to the planet-star axis. The trajectory of 
the moon becomes conic-helical.

Relativistic Effects in Binary-Star-Planet Systems
The relativistic force acting on the planet (scaled by its mass, i.e., 

the force divided by the mass of the planet) is given by the formula 
2
0

0 2

γγ
 

= + 
 c

F a V V V
.

.                                       (1)

where 𝒂 and V are the acceleration and the velocity of the planet, 
respectively, in the inertial reference frame, and ( ) 2/122

0 /1 −
−= cVγ . The 

additional acceleration given by Equation (A.1) from Appendix can be 
substituted into (1) as the last factor, with V as the time derivative of the 
radius-vector in the rotating reference frame.

 cos   sin t ρ ρ= Ω + Ωx yr e et                                          (2)

where the z-axis is along the interstellar axis in the direction from 
the lighter star of the mass 𝜇 to the heavier star of the mass 𝜇′. After the 
calculation, we obtain the following values for the components of the force:
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(here β =V/c). Since ω << Ω, the dominant term is the z-projection 

of the force (given by the third equation in (3)). By analogy with the 
non-relativistic case from paper I, we derive the small oscillations of the 
scaled axial w and radial v coordinates about their equilibrium values, 
due to the dominant force term (compare to Equation (A.3)):
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where v0 is the equilibrium value of ρ/R and the tilde above ω 
and Ω means the scaling by multiplying by (R3/Z)1/2. We can now 
find the conditions, under which the amplitude of the oscillations is 
small while the condition ω << Ω stays valid. In the relativistic case, 
the Hamiltonian, divided by the mass m of the planet, h=H/m for the 
3D3BS case is given by
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2
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where G is the gravitational constant. In a circular state, the 
components of the linear momentum in the cylindrical coordinates 
pz=pρ=0 and |pφ|/m=const=L. Using the scaling

, ε= = − 2
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                                   (6)

we write the scaled energy for the circular state:

( ) 









+−+

+−
+

+
= 2

22

2222
11

1

1
v
l

Z
Rc

vw

b
vw

ε                 (7)

For the relativistic motion one has:
ρ

2

2

mVL =
V1-
c

                                      (8)

Using the scaled radius v=ρ/R and the first formula in (6), we can 
find the speed of the planet in the relativistic case in the units of the 
speed of light:

 

Figure 6: Dependence of w=z/R, the scaled z-coordinate of the moon, on the 
scaled time τ defined in Equation (A.4).

Figure 7: Simulated 3D-trajectory of the moon in scaled xyz-coordinates (nmw-
coordinates).

 

Figure 8: The ratio of the relativistic and non-relativistic k (each k being the ratio 
of the frequencies of the revolution of the planet Ω and the Kepler frequency ω 
of the revolution of the stars about their barycenter) versus the scaled radius 
of the planetary orbit v=ρ/R, for the masses of the stars μ=1 and μ'=100 (in the 
units of the mass of the Sun) and the interstellar distance R=100 a.u.
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p=v2, v=ρ/R

From the first and the third formulas in (6), we get ℓ2=α/r2, where 
α=(Z/(cL))2. Thus,

2

1

1
β

α
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+
pr                   (10)

The equilibrium values for p and r can be obtained from 
differentiating (7) with respect to w and v. The first differentiation yields 
the same relation as in the non-relativistic case, so the equilibrium value 
of p is the squared right-hand side of the second line in (4). The second 
differentiation (with respect to v), with the later substitution of the 
equilibrium value of v (or p), yields the equilibrium value of ℓ, which is 
related to r by ℓ2=α/r2 , as mentioned above. Using the substitution [13]

1/31 1γ  = − 
 w

                 (11)

which significantly simplifies the formulas in the two-Coulomb-
center problem, we find the speed of the planet in the circular state (in 
the units of the speed of light):
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From (8) with the substituted value of V=Ωρ, by using the first 
relation in (6), the last relation in (9), and the formula ℓ2=α/r2, we find

Ω = β2c α 1 -
R pr

                  (13)

and its scaled counterpart

αΩ β 2R= c 1-
Z pr

                                    (14)

As given in (5), and measuring now the mass of the star μ in the 
units of the mass of the Sun (in distinction to the nonrelativistic case 
in Section 2, where the star masses were measured in units of the mass 
of the planet), we get

ΘµZ = GM                                      (15)

where 𝑀⊙=1.989 × 1033 g. Substituting (15) into (14), we obtain

21α β
µ

Ω = − R
s pr

                                  (16)

where the quantity s=GM⊙/c2 (which is one half of the Schwarzschild 
radius of the Sun and is approximately equal to 147700 cm). As defined 
above, α1/2=Z/(cL), and substituting the scaling relation for L from (6), 
ℓ2=α/r2 and (15), we have

µα =
s r

R
                 (17)

We substitute (17) into (12), and then substitute the resulting 
equation for β and the solution for α into (16), obtaining the equation 
for the scaled frequency of the revolution of the planet that only 
depends on the ratio R/(μs) and γ (or w-see (11)). Finally, from (4), and 

because the scaled Kepler frequency is ῶ=(1 + b)1/2 the amplitude of the 
small oscillations about the equilibrium on the w-axis and v-axis are

2 20

2 1 cos 2α
ω ωδ

+ −

+
= Ω

−
p bw

2 20

2 1 sin 2α
ω ωδ

+ −

+
= Ω

−
p bv                                 (18) 

0
2
0

(1 2w)v
tg 2  

w(1 w) v
α

−
=

− +

For deriving more explicit expressions for the amplitude of these 
small oscillations in the relativistic case, we use Equation (16) for the 
scaled frequency of the revolution of the planet, and Equation (12) for 
β, and Equation (A.4) for the scaled eigenfrequencies ω+ and ω–, and 
the equilibrium value for p=v0 

2 (v0 being given in Equation (4)), and 
the following equilibrium value of r:
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As a result, we arrive to the following final formula for the 
amplitudes of the small oscillations of the planet on the w-axis and the 
v-axis in the relativistic case:
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In turns out that the amplitude in the relativistic case is the same as 
in the non-relativistic case. 

We checked that the ratio of the frequencies of the revolution of the 
planet Ω and the Kepler frequency ω of the revolution of the stars about 
their barycentre is much greater than 1. By using the previously found 
values of Ω and ω and substituting the equilibrium values of p, r, α and 
β, we derive the formula for the ratio k of the frequencies depending 
on the axial coordinate for the given interstellar distance R and the star 
masses μ and μ':

( )
( )

( ) ( )( )
( )

5/4 4 2/3 2/3 2 32/3 2 3/4 3

3/4 3/23/2 3 3

s b b 1 1(b 1) 1
k 1

1 b 1 1

µ γ γ γγ γ

γ γ γ γ

− − +− +
= −

+ − −
                        (21)

From Equation (21) it can be found out that k in the relativistic case 
is equal to the nonrelativistic kNR multiplied by (1-β2)1/2. Figure 8 shows 
the ratio k/kNR versus the scaled radius of the orbit v, for the masses 
of the stars μ=1 and μ'=100 (in the units of the mass of the Sun) and 
the interstellar distance R=100 a.u. It is seen that the relativistic effects 
become significant when v ~ 10–9 or smaller.

The range of v=(1 ÷ 2) × 10-9 for R=100 a.u. corresponds to the 
range of the radius of the planetary orbit ρ=(15 ÷ 30) km. Since the 
radius of the planet should be smaller than ρ, in this case it should be 
a planetoid.

Figure 9 shows the dependence k(v) for the example where the 
mass of the lighter star μ=1 and the heavier star μ'=100 (in the units of 
the mass of the Sun) and for the interstellar distance R=100 a.u. (wide 
binary system). It is seen that the ratio of the frequencies is greater than 
1012 for v < 2 × 10–9, which means that such a system would be stable 
for a very long time.
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In Figure 10 we present the plot of the scaled amplitude δ 0 of the 
axial oscillations of the planetary orbit from Equation 20 versus the 
scaled radial coordinate v for the mass of the lighter star μ=1 and the 
heavier star μ'=100, in the units of the mass of the Sun. It is seen that the 
amplitude of the oscillations is really much smaller-about quadrillion 
(!) times smaller-than the interstellar distance.

In addition to the above analytical results, obtained by the standard 

accurate approximate method based on the separation of rapid and 
slow subsystems, we also performed exact simulations of the planetary 
motion, as the planet revolves around the interstellar axis while this axis 
rotates with the Kepler frequency corresponding to the binary star two-
body problem. Figure 11 shows the dependence of m, the scaled (by 
R) y-coordinate of the planet in the Cartesian xyz-system with z-axis 
being the interstellar axis, on the scaled time τ defined in Equation 
(A.4) from Appendix, for the initial value of the scaled projection 
of the average plane of the planetary orbit on the interstellar axis 
w0=10-25, i.e., practically coinciding with the position of the lighter 
star in the binary system.

Figure 12 similarly presents the dependence of n, the scaled (by 
R) x-coordinate of the planet in the above-mentioned Cartesian xyz-
system, on the scaled time τ defined in Equation (A.4), for the same 
initial conditions. 

Figure 13 shows the dependence of w, the scaled z-coordinate of the 
planet on scaled time τ defined in Equation (A.4), for the same initial 
conditions. We remind that that the z-axis is along the interstellar axis.

It is seen from Figures 11-13 that the conic-helical orbit of the 
planet in the binary-star-planet system is relatively stable. Thus, 
under the influence of the heavier star in the binary system, the plane 
of the planetary orbit, being at the lighter star, could orient itself to 
be perpendicular to the interstellar axis. The trajectory of the planet 
becomes conic-helical.

Conclusion
We extended the results of paper I to star-planet-moon systems-in 

 

Figure 9: The ratio of the revolution frequency of the planet and the Kepler 
frequency of the rotation of the stars versus the scaled orbit radius v=ρ/R in 
the relativistic case, for the example where the mass of the lighter star μ=1 and 
the heavier star μ'=100 (in the units of the mass of the Sun) and the interstellar 
distance R=100 a.u.

 

Figure 10: The scaled amplitude δw0 of the oscillations of the planetary orbit 
along the interstellar axis versus the scaled orbit radius v=ρ/R for the example 
where the mass of the lighter star μ=1 and the heavier star μ'=100 (in the units 
of the mass of the Sun).

Figure 11: Dependence of m=y/R , the scaled y-coordinate of the planet, on the 
scaled time τ defined in Equation (A.4) from Appendix.

Figure 12: Dependence of n=x/R , the scaled x-coordinate of the planet, on the 
scaled time τ defined in Equation (A.4).

Figure 13: Dependence of w=z/R , the scaled z-coordinate of the planet, on the 
scaled time τ defined in Equation (A.4).
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frames of the nonrelativistic classical mechanics. We complemented 
analytical results, obtained by the standard accurate approximate 
method based on the separation of rapid and slow subsystems, by 
exact simulations. The exact simulations demonstrated that the moon 
can have practically stable conic-helical orbits around the planet, the 
average plane of the orbits being perpendicular to the axis connecting 
the planet and the star. It is counterintuitive that under the influence 
of a relatively distant star, the plane of the moon’s orbit could orient 
itself to be perpendicular to the planet-star axis and the orbit becomes 
conic-helical.

We also extended the nonrelativistic study from paper I to the 
relativistic classical mechanics (and also corrected some printing 
errors from paper I). We showed that relativistic effects in binary-
star-planet systems can become significant for the situations where 
the mass of the planet is relatively small (such planets are so-called 
planetoids). In this case, the conic helical trajectory of the planetoid 
encloses the star of the lighter mass, the average plane of the planetary 
orbit practically coinciding with the position of the star of the lighter 
mass. It is counterintuitive that a distant heavier star can cause such 
a modification of the planetoid orbit around the lighter star. We 
showed that in this case the frequency of the rapid subsystem (i.e., the 
frequency of the planetoid revolution around the lighter star) exceeds 
the frequency of the slow subsystem (i.e., the Kepler frequency of the 
star’s rotation around their barycentre) by more than a trillion times. 
This means that the standard analytical method of separating rapid 
and slow subsystems, which we used, is well justified and that this 
configuration will remain stable for a very long time [14,15].

Finally, we complemented analytical results, obtained by the 
standard accurate approximate method based on the separation of rapid 
and slow subsystems, by exact simulations. The simulations confirmed 
that the planet can have relatively stable conic-helical orbits around the 
lighter star, the average plane of the orbits being perpendicular to the 
interstellar axis.

Appendix: corrections of misprints/errors in some 
formulas from paper I and new results based on the 
corrected formulas

In this Appendix we present corrections to three formulas from 
paper I. These are three formulas that are used in the main text of the 
present paper. Because of misprints/errors in these formulas in paper I, 
it is impossible to simply refer in the main text of the present paper to 
the corresponding formulas from paper I, which is why it is necessary 
to present here the corrected formulas numbered below as (A.1), (A.2), 
and (A.3).

The analysis in paper I was performed in a rotating frame. The 
frame was rotating at the same frequency as the Kepler frequency ω of 
the stars rotation. In this frame, there is an additional force (see, e.g., 
Landau & Lifshitz 1960; Goldstein 1980): [14,15] 

( )2= × × ×1 rF v ω−ω ω                                                                            (a.1)

The order of magnitude of the velocity v in Equation (A.1) is related 
to the average radius ρ of the planetary orbit as v ~ Ωρ. Here Ω is the 
main frequency of the planetary motion. Therefore, Equation (A.1) can 
be approximated as

2 2  co s  ≈ × = − ρωΩ Ω1 zF v etω                                                           (a.2)

where 𝒆𝒛 is the unit vector along the z-axis, which is the interstellar 
axis. The motion in the zρ-plane corresponded to a 2D-oscillator driven 
by the force given by Equation (A.2). In the scaled coordinates w = z/R, 
v = ρ/R, the solution for the oscillation amplitudes is
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R
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are the scaled (dimensionless) time, as well as the scaled frequencies 
ω and Ω, respectively. The similarly scaled eigenfrequencies ω+ and ω- 
of the above two-dimensional oscillator are
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The equilibrium value of the scaled radial coordinate 𝑣0(𝑤, 𝑏) in 
Equations (A.3, A.5) was defined in Equation (4).

Based on the corrected formula (A.3) for the small oscillations of this 
driven two-dimensional oscillator, below we present new illustrations 
demonstrating the ranges of the stability of the conic-helical orbits for 
various parameters of this nonrelativistic 3-body problem. Figure 14 
shows the scaled amplitude δw0=2v0(w, b) ωsfp (cos 2α) / |ω+

2-ω–
2| of the 

oscillations of the planetary orbit along the interstellar axis versus the 
scaled projection w = z/R of the average plane of the planetary orbit on 

 

Figure 14: The scaled amplitude δw0 of the oscillations of the planetary orbit 
along the interstellar axis versus the scaled projection w=z/R of the average 
plane of the planetary orbit on the interstellar axis, for three values of the ratio b 
of the stellar masses: b=100 (solid line), b=30 (dashed line), and b=10 (dotted 
line).

 

Figure 15: The scaled amplitude δv0 of the oscillations of the radius of the 
planetary orbit versus the scaled projection w=z/R of the average plane of the 
planetary orbit on the interstellar axis, for three values of the ratio b of the stellar 
masses: b=100 (solid line), b=30 (dashed line), and b=10 (dotted line).
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the interstellar axis, for three values of the ratio b=𝜇′/𝜇 of the stellar 
masses. It is seen that δw0 << 1 (i.e., the amplitude of the oscillations is 
much smaller than the interstellar distance) for b greater or of the order 
of 10. For the validity condition Ω >> ω of this result to be satisfied with 
a large margin of “safety”, the average plane of the planetary orbit should 
be very close to the star of the smaller mass (and the closer it is in the 
range of w < 0.05, the smaller is the amplitude δw0, as seen from Figure 
14). As long as the primary frequency Ω of the planet revolution about 
the interstellar axis exceeds by many orders of magnitude the Kepler 
frequency ω of stars rotation, the conic-helical planetary orbit would 
remain stable for a very long time. (Rigorously speaking, the planet is in 
a metastable state, which is an analogy with atomic/molecular systems: 
they have metastable states living by many orders of magnitude longer 
than other states of the system.)

Figure 15 shows the scaled amplitude δv = 2v0(w, b) ωsfp (sin 2α) / 
|ω+

2 –ω-
2| of the oscillations of the radius of the planetary orbit versus 

the scaled projection w = z/R of the average plane of the planetary orbit 
on the interstellar axis, for three values of the ratio b=𝜇′/𝜇 of the stellar 
masses. It is seen that for the range of b greater or of the order of 10 
(required for having δw0 << 1), we have also δv << 1.
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