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Introduction
Pollution due to pesticides attracts wide spread public concern as, 

low-dose exposure to these are increasingly linked to human health 
hazards such as respiratory dysfunction(s), immunosupression, 
hormonal disruption, diminished intelligence, reproductive 
abnormalities and increasing cancer incidences [1,2]. Chlorpyrifos, 
an organophosphate is one of the most widely used insecticides in the 
world. Route of chlorpyrifos exposure include ingestion, inhalation and 
dermal exposure, however, dietary exposures appear to be the main 
source of nonoccupational exposures to chlorpyrifos [3]. Neurotoxicity 
is the primary effect observed in chlorpyrifos toxicity [4]; however 
pulmonotoxic [5], cardiotoxic, hepatotoxic [6], immunotoxic [7] also 
hemotoxic [8] potentials of this compound have also been reported. 
Epidemiological studies linked exposure to chlorpyrifos to the onset 
of respiratory dysfunction(s) [2,9]. Experimental studies showed 
chlorpyrifos induced apoptosis in T lymphocytes [10], retina [11] and 
placental cells [12].

Lipopolysaccharide (LPS) is a principal pro-inflammatory 
component of the Gram-negative bacterial cell wall. Agricultural 
environments and other occupational settings like small food 
storing and processing settings, grain mills and textile mills showed 
high concentration of endotoxin [13,14]. Occupational exposure 
to organic dust was found to deliver 30 to 60 µg of endotoxin to the 
lung; over in eight hours work shift [15]. It has been implicated in 
number of occupational lung diseases like acute airway obstruction, 
hypersensitivity pneumonitis, chronic bronchitis and decreased lung 
function in humans, most of which are associated with organic dust 
exposure [16-18]. Earlier studies of Kitamura et al. [19] suggested that 
excessive apoptosis might be reason for acute lung injury resulting 
from LPS exposure.

Apoptosis is physiological cell death which is critical process in the 
development and the homeostasis of multicellular organism [20]. The 
process of apoptosis can be triggered by external stimuli, such as soluble 
cell death ligands released during inflammatory responses, or intrinsic 
stimuli induced by alteration of cellular function and metabolism 
[21]. Apoptosis has been implicated in the physiopathology of several 

diseases and supposed to be involved in pathological cell death [22]. 
During the process of apoptosis, there may be selective transcription of 
certain critical genes required for apoptosis, including Bax, Bcl2, p53 
and caspase-3 [23].

Therefore, present study contemplates to investigate expression 
of apoptosis related proteins such as p53, Bax and caspase-3 in 
pathophysiology of pulmonary dysfunctions putatively induced by 
chlorpyrifos and bacterial endotoxin.

Materials and Methods
Experimental animals

The experiment was conducted after approval by Institutional 
Animal Ethics Committee (IAEC), GADVASU, Ludhiana. Forty Swiss 
albino mice (8-10 week) were housed in laboratory animal cages with 
room temperature of around 18-22°C and 12:12 h light-dark cycle. The 
mice were provided feed (Godrej Agrovet Limited, Khanna, Punjab, 
India) and drinking water ad libitum. 

Chemicals

The chlorpyrifos technical grade (Minimum 96% pure) was received 
from Ravi Organics Pvt. Ltd. Muzaffarnagar (UP), India. Chlorpyrifos 
solution was prepared by dissolving known amount of chlorpyrifos in 
groundnut oil. The solution was kept in refrigerator and was brought 
to room temperature before use. Lipopolysaccharide from Escherichia 
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coli (0127:B8) was purchased from Sigma Aldrich Chemicals Pvt. Ltd. 
The solution of lipopolysaccharide was prepared by dissolving 2 mg 
of lipopolysaccharide in 2 ml of pyrogen free 0.9 % normal saline. The 
xylazine-ketamine combination anesthetic solution was prepared by 
mixing 0.5 ml (10 mg) xylazine (Xylazin®) and 2 ml (100 mg) ketamine 
(Aneket®) in 7.5 ml of isotonic normal saline. Primary antibodies 
used for immunohistochemistry were purchased from Santa Cruz 
Biotechnology Inc., USA and secondary antibody was purchased from 
Vector Laboratories, Burlington, Ontario, through local distributors.

Experimental procedure

Mice were randomly divided into four groups (10 each). Group 
C was administered groundnut oil for 30 days and challenged with 
normal saline solution at 80 µl/mice by intranasal route on day 30. 
Group CPF was administered chlorpyrifos at 3 mg/Kg BW for 30 days 
and challenged with normal saline solution at 80 µl/mice by intranasal 
route on day 30. Group LPS was administered groundnut oil for 30 
days and challenged with LPS at 80 µg/mice by intranasal route on day 
30. Group CPF+LPS were administered chlorpyrifos at 3 mg/Kg BW 
for 30 days and challenged with LPS at 80 µg/mice by intranasal route 
on day 30. Mice from all groups were anaesthetized by intraperitoneal 
administration of anesthetic at 10 mg xylazine+100 mg ketamine/
kg BW after 16 hours of LPS/ saline administration and humanely 
sacrificed. 

Immunohistochemistry

The necropsy of sacrificed mice was performed and tissue samples 
of lungs were collected in 10% neutral buffered formalin for fixation. 
Tissues were washed overnight in running tap water, dehydrated in 
ascending grades of alcohol and cleared in benzene. The 4-5 µm thick 
tissue sections were obtained on Poly-L-Lysine coated clean glass 
slides. Following dewaxing, antigen retrieval was performed by citrate 
buffer by using EZ-Retriever™ System (BioGenex Laboratories Inc., 
San Ramon, California, USA). After unmasking antigen, tissue sections 
were washed thrice with PBS (pH 7.2-7.4) for 5 minutes each time. The 
endogenous peroxidase was quenched with a solution of 3% H2O2 in 
methanol for 15 minutes at room temperature in a humid chamber, 
followed by three washings with PBS (pH 7.2-7.4) for 5 minutes each 
time. After blocking nonspecific sites with 1% bovine serum albumin 
in PBS buffer for 30 minutes, the sections were treated with primary 
antibody for overnight in a humid chamber at 4°C. The sections 
were then washed three times in PBS for 5 minutes each, followed by 
incubation in biotinylated secondary antibody for 30 minutes at room 
temperature in a humidified chamber followed by three washes with 
PBS for 5 minutes each. Then tissue sections were incubated with 
Vectastain ABC reagent for 30 minutes in a humid chamber followed 
by thrice washing with PBS for 5 minutes each. The reaction was 
visualized using a color development kit (Vector Laboratories, Ontario, 
Canada). The sections were also counterstained with hematoxylin. 
Immunohistochemical controls included incubation with normal goat 
IgG or omission of primary antibodies. The numbers of cells showing 
immunoreactivity to p53 were counted per 40X field and statistically 
analyzed by one way ANOVA. The details of antibodies used for the 
immunohistochemical studies are given in Table 1. 

Results and Discussion

In present study, the expression of three apoptosis related 
proteins such as p53, Bax and Caspase-3 were investigated by 
immunohistochemistry method.

P53
In present study, control group mice showed p53 immunoreactivity 

in few bronchial epithelial and septal cells (Figure 1). Administration 
of chlorpyrifos to mice resulted in significantly increased number of 
p53 immunoreactive bronchial epithelial cells as compared to control 
(p<0.05) and weak intranuclear and intracytoplasmic expression of 
p53 in bronchial and septal epithelium (Figure 2). Wu et al. reported 
increased expression of p53 in brain of rats treated with insecticide 
deltamethrin [24]. Chen et al. [25] reported increased mRNA 
expression p53 in lung epithelial cells exposed to herbicide paraquat. 
Reports of Uzun et al. [5] showed chlorpyrifos induced oxidative stress 
in lungs of rats. Increased reactive oxygen species and subsequent DNA 
damage might be a reason for expression of p53 in lung of mice, which 
in consonance with the observations in the present study.

In present study, intranasal LPS challenge to mice resulted in 
significant increase in number of p53 immunoreactive bronchial 
epithelial cells and cells of alveolar septa as compared to control and 
chlorpyrifos treated mice (p<0.05) and there was weak intranuclear and 
cytoplasmic immunoreactivity of p53 in these cells (Figure 3). These 
results are in unison with finding of Vernooy et al. [26] who reported 
DNA fragmentation and apoptosis in bronchial epithelial cells after 
intratracheal instillation of LPS in mice. Animals treated with both 
chlorpyrifos and LPS showed significant increase in number of p53 
immunoreactive cells (p<0.05) as compared to control and chlorpyrifos 
treated mice. The bronchial and septal epithelia cells showed moderate 
expression of p53 (Figure 4). These results showed synergistic effect of 
chlorpyrifos and LPS on expression of p53 in lung of mice. 

Antibody used Manufacturer Dilution Secondary antibody

Rabbit anti Bax Santa Cruz Biotechnology 
Inc., USA (sc-526) 1:50 Biotinylated universal 

antibody raised in horse 
(Vectastain PK 6200; 
Vector Laboratories, 
Burlington, Ontario)

Rabbit anti P53 Santa Cruz Biotechnology 
Inc., USA (sc-6243) 1:50

Rabbit anti 
Caspase-3 

Santa Cruz Biotechnology 
Inc., USA (sc-7148) 1:50

Table 1: Details of antibodies used for the immunohistochemical studies.

Figure 1: Section of lung from group C showing no p53 immunoreactivity. IHC. 
40X.

Figure 2: Section of lung from group CPF showing weak p53 immunoreactivity. 
IHC. 40X.
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(Figure 8), few cells of alveolar septa and in alveolar macrophages. The 
expression was higher as compared to other groups. Number of cells 
showing the reaction were also higher. 

The members of Bcl-2 family protein are important regulators 
of apoptosis and have key role in the pathogenesis of the pulmonary 
inflammation, fibrosis and apoptosis [37]. Among the Bcl-2 family 
proteins, Bcl-2 was identified as a repressor gene of apoptosis [38] while 
Bax was identified as a promoter of cell death whose pro-apoptotic 
function was directly antagonized by Bcl-2 through formation of Bax/
Bcl-2 heterodimers [39]. These Bcl-2 family proteins are localized in 

Xenobiotic including insecticides and endotoxin induced 
production of reactive oxygen species, which resulted in generation 
of oxidative stress [27-29]. Oxidative stress causes depletion of 
mitochondrial energy, induction of proteolytic enzymes, DNA 
fragmentation and apoptosis [11,30] at intermediate concentrations 
but induce necrotic cell death at higher concentrations [31]. The 
normal p53 acts as suppressor of cell growth but in the cells, which 
have irreparably damaged DNA, p53 promote apoptosis or allow the 
cells to proliferate [32]. Over expression of p53 induce apoptosis in 
various cells types [33]. In present study, p53 expressed in both in 
nucleus as well as in cytoplasm. Studies with other compound showed 
that cytoplasmic localization of p53 can trigger apoptosis through 
activation of Bax [34]. 

Bax

Control group showed very weak cytoplasmic immunoreactivity 
to Bax (Figure 5) in the bronchial epithelium. Administration of 
chlorpyrifos resulted in weak to moderate cytoplasmic expression 
of Bax in bronchial epithelium (Figure 6) and in few cells of alveolar 
septa of lungs as compared to control. In chlorpyrifos treated mice, 
cytoplasmic immunoreactivity for Bax in bronchial epithelium was 
higher as compared to control. Kashyap et al. [35] reported increased 
levels of protein and mRNA expression of Bax, p53 in PC12 cells 
treated with organophosphate insecticide monocrotophos. Similarly, 
Chen et al. [25] reported increased mRNA expression of Bax in lung 
epithelial cells exposed to herbicide paraquat. Wu et al. [24] reported 
increased expression of Bax in brain of rats treated with deltamethrin.   

Intranasal administration of LPS to mice showed weak to moderate 
cytoplasmic immunoreactivity for Bax in bronchial epithelium 
(Figure 7) and in few cells of alveolar septa and expression higher 
as compared to control and chlorpyrifos treated groups. Reason for 
increased expression of Bax might be endotoxin produced oxidative 
and subsequent activation of Bax and release of cytochrome C [36]. 

Mice treated with both chlorpyrifos and LPS showed moderate to 
intense cytoplasmic immunoreactivity for Bax in bronchial epithelium 

Figure 3: Section of lung from group LPS showing weak p53 immunoreactivity. 
IHC. 40X.

Figure 4: Section of lung from group CPF+LPS showing weak to moderate p53 
immunoreactivity. IHC. 40X.

Figure 5: Section of lung from group C showing very weak Bax immunoreactivity. 
IHC. 40X.

Figure 6: Section of lung from group CPF showing weak Bax immunoreactivity. 
IHC. 40X.

Figure 7: Section of lung from group LPS showing moderate to intense Bax 
immunoreactivity. IHC. 40X.

Figure 8: Section of lung from group CPF+LPS showing intense Bax 
immunoreactivity. IHC. 40X.
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the mitochondrial membrane and regulate apoptosis by controlling 
release of cytochrome C into the cytosol [33]. The cells in which Bax 
is over expressed, the susceptibility of cells to apoptotic stimuli is 
enhanced and Bcl-2 over expression show reduced susceptibility of 
cells to apoptosis. Thus, Bax/Bcl-2 ratio determines the susceptibility of 
a cell to apoptosis [39,40].

Caspase-3

Control group mice showed negative to weak immunoreactivity 
for caspase-3 (Figure 9) in lung of mice. Mice administered with 
chlorpyrifos showed weak immunoreactivity for caspase-3 in bronchial 
epithelium, cells of alveolar septa and alveolar macrophages as 
compared to control (Figure 10) and expression was high as compared 
to control group. Previous studies also reported chlorpyrifos induced 
caspase-3 mediated apoptosis in human T cells [10]. Kashyap et al. [35] 
reported increased levels of protein and mRNA expression of caspase-3 
in PC12 cells exposed organophosphate insecticide monocrotophos. 
There was weak immunoreactivity for caspase-3 only in cells of alveolar 
septa because chlorpyrifos mediated apoptosis is partially mediated by 
activation of intracellular caspase-3 [10], and is in conformity with the 
observations of present studies.

Intranasal challenge with LPS resulted in weak to moderate 
immunoreactivity for caspase-3 in bronchial epithelium, cells of 
alveolar septa and alveolar macrophages (Figure 11) and expression was 
higher as compared to control group. These findings are in accordance 
with Kawasaki et al. [41] and Z’graggen et al. [21]. Z’graggen et al. [21] 
reported increased caspase-3 in alveolar macrophages, neutrophils, 
tracheobronchial as well as alveolar epithelial cells after in vitro 
endotoxin stimulation. Apoptotic response induced by bacterial 
endotoxin may produce acute lung injury [19,41].

Mice administered with chlorpyrifos and subsequently challenged 
with LPS showed moderate to intense immunoreactivity for caspase-3 
in bronchial epithelium and cells of alveolar septa but weak to moderate 
immunoreactivity in alveolar macrophages (Figure 12). Bronchial 

epithelium showed higher expression of caspase-3 as compared to 
other treatment groups. 

The intrinsic apoptosis pathway triggered by Bcl-2 and the extrinsic 
pathway of apoptosis initiated by ligation of death activators such as 
TNF, Fas ligand and TNF-related apoptosis inducing ligand result in 
activation of caspase-3 [21], which is known to activate endonuclease 
and induce DNA fragmentation [42].

The reports of previous studies suggested that there might be 
a distinct process inducing transcription of certain critical genes 
including Bax, Bcl-2, p53 and caspase-3 required for apoptosis [23]. 
Combined exposure to chlorpyrifos and LPS produced synergistic 
effect on expression of apoptosis related proteins such as p53, Bax 
and Caspase-3 in lung of mice. From the results of present study, it 
is concluded that apoptotic response exhibited by over expression of 
p53, Bax and caspase-3 in lungs of mice exposed to chlorpyrifos and 
endotoxin may have paramount role in pathophysiology of pulmonary 
dysfunctions, as is evident this over expression of apoptosis related 
proteins in the present study.
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