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Abstract

Understudying epigenetics underlying mechanisms is essential. Studies have indicated functional roles of
epigenetic events, including DNA methylation and histone modifications, in human disease, stem cell growth and
development, aging, response to environmental stresses, and species evolution. High-throughput sequencing
techniques alongside routine experimental approaches have rapidly produced a bulk of data that the major part of
them remained unprocessed. To analyze, interpret, and process of these data, availability of efficient computational
methods is critical. Epigenetic data analysis is complex and difficult because these data contain multi-layer set of
information. The methods implemented to this purpose must be able to handle massive data of experimental works
and process the epigenetic layers. Furthermore, the methods must be capable of integrating multiple modifications
and their combination effects on chromatin conformational structure and consequently the expression network of
genes. In this study, we briefly reviewed challenges in the way of the computational epigenetics, the latest reported
methods, and significant biological results derived from Appling computational-based methods on epigenetic data.
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Introduction
The importance of epigenetics in biology and medicine is clear to

every scientist who works on pertinent fields. Epigenetics refers to any
mechanisms by which gene expression is altered without any changes
in DNA sequence. Many studies have found association of epigenetics
with many diseases, stem cell functions, immunology, growth and
development, responding to stress, species conservation, evolution,
aging etc. [1-3]. These implications of epigenetics events have revealed
an essentiality of understanding epigenetics and epigenomics-
epigenetic changes across the genome- especially its underlying
molecular mechanisms.

DNA methylation is a well-known epigenetic process in which a
methyl group (CH3) is added on cytosine bases. The process
particularly occurs at CpG islands where cytosine bases are highly
concentrated. The multiple DNMT proteins mediate adding the methyl
group at cytosine bases. Histone modification is another epigenetic
process. The modifications of histones such as methylation,
acetylation, phosphorylation, sumoylation and ubiquitination, alter the
genome structural configuration, leading to gene expression changes at
affected regions. Actually, the configurational changes provide/limit
transcription factor accesses. Electrostatic interactions between
histones and DNA are underlying powers to create structural changes
[3-5]. The studies conducted during the past 20 years have indicated
that the molecular mechanisms of causes and consequences of
epigenetics are more complex and there is need to investigate on many
unknown prospects.

Some of the common experimental methods include ChIP (ChIP-
on-chip combine chromatin immunoprecipitation) that is a method to
detect differences between sample and control DNA. In this method,
formaldehyde is first used to cross-linking DNA-bound proteins to the
DNA. Then, histones are fragmented into about 500 base pairs, that
each of these fragments with epigenetic modifications separated by
antibodies. Finally, the nucleotides are released from the separated
fragments and used to be hybridized with microarray data to find
epigenetic modifications [6]. MeDIP (ChIP-on-chip that is called
methyl-DNA immunoprecipitation) is a varied method of ChIP in
which antibodies are used against methylated cytosines. This method is
widely used to find DNA methylation [7]. ChIP-seq uses high-
throughput DNA sequencing instead of hybridization process and is
more accurate and cheaper than its primary forms, described earlier
[8]. For more methods and detailed information refer to review by [9].
Bisulfite sequencing is a high-resolution method that is able to detect
DNA methylation patterns. In spite of high resolution and efficiency,
this method is expensive [10]. These methods integrated with several
protocols have widely been used. The majority of protocols to assess
epigenetic events are based on some of the following basics: (i)
techniques to inhibit DNA methylation and assess DNA methylation
activity, (ii) chromatin immunoprecipitation based protocols, (iii) in
vivo RNA-Protein interaction assessment, and (iv) knockdown of
histone deacetylases [11]. Besides experimental works, bioinformatics
tools and computational biology have made remarkable advances in
elucidating epigenetic events. Various bioinformatic tools and
computational methods have been developed for managing, handling,
and analyzing different epigenetic data and many researches have been
conducted in this context (Figure 1).

The importance of computational-based methods in the epigenetic
fields has essentially been revealed after emerging high-throughput
sequencing techniques that have accumulate the bulk of unannotated
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data. Indeed, computational methods are need not also for interpreting
data resulted from experimental works but for genome-wide analysis
of the genome for specific sequences responsible for epigenetic
modifications. Increasing large-scale dataset has enriched analysis
related to epigenetics, but also it has made it more complex and further
outline crucial roles of computational tools in this regard. Here, we
briefly reviewed the computational epigenetics and the latest
bioinformatic methods developed to study epigenetic causes and
consequences.

Figure 1: Number of literatures related to epigenetics and
computational approaches published between the years 2008 to
2017. The keywords used for search were epigenetics, DNA
methylation, histone modifications, computational approaches, and
modeling methods. A number of hits for epigenetics + machian
learning search were 65 literatures. The search was performed at
PubMed.

The Challenges and Opportunities of Computational
Epigenetics
The combination of computer science, statisticians, physicists, and

computational biology constitute computational epigenetics. The aim
of computational epigenetics is to design and develop computational-
based methods and programs to analyze data resulted from
experimental works on epigenetics [12]. Data of epigenetic researches
encompass multiple layer of regulatory mechanisms and clues that
must mainly be extracted from high-throughput sequencing
techniques [13]. This makes complexes and difficulties to establish
computational-methods. However, the methods must address available
issues related to (1) the experimental methods such as background
read problem in ChIP-seq [14], (2) analytic approaches [15], (3)
methods to integrate interplay of other compounds, such as
microRNAs, with epigenetic regulation [16], and (4) the biased data
resulted from the experimental mythologies such as profiling DNA
methylation by MBD-seq [17]. In addition, there is more space for
computational methodologies to open insight on protein-protein
interactions, to decrease cost of epigenome mapping, to theoretically
modeling of epigenetic mechanisms, and to improve statistical genome
browsers [18].

Data Sources
Databases are one of the main places that information related to

epigenetics could be accessed. MethDB contains information about
DNA methylation and methylation patterns in many species. PubMed
contains text-type file of more than thousands scientific articles related
to methylated and other types of epigenetic modifications. REBASE is
a database that connected to GenBank database. Genes responsible to
encode DNA methyltransferases have deposited in this database.
Epigenetic data related to human chromatin and disease could reach in
MeInfoText, MethPrimerDB, The Krembil Family Epigenetics
Laboratory and MethyLogiX DNA methylation database. Of other
useful databases, we could mention to The Histone Database,
ChromDB, CREMOFAC, The National Human Genome Research
Institute (NHGRI)'s Histone Database, The National Center for
Biotechnology Information (NCBI)'s Gene Expression Omnibus
(GEO), The Gene Normal Tissue Expression (GeneNote) database,
DNA Data Bank of Japan (DDBJ), and The BloodExpress database
[12].

Computational Analysis of Epigenetic Data
There is a variety of computational-based approaches to analyze,

modulate, and predict epigenetic modifications in given sequences. In
the case of detecting DNA methylation, efforts have mainly devoted to
discover of methylated CpG islands and allele specific cytosine
methylation. The CG dinucleotides are mostly scarce throughout
genome, especially in vertebrates [19] and mainly clustered in the
regions called CpG islands (CGIs). These rich regions with CG
dinucleotides, CGIs, are interestingly located at the promoter of coding
and non-coding genes, making them very attractive for researchers
[19,20]. Because altering DNA methylation patterns of CGIs play
essential roles in controlling the gene expression and silencing in
various biological processes, such as X-chromosome inactivation,
imprinting, silencing of intragenomic parasites [21,22] and especially
in the epigenetic causes of cancer [21]. Due to CGIs essential
implications in mentioned processes, multiple algorithms (either
specific species or general purpose) have been developed to identify
CGIs in the genomes. In this context, Gardiner-Garden and Frommer
were the first who used an algorithm to study CGIs and G+C content
in the genome of vertebrates. Subsequently, many other methods based
on different algorithms had been developed [23-25]. Of these methods,
artificial neural networks (ANN) and support vector machines (SVM)
have broadly been used to analyze DNA methylation. Marchevsky et al.
trained ANN with molecular data in order to classify lung cancer cells
based on DNA methylation marker. They provided evidence that ANN
could be used as a powerful approach for detecting DNA methylation.
Das et al. indicated that SVM could predict methylation status of CpG
regions with accuracy of 86%. They used this method to depict
methylation patterns of all 22 human autosome chromosomes. The
methods such as hidden Markov models (HMM), logistic regression,
K-nearest neighbors and decision trees have also been used for this
purpose [26,27], for example Barazandeh et al. disclosed significant
correlations between CGI density and genomic features such as
chromosome size, GC content, ObsCpG/ExpCpG, gene density and
recombination rate in cattle. However, these methods were suffering
from several disadvantages. First, these methods lacked systematic
selection methods for a length threshold [28]. Second, they were
unable to detect weak CpG islands [29]. Third, they were sequence-
based to identify CpG islands and failed to distinguish between
genuine CpG islands and CpG-rich regions [30]. To overcome these
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drawbacks, Bock et al. suggested epigenome prediction method and
used integrates DNA methylation, polymerase II preinitiation complex
binding, histone H3K4 di- and trimethylation, histone H3K9/14
acetylation, DNase I hypersensitivity and SP1 binding as criteria to
map CpG islands. Their method could distinguish between weak and
stronger CpG islands and use feathers of genomic DNA sequences and
epigenome [31].

In respect to modifications of CGIs, the methylation is not only
modification. Studies on the mammalian genome have demonstrated
that in addition to methylation, there are other forms of modification
including hydroxymethylation, formylation, and carboxylation [32,33].
The specific roles of these type modifications are still little known, but
it has been hypothesized that these types might be intermediate steps
during methylation and demethylation processes or even they may
have own implication in diseases [34,35]. Furthermore, the three high-
resolution structure of chromatin revealed two methylations, two
hydroxymethylations, and five formylations have effects on DNA
dodecamers, while methylation and hydroxymethylation alone have
not any effects on the geometry of DNA [36,37]. These imply this fact
that for fully understanding of CGI modification effects on chromatins
structure; consequently, altering expression of genes it is critical that
analyzing methods must include all of the modification possibilities.
One of the computational methods that meet these criteria is reported
by Krawczyk et al. in which they extended Natural Move Monte Carlo
to simulate the conformation changes of chromatin as consequence of
epigenetic modifications [38].

In the case of prediction, modeling and analysis of histone
modifications, some methods have reported, such as simplified
stochastic model [39], genome-wide chromatin analysis [40], and
genome-wide mapping [41]. From the machine-learning methods have
been used to detect histone modifications (acetylation, methylation,
phosphorylation) we can mention to HMM approach [42], using
chromatin signatures [43], model based on the prediction of pH-
dependent aqueous solubility [44], and HMM based on the domain-
level behavior [45]. Benveniste et al. recently showed that histone
modification prediction could achieved from knowledge of
transcription factor binding at both promoter and distal regulatory
elements. Furthermore, the methods such as QSAR analysis, homology
modeling, and molecular docking methods have used for detecting
histone modifications [46-48]. These tools have well been used for
deciphering epigenetic effects on various biological processes.
Furthermore, using interaction between epigenetic, genetics and
environment can improve estimation of breeding values and reduce
their biases [49].

The histone code hypothesis [50] articulates that the roles of histone
post-translational modifications (PTM) are well descripted when the
combinations and sequences of histone PTMs are accounted. Based on
this hypothesis, several computational methods were developed for
identification of histone modifications. ChromaSig and ChromHMM
are two computational methods have been developed for this purpose
[51,52]. These methods are based on multivariate Hidden Markov
Models and are able to show histone modifications and chromatin
statues. Given that only subsets of the histone PTM combinations take
place in nature, the later approaches were developed based on partial
correlations and maximum entropy modeling. These methods have
been used for identification of pairwise and high-order interactions
between chromatin factors [53].

Computational Epigenetic Research
Computational methods have remarkably helped to explore

molecular mechanisms of epigenetics and its association with
biological processes. Cancer is one of the field that computational
epigenetics has widely been used. It has been indicated that DNA
methylation patterns in cancer are variable and tumor type specific. To
elucidate DNA methylation pattern in cancer, several computational
approaches have been used, such as using regression models to analyze
DNA methylation profile [54], using SVM to analyzed DNA
methylation in tumor class [55], and using Manhattan distance and
average linkage algorithms for CpG island pattern analysis of human
colorectal tumors [56].

Stem cell is another field that computational epigenetics have widely
used. Recent studies have revealed unique epigenetic profiles of
embryonic stem cells, as reviewed by Spivakov and Fisher. Walker et al.
formulated novel networks that indicate gene response of key
developmental regulators in embryonic stem cell and could predict the
outcomes of genetic manipulation in this network. They used temporal
expression microarray analyses and known genome-wide transcription
factor to construct the networks. In another study, Ringrose et al. used
computational-based method to successfully identify 167 candidate
Polycomb/Trithorax response elements (PRE/TREs). These elements
are involved in development and cell proliferation [57-59].

Neurodegenerative and autoimmune diseases are two another
important diseases that have been studied using a computational based
method to find epigenetic factors responsible for the diseases [60]. Irin
et al. in this study proposed a computational method able to explain
the functional consequences of epigenetic modification. The method,
called BEL (Biological Expression Language), is capable of integrating
literature-derived information into network model. Moreover, it is
possible to apply Reverse Causal Reasoning (RCR) algorithms, which
support identification of mechanistic hypothesis from related network
model.

Concluding Remarks and Outlook
Many high-throughput sequencing technologies open new era for

epigenetic research. To handle millions of these data, many
computational tools have been developed. There are, however, issues
that the computational tools have to address. Computational methods
must be especially able to integrative analysis of epigenetic layers.
These methods could remarkably improve our knowledge of complex
regulatory processes and interconnections by which epigenetics works.
It has been observed that even small networks with few components in
epigenetic events tend to behave in complex and unexpected manners.
Therefore, there is need to build up systematic and focused modular
approaches to elucidate fundamental understanding of epigenetics.
Some methods developed for analyzing literature-derived data are not
efficient in showing epigenetic modifications at gene level so extending
these methods should be considered.

It is expected that in the future the computational methodologies
shift for being able to (i) interpret data so that can be used in
quantifying the disease risks and driving therapeutics, (ii) draw
meaningful inferences of epigenetic modifications in diseases, (iii)
develop novel approaches for new powerful epigenome-editing and
high-throughput experimental methodologies, and (iv) integrate the
combination of the computational methods, especially machine
learning approaches. It could likely be result to deepen our
understanding of epigenetic mechanisms.
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