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Introduction
Conventional strategies developed so far to simulate physical 

problems evolving differential equations, could be summarized in two 
main categories based on the grid topology and conformity with the 
domain boundaries: The first considers grids, which conform onto 
the boundaries of the computational domain (immersed objects, 
surrounding walls and others). Those methods could implement 
structured or unstructured grids of different topology, thus 
encompassing tetrahedral, hexahedral, prisms, polyhedral or other 
elements. The second category considers computational grids, which 
have Cartesian topology through the whole domain, but the grid does 
not necessarily conform to the boundaries of the domain. Those are 
well known as “Cartesian Grid Methods” or “Immersed Boundary 
methods” and they have been developed mainly the last three decades 
[1].

Cartesian grid methods started to develop by Peskin [2], who 
mainly attributed the term “Immersed Boundary methods” to 
this methodology. Later on, a considerable number of approaches 
followed, which were mainly designed for simulation of in viscid 
flows past complex solid boundaries [3]. A highlighted study of Euler 
flow simulations by using those methods is addressed in the article 
of Berger and Aftosmis [4]. The latter methods enjoyed universal 
acknowledgement and they are still developed by many researchers. 
Nevertheless, viscous flows resolved by Immersed Boundary Methods 
arise many questions regarding the accuracy and the consistency of the 
numerical approach. The basic complications are obviously related to 
the imposition of the boundary condition in the non-conformal grid. 
The main basic approaches include continuous forcing, discrete forcing, 
cut-cell formulations and general interpolation algorithms [1,5]. Those 
methodologies are developed and improved continuously. Some recent 
modifications with validated results are the studies of Lima E Silva et al. 

[1] and Rajani et al. [6]. Complex and moving boundaries could be also 
resolved with distinct advantages over the conventional methods [1,7].

Despite the general effort on reducing the uncertainties regarding 
the imposition of the boundary condition on the surface of complex 
geometries, it appears that none method could guarantee validity 
through the whole range of Reynolds numbers and for all types of flow 
regimes. Until the time, a universal method will be developed; always 
uncertainties will arise regarding every individual approach.

The preceding statements possibly motivated researchers to develop 
more elaborated methods, which could retain the orthogonality of the 
mesh as much as possible and impose precisely the boundary condition 
onto the immersed surface. This concept is well described in the paper 
of Fujimoto et al. [8], where the term “Body Fitted Cartesian Method” 
is referenced. In this research effort, an orthogonal Cartesian grid was 
constructed from the external boundaries of the domain up to an area 
close to the immersed surface. The Cartesian grid contains hanging 
nodes to adapt accordingly to the contour of the immersed object. 
Then a prismatic layer grid is generated to resolve the boundary layer 
up to the object’s walls. The interface between the orthogonal grid and 
the prisms is non-conformal in this study (Figure 1). In a more recent 
study of Fujimoto et al. [9], the discontinuous interface is removed by 
deploying a Cartesian grid front projection. By implementing this grid 
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Abstract
A novel Cartesian grid discretization method is developed to simulate two and three dimensional problems, 

governed by partial differential equations. In the present approach, the grid points lie exactly onto the surface of an 
immersed object or of the domain’s boundaries, allowing for accurate imposition of the surface boundary conditions. 
This is well demonstrated for symmetric objects, but it can be also extended for non-symmetric shapes. The method 
intrinsically possesses higher accuracy than the conventional body fitted or Immersed Boundary Methods, since 
the implemented grid is universally orthogonal and the boundary conditions are imposed precisely onto the surface, 
without any interpolation or tuning of the governing equations. Conformal Cartesian Grids bridge the topology of 
Cartesian grid methods with the treatment of the surface boundary conditions, which is adopted in conventional body-
fitted grid approaches. Emphasis is given in a two dimensional fluid dynamics problem to demonstrate this approach. 
A finite difference code has been developed, which encompasses the present methodology. Space discretization 
is performed via the second order accurate central difference scheme and time discretization by the fourth order 
accurate Runge-Kutta method. The flow past a cylinder at low Reynolds number is resolved to validate the accuracy 
and performance of the method. Two different flow regimes are thoroughly investigated at Re numbers varying from 
10 up to 100 based on the cylinder’s diameter. Computed results agree well with the available measurements and 
numerical computations in literature. Three dimensional results are also briefly presented mainly for revealing the 
applicability of the method. 
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projection, conformity is preserved between the boundary layer mesh 
and the orthogonal outer mesh (Figure 1). The boundary layer mesh 
consists of hexahedral non-orthogonal elements. 

The latter research surveys could be viewed as interesting variations 
of the Cartesian Grid Methods, which could be more accurate than the 
Immersed Boundary Methods, specifically through the boundary layer 
area. However, those grids are not universally orthogonal. They cease to 
be orthogonal from the interface up to the immersed surfaces. Also they 
contain some “transitional” cells of trapezoidal or tetrahedral topology, 
which could further deteriorate the accuracy of the method. Those 
methods based on the author’s consideration should not be entitled 
as “Body Fitted Cartesian”, because the grid is definitely not Cartesian 
up to the surface. In order to distinguish the approach presented here 
with the latter grid methods, the term “Conformal Cartesian Grids” is 
utilized.

In the present research effort a novel method is introduced, which 
comes to fill the gap between the two main aforementioned strategies. 
The method of Conformal Cartesian Grids retains the Cartesian 
topology and the orthogonality of the grid in the whole computational 
domain up to the immersed surface, while in the same time allows the 
boundary condition to be imposed precisely onto the object’s boundaries, 
without any forcing or interpolation. Those meshes are body fitted and 
clearly inherit properties from the conformal body-fitted grids and the 
Cartesian grid methods. All the preceding methods and the present one 
are demonstrated in a simplified evolution graph in Figure 1 to reveal the 
state of the art in conformal and orthogonal grids.

The current paper will describe in detail the grid generation 
algorithm of the present approach. A thorough discussion follows 
regarding the accuracy and performance, by addressing advantages and 
deficiencies of the method. Focus is given on the numerical validation 
by solving a well-known fluid dynamics benchmarking problem. 
The numerical implementation for resolving the physical problem is 
thoroughly discussed. Results are compared to available numerical and 
experimental data.

Description of the Method
The concept of conformal cartesian grid generation for 
symmetric objects

Before demonstrating numerically how the Conformal Cartesian 
Grids (CCG) method performs, a clear description of the grid generation 
process is presented. The basic motivation for implementing those 
methods in PDE problems is extracted from the observation, that it is 
possible and simple to construct a body fitted Cartesian grid past a two 
dimensional symmetric body. The symmetry axis could be the axial, 
vertical or both directions. To present the simplicity of the approach, 
consider a curve implicitly defined as follows:

( , ) 0=f x y                     (1)

with the following properties: 

1. Being a closed curve 

2. Being a Jordan curve and 

3. Possessing symmetry along the x or y or both axes simultaneously, 
thus ( , ) 0− =f x y or ( , ) 0− =f x y or ( , ) ( , ) ( , ) 0− = − = − − =f x y f x y f x y
correspondingly. Then, it is always possible to construct a Conformal 
Cartesian Grid. 

The proof of this statement could be easily deduced by observing 
graphically how the Cartesian grid could be fitted exactly to the surface 
of the symmetric body. In the left top part of Figure 2 the example of an 
object which possesses symmetry along x axis is demonstrated. Starting 
arbitrarily from a point marked as A, it is projected via a vertical line 
to the lower symmetric surface generating point B. Then, a second 
projection of the latter point follows by extending a y=constant line 
creating point C. Then C is projected similarly to D. The latter point is 
connected to the origin point A, finalizing one cycle of the process. If 
this procedure repeats for other origin points onto the surface of the 
current shape, the result will be the right top grid plotted in Figure 2. 
It is evidently shown that the grid is fitted exactly onto the surface and 
then it is only needed extension of the grid lines towards the boundaries 
of the computational domain to complete the generation of the grid.

The final extended grid is shown in the bottom area of Figure 2, 

Figure 1: State of the art of the main Cartesian grid methods developed so far. The present method is depicted at the bottom of the picture.



Citation: Karabelas SJ (2015) Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method. J Appl Computat Math 4: 234. 
doi:10.4172/2168-9679.1000234

Page 3 of 15

Volume 4 • Issue 4 • 1000234
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

where also the grid points on the surface are marked. The dash lines 
represent the extension of grid lines. Dead zone is the area of grid points, 
which do not interfere in the numerical solution. This is an example of 
a body-fitted Cartesian grid. Other examples of a NACA 0012 airfoil 
and a trapezoid grid are plotted in Figures 3 and 4 respectively. In areas, 

where non uniform refined grids should be generated, two algorithms 
are implemented, the tanh  function and geometric progression [10]. 
Refinement is observed close to the area of the immersed objects.

Description of a grid generation algorithm 

The above grid generation procedure gives the perception of how 
a Cartesian grid could conform precisely onto the boundaries. In 
the present section, the algorithm of grid generation is described for 
a two dimensional problem. The author followed the process, which 
is depicted in Figure 5 and it is believed that is quite simple and 
straightforward. 

Given a multiply connected domain (top left side of Figure 5), we 
would like to generate a conformal Cartesian grid past the immersed 
object. In the beginning of the procedure, horizontal lines are drawn, 
which intersect the object and the domain’s boundaries. The distribution 
of those lines is better to be symmetrical (to be equivalently distributed 
below and upper of the midline of the object), as it is shown at the top 

Figure 2: Conceptual description of the grid generation process. At the top left, one cycle of the process is completed. At the top right, a 
number of cycles have been finished and at the bottom area, the final extended mesh is shown.

Figure 3: Conformal Cartesian grid in the vicinity of a NACA 0012 airfoil. 
The points of the grid coincide with the airfoil’s profile.

Figure 4: Conformal Cartesian grid in the vicinity of a trapezoid.

Figure 5: Steps of the grid generation algorithm, as programmed in the 
present study.
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right area of Figure 5. After the intersections of those lines with the 
object, the coordinates of the knots are calculated and stored (orange 
points). Then by starting from each knot, vertical lines are drawn. 
These lines are depicted at the bottom of the same figure and they 
are marked as red. At this stage the essential procedure has finished. 
The only remaining action is to extend the mesh left, right, below and 
upper of the object. In sub domains B, D, F and H, it is possible to 
generate a mesh with arbitrary distribution of the grid lines at x and 
y direction. In sub domains E and I, the x distribution is given by the 
previous steps of the algorithm, therefore only at y direction the mesh 
could be freely generated. In sub domains G and C, the y distribution 
is already prescribed, therefore only at x direction the mesh could 
be freely generated. Finally in the sub domain A, the circumscribed 
rectangular (marked with the dash line), the discretization has been 
already completed and no further action could be applied. This is 
exactly one of the distinguishing features of the method, which is not 
found in the other grid discretization methods: The mesh inside the 
circumscribed rectangular of the immersed body is generated based 
only on the distribution of the object points. 

Grid generation for 2-D arbitrary shaped objects

The rationale presented so far, can be also extended for non-
symmetric bodies. However, this could be the main topic for future 
research effort in CCG methods. The present paper, deals only with a 
brief example. In non-symmetric bodies, the projection of the points 
from one part of the surface to another is not straightforward as in 
symmetric cases. The formulation of the mathematical problem could 
be summarized in the graph shown in Figure 6. The black line 
separates the object into two parts. Then the upper and lower curves 
are assigned to the functions f(x(s) and g(x(s)) respectively, where s 
denotes the index of the vertical grid lines. The question now is how 
we can fulfill simultaneously in both sub domains with given x(s) the 
following condition:

( ( )) : 1
( ( )) : 2

= ∈ 
 = ∈ 

y f x s y D
y g x s y D

This is a difficult and novel mathematical problem and any further 
analysis extends beyond the scope of the present article.

The author devised a simple graphical method, which could give 
a preliminary feedback whether it is possible or not to construct 
a Cartesian grid, which is body fitted to 2-d non-symmetric shapes. 

It appears that if the shape fulfills the three main properties already 
defined for the symmetric problem above, then it is possible to 
construct a grid, but not certain, since this statement needs a concrete 
mathematical proof. In Figure 7 it is shown a non-symmetric object 
and one complete step of the projection-intersection process. Starting 
arbitrarily from the blue marked point (starting of projection), a 
projection is done to the lower surface via ax = const. line. Then the 
new point is projected via a y=const. line towards the right part of the 
surface. By continuing projections of the points to the left and right 
parts of the surface (see blue arrows), multiple points are marked on 
the surface, which fulfill the criteria of a body-fitted Cartesian grid. 
However, the process yet has not been completed. It was observed 
by repeating efforts, that the process is possible to be finalized if the 
projection will end to a maximum, minimum or saddle point. This is 
the case in Figure 7. The finalization occurs at a local extreme point 
(marked as red) and there is no need to project any more that point 
to the surface. By starting from different origin points, it is possible to 
construct a conformal Cartesian grid of high resolution. 

The present graphical method for non-symmetric bodies provides 
nor any information regarding the grid resolution neither whether this 
process can be finalized each time. It basically motivates for further 
research and gives a preliminary idea of grid construction feasibility.

Grid generation for three dimensional symmetric objects 

The generation of conformal Cartesian grids extends to three 
dimensional problems. The simplest one could be just a straight 
extrusion of a 2-D object towards the normal direction. This mesh 
can be easily generated and one solved example is shown in section 5. 
The more complex case for 3-d symmetric objects is considered when 
the object is not generated by straight extrusion of a 2-D symmetrical 
object, but by a non rectilinear profile. This case could be the shape of 
a sphere (Figure 8).

In any three dimensional Cartesian grid, each slice of the mesh is 
exactly the same with all the other slices. This property is important to be 
evaluated during all the steps of the grid generation. By viewing a sphere, it 
is easily observed that the sections at different heights (red curves) are not 
the same. Therefore it is expected that the mesh slices will not be the same at 
those heights. Indeed, if someone follows the 2-d method presented earlier 
to construct the mesh at each slice, then the mesh slices will be completely 
different and a 3-d construction appears not to be feasible. Figure 6: Mathematical formulation of the 2-d non symmetric problem.

Figure 7: Illustrative description of an example of grid generation process for 
a non-symmetric object.
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A different path could be followed to construct the 3-d mesh. If 
the slices of an object are different, then all the grid lines from each 
slice should be projected onto the other slices. When the projection 
finishes and the intersections of all sections are completed then the 
slice mesh is derived. In the present case to be comprehensive, only 
two different planes are considered. In Figure 8, synthesis of those two 
planes, produce the final slice mesh. It is shown that the synthesized 
slice intersects accurately both planes and the projections have finished. 
This process continues until all sections of the object are considered 
(the number of the sections depends upon the initial choice). After 
the synthesis of all projections, a final slice is produced (a complex 
2-d grid). This slice is the unique section of the 3-d mesh inside the 
circumscribed cube (Figure 9) and this area is meshed only based 
on the object points distribution (as in the 2-d case with the domain 
inside the circumscribed rectangular). Out of the cube, the mesh can be 
generated with some restrictions, as in the 2-d case. In Figure 9, some 
of those restrictions are shown.

Added value of the present method 

The present method combines the effectiveness of the Cartesian 
methods and the accuracy of the body-fitted conventional grids. Below, 
this will become clear by stating the advantages and disadvantages of 
the approach. CCG methods retain most of the advantages sourced 
from the Cartesian grid topology. Here, they will be briefly quoted, but 

the reader could be directed to the literature resources [1,5] for more 
insight. One advantage is the relative ease of generating the grid past 
an object with an axis of symmetry, but still slightly more complicated 
than generating Immersed Boundary grids (Figure 2). Compared 
to the body-fitted structured and unstructured mesh topologies, the 
conformal Cartesian grids are generated much faster. 

In terms of memory, Cartesian topology allows for efficient indexing 
of all node variables structured in an I x J x K form. This structure 
enhances the convergence of the iterative algorithms, since it generates 
n-diagonal matrices. When the computer power is considered, then it 
is clear that a Cartesian grid can significantly reduce the per-grid point 
computing time, because of the lower number of discretized terms in the 
governing equations [11]. Cartesian grids are also amenable to efficient 
computing algorithms. Line-iterative and multi-grid algorithms can be 
always used to reduce the CPU time and increases convergence. This 
is not easy to be implemented in unstructured grids of any topology 
(polyhedral, tetrahedral, hexahedral and others).

Accuracy and performance of the method becomes obvious when 
the imposition of the boundary conditions is considered. In the present 
approach, the boundary conditions are imposed precisely onto the 
object’s surface as in the conventional body fitted grids. This property 
evidently increases the accuracy and enhances the simplicity of 
programming. On the contrary, the developed Cartesian grid methods 
deploy interpolation or continuous forcing close to the immersed 
boundaries (Figure 10a), which could deteriorate the accuracy of the 
solution, especially at high Re numbers. This could be explained by the 
fact that forcing introduces additive truncation error in the equations 
and specifically in sensitive flow areas. The alternative approach of 
interpolation, utilizes ghost points or cut-cell techniques, which raise 
criticism regarding feasibility of discretization, when high order 
schemes are considered. This is well verified in literature, since the 
latter methods have been used extensively for Euler flows, but still there 

Figure 8: Sections of a sphere illustrated with red lines (left) and synthesis of 
the two upper sections (right).

Figure 9: Synthesized plane depicted inside the circumscribed cube and 
some written restrictions regarding the distribution of the grid lines in the areas 
outside the cube.

Figure 10: a) A Conformal Cartesian and an Immersed Boundary grid in the 
proximity of a circle. b) Orthogonality computed based on the maximum cell’s 
angle for an O-type grid and an unstructured grid around an airfoil.
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is a big challenge to be effective in viscous flow regimes [1,4,5] and in 
turbulent regimes [12].

Conformal Cartesian Grids are orthogonal in the whole 
computational domain, while in all the other mesh topologies, this 
is not feasible (Figure 10b). This intrinsic property enhances the 
accuracy of the method. Indeed, to compute the convective fluxes with 
the highest possible accuracy you need to connect with a line the two 
neighboring cell centers through the mid of the face. The same holds 
for the calculation of the diffusive fluxes with the requirement that the 
line should be orthogonal to the cells face [11]. In a Cartesian grid, 
those requirements are fulfilled. The above statements could become 
clear mathematically, when it is considered the generic conservation 
equation for momentum transport of a variable φ written in generalized 
coordinatesξi :

( ) 1[ ( )] 0ρϕ ϕρ ϕ
ξ ξ

∂ ∂ ∂
+ − =

∂ ∂ ∂
ki

i
i k

J U B
t J

and 1,2,3=i                (2)

det( )
ξξ

∂
=

∂
ixJ is the Jacobian of the transformation from the 

Cartesian coordinates ix  to the generalized ones ξi . 
iU denotes 

the velocities normal to the coordinate surface ξ =i constant. The 
remaining coefficients kiB  are expressions of the cofactors of the 
Jacobian. 

These coefficients are zero in orthogonal grids when ≠k i . In eq. 
(2) when the grid is non-orthogonal, six extra terms arise in the 3-D 
Navier-Stokes equations and four extra terms in the two dimensional 
case. These terms constitute the truncation error (T.E.) due to the mesh 
non-orthogonality:

2 2 2 2 2 2
21 31 12 32 13 23

2 1 3 1 1 2 3 2 1 3 2 3

. .( )ϕ ϕ ϕ ϕ ϕ ϕ
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
∂ ∂ ∂ ∂ ∂ ∂

= + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

E T E A A A A A A      (3)

The same conclusion could be reached by adopting the finite 
volume approach. Evaluating the fluxes in a 2-d non-orthogonal grid, 
leads to two components of the surface normal vector in  at face i, while 
in Cartesian grids there is only one component. The extra components 
when multiplied by gradients of the solving variable (diffusive fluxes) 
increase further the truncation error. 

The penalty for possessing universal orthogonality and imposing 
the boundary conditions precisely onto the immersed surface is the 
rigorous dependency of the grid upon the object’s shape (contour). This 
is evident in Figure 11, which plots the left side of a circular cylinder. 
In conventional grid structured methods, it is possible to control the 
points in the vicinity of the object independently for each marching 
direction (ξ, η). This might be also the case for the IB methods, where 
the grid could be independent of the surface curvature. On the contrary, 
for the present case, the distribution of the points in x direction is 
correlated always to the distribution of the points in y direction close 
to the object. This is imperative in order to attain coincidence of the 
grid points to the surface. For example in the latter plot, close to the left 
corner, where curvature reduces, it is needed to generate a lot of points 
along x direction to follow the steep difference along y direction.

This drawback brings other deficiencies. Shape dependency 
enforces for generation of highly bunched grids, which sometimes 
could have influence on the convergence and accuracy of the method. 
It is observed, by employing such grids that at surfaces almost 
horizontal, they fail to resolve adequately the contour of the surface, 
unless quite high aspect ratio cells are generated. Therefore mentioned 
observations are well reproduced also in Figure 3 independency of the 
discretization process between the two marching directions is attained 

far from the object, as it is depicted in Figure 12. The red border lines 
embrace the “dependent discretization” area and the green lines 
mark the “independent discretization” regions. This drawback could 
be mitigated by implementing Adaptive Mesh Refinement strategies. 
One strategy, which is planned to be encompassed in forthcoming 
improvements of the CCG method, is described in the next section.

Adaptive mesh refinement in conformal cartesian grids

The methods for adaptive mesh refinement (AMR), which are 
implemented in general Cartesian grids, could be also adopted in 
Conformal Cartesian Grids [11]. However, special care should be 
taken into regions close to the surface. To avoid the overly refined grid 
lines, which are mainly generated from nearly horizontal or vertical 
surfaces, they should be split close to the object, in order to keep the 
aspect ratio of cells in acceptable levels. In Figure 13, those horizontal 
lines are marked with light blue color and they begin from the top area 
of the surface and they are split a few cells away. This splitting does not 
refine the grid, yet it generates a qualitative mesh with low aspect ratio 
cells by introducing hanging nodes within the stencils. In second level, 
refinement close to the surface could be performed by adding surface 

Figure 11: The mesh close to the left side of a cylinder reveals the 
interdependency between the discretization along x and y directions.

Figure 12: Borders showing where the distribution of grid points along one 
direction, is dependent upon the distribution of grid points along the other 
direction.
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nodes and extending the grid lines close to the surface. These grid lines 
are marked as green in Figure 13. Although, the error could be reduced 
by such AMR strategies, various problems arise, such as the ordering 
of the hanging nodes and the solution of the Navier-Stokes equations 
at the interface (red border in Figure 13). Finite-Difference methods 
should be combined with Finite- Volume methods at the interface area. 
Conservation of mass, momentum and energy could be assured only by 
implementation of Finite-Volume methods at irregular cells with many 
sub-faces (marked also in the same figure with magenta lines). Finite-
difference methods could still apply to cells with normal structured 
stencil.

Numerical Formulation for Solving Two Dimensional 
Flows

To implement numerically the method in applied physics, it is 
chosen the investigation and validation of the two dimensional flow 
past a cylinder. This chapter discusses analytically the governing 
equations and the mathematical formulation of the PDE problem.

Governing equations and algorithms

A classic benchmarking problem for Cartesian grids is the flow past 
a circular cylinder. This is a challenging case, since the cylinder always 
possesses curvature which amplifies the difficulty for resolving the flow 
with Cartesian grid methods. In the present study the two dimensional 
flow past a circular cylinder is investigated. The Reynolds number 
based on the cylinder diameter ranges from 10 up to 100. In this range 
two flow regimes are observed. Up to Re=47.4 based on Norberg [13], 
the flow remains steady and separated from the cylinder’s surface. At 
higher Re number, vortex shedding develops and the flow becomes 
unsteady. Three dimensional effects are observed at higher than the 
examined Re numbers.

Viscous and incompressible flow past the circular cylinder is 
governed by the two dimensional Navier- Stokes equations. Those 
equations are solved in a non-primitive formulation by adopting 
the vorticity stream-function approach [10,11]. By combining the 
conservation equations for continuity and momentum, the following 
two equations are derived: 

2 2

2 2

ψ ψ ω∂ ∂
+ = −

∂ ∂x y
                   (4)

2 2

2 2

ω ω ω ω ωρ ρ ρ µ
 ∂ ∂ ∂ ∂ ∂

+ + = + ∂ ∂ ∂ ∂ ∂ 
u v

t x y x y
                 (5)

where it holds 
ψ∂

=
∂

u
y

,
ψ∂

= −
∂

v
x

 and ω
∂ ∂

= −
∂ ∂
v u
x y . The variable ψ 

denotes the stream function, u the axial velocity, v the vertical velocity, 
ωthe vorticity around z axis, μthe molecular viscosity and ρ the density 
of the fluid. When the steady-state version of the code is implemented 
(Re<47.4) the time derivative term is dropped from eq. (5). In this 
version under-relaxation of vorticity has been embedded within the 
solving procedure. In the unsteady full version of the code three time 
marching algorithms are available, namely Euler- explicit scheme, 
Runge-Kutta and Gauss-Seidel implicit iterative solver. From those 
algorithms, it is chosen the Runge-Kutta method, because it is fourth 
order accurate in time O(Δt4). Below there is a short mathematical 
description of the method:

(t, )ω ω=


R                    (6)

2 2

2 2( , ) ω ω ω ωω ρ ρ µ
 ∂ ∂ ∂ ∂

= − − + + ∂ ∂ ∂ ∂ 

t t t t
t tR t u v

x y x y
                   (7)

1 ( 2 2 )
6

ω ω α+ = + + + +t dt t dt b c d                    (8)

The slopes a, b, c and d are given by the expressions:

( , )
( 0.5 , 0.5 )

c ( 0.5 , 0.5 )
d ( , )

ω
ω
ω

ω

=
= + +
= + +
= + +

a R t
b R t dt dta

R t dt dtb
R t dt dtc

                   (9)

The terms in the governing equations are discretized in space based 
on the central differencing scheme of second order accuracy. 

Derivatives discretization 

The first derivative terms could be discretized with second order 
accuracy schemes independent of the gird points distribution (grid 
bunching). This is possible, by incorporating the value of the unknown 
function at the current node i. Then one could derive for the central 
differencing scheme, the following leading truncation error:

3

3

'
6

∂
=

∂
dxdx fe

x
                                       (10)

where 1i idx x x+= − and 1' i idx x x −= −

and the final expression for the first derivative is:

'2 2 2 '2
1 1 ( )

'( ')
+ −∂ − + −

=
∂ +

i i if f dx f dx f dx dx
x dxdx dx dx

                  (11)

which is always of second order.

Upwind and downwind differencing schemes could be treated in 
the same way and could be of second order spatial accuracy. The latter 
schemes provide a solution, when high order accuracy is desired onto 
the boundary, since they are one-sided and penetration towards the 
dead region is avoided.

Second order derivatives are difficult to be independent of the 
grid bunching, when second order accuracy is considered, because 
in Taylor expansions first and third order derivatives should be 
eliminated simultaneously. In the implemented code, the truncation 
error of central scheme depends upon the stretch ratio a, defined here 

as 
'

=
dxa
dx

 and it is equal to
3

3

(1 ) '
3( 1)
− ∂

=
+ ∂

a dx fe
a x

, thus when the grid 

discretization is uniform (a =1), 0=e and the method becomes second 
order accurate. Upwind and downwind schemes are also influenced by 

Figure 13: Adaptive refinement of a conformal Cartesian grid in the vicinity 
of an object.
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the grid bunching, when second order accuracy is desired.

Spatial convergence rate of the algorithm

To verify mathematically that the spatial accuracy of the method is 
of second order, repetitive simulations have to be be performed with 
different levels of global mesh refinement and then the results should 
be compared to an analytical solution. In the present case, it was 
chosen the laminar flow inside two parallel plates, which possesses an 
analytical solution [10]. In this physical problem, with chosen Re=10, 
the flow develops fast and then a constant parabolic profile of the 
axial velocity is preserved through the whole channel. Four different 
meshes are tested with different resolution: 20 × 20, 50 × 50, 100 × 100 
and 200 × 200 cells at x and y direction. Then the L1 and L2 norms of 
the global error are evaluated by considering the difference between 
the numerical and the analytical value of velocity. The results from 
those tests are plotted in Figure 14, revealing the convergence of the 
velocity profile as the refinement increases. The global error is plotted 
logarithmically in Figure 15, which obviously reveals that the method 
is second-order accurate.

Initial and boundary conditions

Before proceeding to the numerical results, it would be useful to 
describe in detail the numerical treatment of the boundary conditions, 
which are implemented into the mathematical problem. The domain 
and the applied conditions onto the boundaries are depicted in Figure 
16. At the inlet of the domain a constant velocity profile is imposed 
and at the outlet a zero stream-wise velocity gradient condition. A zero 
cross-flow velocity gradient condition is applied into the upper and 
lower boundaries to further mitigate any blockage effects. Onto the 

cylinder the no-slip condition is imposed. Although those conditions 
are clear when using a pressure-velocity coupling procedure, in the 
vorticity stream-function approach, needs to be expressed in terms of 
the solving variables. 

The initial conditions, when no interpolation or no other initial 
solution is incorporated, are the following ones:

t=0

0
,

0
ω
ψ
= 

∈Ω= 
x y                   (12)

( )
,

(x, y)
ω ψ
ψ ψ
= 

∈= 

f
x y B                  (13)

where Ω  is the internal computational domain and B the boundaries 
of the domain (inlet, outlet, symmetry and wall conditions). At those 
boundaries, the vorticity is expressed as a function of the stream 
function to satisfy the corresponding velocity condition.

The inlet condition for a constant axial velocity profile in time and 
space u , could be imposed by the following expressions for vorticity 
and stream-function at the node ( ),i j : 

ψ = ∫
inlet

udy                     (14)

3
2

3

2( )( , ) 2( ( , ) ( 1, ))( ) ...
3!

ψω ψ ψ − ∆ ∂
= − + ∆ + +

∂
xi j i j i j x

x
               (15)

The outlet condition similarly is expressed as:
2

2 0ψ∂
=

∂x                  (16)

0ω∂
=

∂x
                   (17)

The symmetry or zero cross-flow gradient condition is simply 
expressed as:

0
ψ
ω
= 

= 

const
symmetry                  (18)

At object’s walls, the conditions become more complicated and 
here they will be described in a more general content. Along the surface 

of the object it holds 0ψ∂
=

∂x
and 0ψ∂

=
∂y

, thusψ = const . For deriving 

wall’s vorticity we define two vectors 
→

x  and 
→

kx . The former points to 
a position inside the flow n and the latter to the object’s surface. The 
origin of the vectors is always the reference frame base point (Figure 17):

→

→

= +

= +

i i

k k k

x x i y j

x x i y j
                                    (19) 

Figure 14: Axial velocity profiles derived from the mesh tests and compared 
to the analytical solution.

Figure 15: L-1 and L-2 error norms, plotted logarithmically against the number 
of cells at y direction.

Figure 16: Domain’s boundaries and dimensions. The type of boundary 
conditions is also shown.
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The symbols ix , iy  denote the coordinates of a flow point and kx ,
ky  the coordinates of the node onto the object’s curve.

It is also defined the L2 norm of the vectors difference as:
→ →

∆ = − ks x x , where the sign depends upon the convention for the 

positiveness of the s direction.

By expanding Taylor series for the stream function, the following 
equation holds:

2 32 3

2 3

(x , y ) (x , y ) (x , y )( ) ( )(x , y ) (x , y ) ( ) ...
2! 3!

ψ ψ ψψ ψ ∂ ∂ ∂∆ ∆
= + ∆ + + +

∂ ∂ ∂
k k k k k k

i i k k
s ss

s s s
  (20)

In Conformal Cartesian Grids s∆  is always x∆ or y∆ , thus the 

third term in the right hand side is equal to
2( )

2!
ω∆

−
s . Based on the 

definition of vorticity and the no slip condition, which should apply 
onto the wall’s surface, the following expression results:

3

2 3

2( (x , y ) (x , y )) 2( )(x , y ) ...
( ) 3!

ψ ψ ψω − ∆ ∂
= + +

∆ ∂
k k i i

k k
s

s s
                  (21)

The well-known first order expression for the wall’s vorticity can be 
derived from the last equation:

2

2( (x , y ) (x , y ))(x , y ) ( )
( )

ψ ψω −
= + ∆

∆
k k i i

k k O s
s

               (22)

The preceding boundary condition performs well for vertical or 
horizontal walls, where the vorticity onto the surface is influenced only 
from the next grid point at the vertical or the horizontal direction. 
However, this is not the case, when the wall has curvature and the 
vorticity onto the surface is influenced by two grid points, which lie at 
the x and y direction respectively. An alternative is to deploy a Taylor 
expansion at x and y direction separately, and in second step to add 
them. For a surface node, which is wetted from the top and right area it 
holds after the addition of the two Taylor expansions:

2 2
2 2 2 2

1 12 2(x , y ) (x , y ) ( ( (x , y ) ( (x , y )) / (0.5 ) ( , )
0.5

ω ψ ψ ψ+ +

 ∆ + ∆
= − ∆ + ∆ ∆ ∆ + ∆ ∆ ∆ ∆ 

k k k k k k k k
x y x y x y O x y

x y (23)

The author found the latter mixed spatial boundary condition more 
accurate, than considering only one direction. For instance, solving the 
flow close to the leading edge of the cylinder and expanding the Taylor 
series across the vertical direction, produces significant error. Indeed, 
tests proved that when the pressure distribution is evaluated, the mixed 
boundary condition (23) produced excellent pressure profiles, while 
eq. (22) failed considerably close to the leading edge. 

Pressure derivation

Static pressure can’t be computed during the solving process, 
but it should be explicitly derived from the Poisson pressure-velocity 
equation:

2 2ρ
 ∂ ∂ ∂ ∂

∇ = − ∂ ∂ ∂ ∂ 

u v u vp
x y y x

                  (24)

Equation (24) is solved in the same manner with eq. (4) by 
implementing a Gauss-Seidel solver.

The wall boundary conditions for pressure can be formulated in 
the general case as:

µ
τ
∂ ∂

= −
∂ ∂

p z
n

                   (25)

→∂
= ∇ ⋅

∂
z z n
n

                 (26)

Where n is the direction normal to the surface, τ the direction 
tangent to the surface, 

→

n  the normal unit vector acting along n 
direction and μ the molecular viscosity.

The final boundary condition is reformulated based on the two 
previous equations as:

µ
τ

→∂
= − ∇ ⋅

∂
p z n                  (27)

Cartesian derivatives of z should be derived to give the final 
pressure derivative across the surface. This boundary condition allows 
finding all surface pressure values, unless one value is known onto the 
object. 

Numerical Validation of the 2-D Method 
Feature parameters 

The CCG method is applied to resolve the flow past a cylinder 
at Re number from 10 up to 100. In this range of Re numbers, two 
main flow regimes develop. Up to approximately Re=47.4 based on 
Norberg[13], the flow exhibits a steady-state behavior and separates 
from the cylinder’s surface. Beyond this first instability point, the flow 
becomes unsteady and oscillating, separating also from the cylinder’s 
surface, revealing the well-known vortex street. For consistency and 
clarity of the numerical validation, those two regimes will be examined 
separately, demonstrating clearly the performance of the method. In 
the present analysis the following basic parameters evolve: 

The Re number is defined as:

Re ρ
µ

=
Ud                    (28)

whered denotes the cylinder’s diameter and U the free-stream speed.

The dimensionless time is defined as:

* =
tUt
d

                  (29)

The drag coefficient is expressed as:

21
2
ρ

⋅
=
∫ x
s

d

P n ds
C

U d
                (30)

and the lift coefficient as: 

21
2
ρ

⋅
=
∫ y
s

l

P n ds
C

U d

                 (31)

Where P denotes the static pressure, nx the unit vector acting 
towards the x direction, ny the unit vector acting towards the y direction 
and S the object’s surface.

Steady separated laminar flow past a cylinder

Grid independency: In this flow regime, computations are 
performed at Re=10, 20, 30 and 40. The computational domain has 
dimensions 250d × 50d (Figure 16). To reduce any blockage effects, the 
ratio of the cylinder’s diameter to the domain’s width, namely blockage 
ratio, it is chosen to be equal to B=0.02 [14]. Zero cross-flow velocity 
gradient boundary conditions apply to the top and bottom boundaries, 
further mitigating the blockage effects. Mesh independency tests are 
performed to obtain converged results and to be assured that the final 
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mesh produce reliable solutions. Four grids are tested with the same 
fraction of cells discretizing the cylinder (24% of the total cells in y 
direction and 12% in x direction) and the same minimum grid spacing 
offset of the cylinder’s surface. The difference lies on the total number of 
cells generated along x and y direction. The grids have total number of 
cells starting from the coarser one: 201 × 101, 301 × 151, 401 × 201 and 
501 × 251. The criterion for convergence adopted here is the magnitude 
of the drag coefficient, as commonly used in other studies [1,14]. Table 
1 reports all values of the drag coefficient. At higher resolutions than 
401 × 201 the results converge quite well. The latter mesh appears to be 
a good compromise between accuracy and computational cost and it 
is implemented at all Re number calculations. Figure 18 plots the final 
mesh close to the cylinder.

Results and flow topology: Figure 19 plots the flow pattern at 
each Re number in this regime. As the Re increases the bubble’s length 
in the wake area increases and the flow separates earlier from the 
cylinder’s surface. Those results are in general agreement with previous 
computations and experiments [1,6,15]. The pressure distribution 
versus angle θ is plotted in Figures 20 and 21 at Re=30 and Re=40 (left 
side). The convention for angle θ is illustrated in Figure 22. Results are 
in good agreement with the experiment of Grove et al. [16] and the 
computations of Park et al. [17]. The computations of Lima E Silva 
et al. [1] deviate from the cited results and the present ones along 
the pressure side of the cylinder. In the latter study, the Immersed 
Boundary Method is implemented with a uniform grid. 

Integral loads are computed and compared with literature data 
(Figure 21). Lift coefficient is found to be zero at this regime, revealing 
a completely symmetric flow. Drag coefficient agrees very well with the 
numerical results of Sen et al. [14]. Both numerical data lie between the 
experimental drag curves of Triton [18,19].

Length of the bubble in the cylinder’s wake is also compared to 

available literature data. This length is defined as the distance of two 
stagnation points behind the cylinder (Lw in Figure 23). In the present 
study, it is determined based on the change of the axial velocity’s sign. 
Figure 16 compares the present results with the experiment of Taneda 
[15] and the numerical simulations of Lima E Silva et al. [1] and Park 
et al. [17]. The present results agree very well with the experiment of 
Taneda [15].

Figure 24 plots the separation angle as a function of the Re number. 
The angle is measured based on the convention adopted in Figure 22. 
The point, where the flow separates can be detected by the condition

0τ =w . After that point the wall shear stress τw  changes sign and 
the flow recirculates. In this plot, the present results agree well with 
results of other authors [14,20]. All simulations differ slightly from the 
experiment of Countanceau and Bouard [21]. 

Figure 17: Vectors used for computing vorticity on the object’s boundaries. 
The vector   ends to a random fluid point in this plot, but usually directs to a 
point next to the solid surface. 

Re=10
Non uniform grids with minimum dy=0.005d

Grid size Cd
201 × 101 2.6
301 × 151 2.76
401 × 201 2.85
501 × 251 2.88

Table 1: Mesh independency study.

Figure 18: Conformal Cartesian mesh consists of 401 x 201 cells, resolving 
the flow past the cylinder. The top plot is a zoomed view and the bottom a 
far-field view.

Figure 19: Flow patterns illustrated by streamlines at each examined Re 
number for the steady flow regime.
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In Nishioka and Sato experiment [19], wake velocity measurements 
were performed close and further from the cylinder area. Figure 25 

plots the dimensionless velocity versus 
y
d

, at 3=
x
d

 downstream 

of the cylinder’s center. The present computational results generally 
coincide with the measurements. Small deviations of the order 3-5% 

are observed in the middle line and at 3≥
y
d .

Unsteady laminar flow past a cylinder

Unsteady flow is resolved at Re=50, 60, 80 and 100. In this range, 
the flow is still two dimensional and unsteady with wake instabilities, 
exhibiting downstream of the cylinder the Von Karman vortex street. 

To resolve the unsteadiness of the flow, the governing Eqs. (2) and 
(3) are solved. Time advancement of the solving procedure proceeds 
with the 4th order accurate Runge-Kutta method (Eqs. (4)-(7)). 
The dimensionless time step was kept constant and is chosen to be

' 57.5 10−=dt x , which corresponds to physical time step ' 61.5 10−=dt x
s. At higher time steps it was detected inaccurate velocity distribution 
in the wake. 

Figure 20: Pressure distribution along the cylinder’s perimeter. At the right 
graph, Re=30 and at the left Re=40.

Figure 21: Drag coefficient versus Re number for the steady flow regime.

Figure 22: Schematic illustration of conventions for angle θ and bubble’s 
length.

Figure 23: Wake bubble’s length as a function of the Reynolds number for the 
steady flow regime.

Figure 24: Separation angle as a function of the Reynolds number for the 
steady flow regime.

Figure 25: Wake velocity vertical profile at Re=10 compared to measurements 
at x=3d downstream of the cylinder’s center. The velocity is scaled with the 
free-stream speed, denoted as Uf.
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Figure 26: Flow patterns illustrated by streamlines at Re = 80 and Re = 100. Instantaneous fields are plotted at the top and time 
averaged fields at the bottom of the figure.

Figure 27: Time history of the load coefficients. They oscillate at constant 
amplitude after a certain time, which varies with Reynolds number.

Figure 28: Mean pressure distribution along the cylinder’s perimeter. At the 
right graph, Re=100 and at the left Re=80.

Figure 29: Mean drag coefficient versus Re number for the unsteady flow 
regime.

The topology of the flow is shown in Figure 26, where instantaneous 
streamlines are plotted to reveal the wavy pattern downstream of 
the cylinder at Re=80 and Re=100. Although the flow significantly 
oscillates, the mean velocity and pressure field is symmetric, producing 
zero lift force. The time averaged streamlines are also plotted in the 
latter figure. The loads are computed up to dimensionless time 

' 800 2000= −t  to ensure statistical convergence for each case. Force 
coefficients are plotted in Figure 27. It is evidently shown, that the force 

coefficients oscillate with constant amplitude after significant time 
since the beginning of the fluid motion. The latter time period extends 
with decrease of Re number. At Re=50 close to the wake instability 
point, it was needed to run up to 10 s physical time to achieve statistical 
convergence.

Pressure distribution is plotted in Figure 28. Agreement is reached, 
when comparing with the results of Park et al. [17]. Lima E Silva et 
al. [1] data deviate from both aforementioned results in the same 
way as in the steady flow regime (left diagram of Figure 13). 
Unfortunately, no experimental pressure curves were found in this Re 
regime to support verification of the latter numerical results.

Drag coefficient is compared with the available data in Figure 29. In 
this range of Re number, very good agreement is reached with the other 
simulations and measurements. 

Bubble’s length could be also derived, but as a time averaged 
quantity. Indeed, during oscillations, eddies are developed in the near 
wake and shift in time the stagnation point downstream of the cylinder. 
However, if the flow is time averaged, then the structure is similar to 
those ones observed in the steady separated flow regime (Figure 19). 

Figure 30 plots the time averaged length of the eddies computed 
in the present study and Lima E Silva et al. [1] and measured in the 
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Figure 30: Wake bubble’s time averaged length as a function of the Reynolds 
number for the unsteady flow regime.

Figure 31: The computational domain is illustrated by the boundary mesh. The 
dimensions of the domain are 25d x 5d x 5d, where d denotes the cylinder’s 
diameter. 

Figure 32: Three dimensional Conformal Cartesian mesh in the vicinity of 
the cylinder’s surface, illustrated by two sections at y=d/2 and z=d/2, where 
d is the cylinder’s diameter. Surface’s transparency depicts the accurate 
intersection of the grid lines with the surface.  

Figure 33: Double section at the middle of the cylinder (y = d/2 and z = d/2) 
illustrating the flow by axial velocity contours. The Reynolds number is 10 
based on the diameter D of the channel and the dimension of the domain is 
3D x 1D x 1D.

Figure 34: Section at the middle of the cylinder (y=d/2) illustrating the flow by 
vertical velocity contours.

computations are closer to Lima E Silva et al. [1] simulations. Park et al. 
[17] results deviate approximately 10-15% from the experiment, which 
is quite astonishing based on the fact that in all other comparisons, 
the computations were found to be in good agreement with the 
experiments. 

Solution of a Three Dimensional Flow Past a Cylinder 
The method is extensible to three dimensional symmetric 

problems. In the present section only a brief description of the method 
for such flow cases will follow, since it is planned those problems to be 
addressed and validated in a separate paper. 

The author implements the well-known vorticity-velocity methods 
to solve the three dimensional Navier-Stokes equations (19), expressed 
in the following form:

21( )
Re

→
→ → →∂

+∇× × = ∇
∂

z z V z
t

                (32)experiment of Nishioka and Sato cited in [1]. Results slightly over-
predict the time averaged eddy measured in the experiment. The present 



Citation: Karabelas SJ (2015) Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method. J Appl Computat Math 4: 234. 
doi:10.4172/2168-9679.1000234

Page 14 of 15

Volume 4 • Issue 4 • 1000234
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

2
→ →

∇ = −∇×V z                   (33)

where 
→

V denotes the velocity field.

By following the above formulation, it is known that the continuity 
equation is not necessarily satisfied. In the present version of the code, a 
Helmholtz projection of the velocity field is implemented to guarantee 
the fulfillment of the continuity equation:

2ϕ
→

∇ = ∇ ⋅V                    (34)

ϕ
→ →

= −∇V V                  (35)

whereϕ represents a scalar variable, which corrects the velocity field in 
order to be solenoidal.

In all 3-D simulations, the time advancement is performed via the 
Crank-Nicolson method, which is second order accurate in time. The 
second order accurate central difference scheme is chosen to discretize 
spatially the domain. Boundary conditions for vorticity are imposed 
as a function of the velocity conditions (applying the definition of 
vorticity). These boundary conditions are consistent if and only if the 
Helmholtz projection has been applied.

The laminar flow past a cylinder with end effects, which is bounded 
by side and vertical walls is chosen to demonstrate the applicability of 
the method in 3-D domains (Figure 31). The present problem is a three 
dimensional steady flow, which develops across the channel walls and 
the cylinder’s surface. The Reynolds number based on the channel’s 
diameter is 10, the aspect ratio of the cylinder 1.0 and the blockage 
ratio 0.04. The generated mesh is shown in Figure 32 and it consists of 
3 × 105 cells. 

The results are qualitatively compared to the solution of the well-
established commercial software ANSYS Fluent 14.0 (Figures 33 
and 34). Satisfactory agreement is reached regarding the global flow 
patterns of such wall-bounded flow. Thorough validation of the 3-D 
solver is planned to be completed in a future paper and this section 
only provides general results to demonstrate the applicability of the 
method for the 3-D symmetric objects.

Conclusions and Perspectives
A novel Cartesian grid method is developed, entitled as 

“Conformal Cartesian Grids”. The Conformal Cartesian grids could 
possess full conformity with the domain’s and object’s boundaries 
and remain orthogonal everywhere. The method is easily applied to 
resolve problems related to 2-D and 3-D symmetric objects, but it 
is also possible to be extended for non-symmetric shapes. However, 
this extension requires a concrete mathematical proof for further 
applications, as it is explained in section 2.3.

Summarizing the general performance of the method, it could be 
stated that it retains almost all of the advantages of a Cartesian method, 
thus structured storage memory, low number of operations per grid 
point, low truncation error (since the mesh is fully orthogonal), 
simplicity in programming and robust grid generation. The fact that 
the boundary conditions could be imposed precisely onto the surface, 
gives a distinct advantage over the traditional Cartesian methods. 
Nevertheless, the penalty for this ideal combination of advantages, 
is that the discretization along one marching direction (e.g. axial) is 
dependent upon the discretization along the other (e.g. vertical) in 
order to retain coincidence of the grid points to the object’s surface. 
Independency of the marching directions discretization could be 
attained far from the object.

Validation of the present method’s fidelity is completed by 
resolving the flow past a cylinder at low Re numbers and comparing 
the results with extensive database of experiments and other numerical 
simulations. Results of the CCG method are found to be in very good 
agreement with measurements and previous computations.

Next steps of development will consider validation of the three 
dimensional problems and meshing around non-symmetric objects. 
Grids past arbitrary shapes constitute a great mathematical challenge 
to cope with. There are a lot of obstacles regarding the finalization of 
the mesh generation process in those problems. The extreme points 
condition already mentioned in section 2.3., could be a possible way to 
finalize the process, but it is not yet established the methodology, which 
should be followed to meet fast and efficiently this condition. 
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