

Editorial on Composite Materials

Noura Dosoky

Department of Chemistry, University of Alabama in Huntsville, USA

Editorial

A composite material is one that is made up of two or more constituent components. These constituent components have chemical or physical properties that are noticeably different, and they are combined to generate a material with features that are not present in the individual constituents. Individual components are combined to form composite materials. Constituent materials are the individual materials that make up a product, and there are two types of them. The matrix is one, and reinforcement is the other. At the very least, a part of each type is required. As the matrix surrounds the reinforcement and maintains its relative locations, the reinforcement receives support from the matrix. As the reinforcements transmit their remarkable physical and mechanical qualities, the matrix qualities improve. It must be formed to shape the engineered composites. The reinforcement is either applied to the mould surface or inserted into the mould cavity.

Wetting, mixing, or saturating the reinforcement with the matrix is usually part of the composite fabrication process. After then, the matrix is forced to form a stiff structure. The operation is usually carried out in an open or closed forming mould. The order and methods of introducing the elements,

on the other hand, differ significantly. Advanced fibre placement (Automated fibre placement), fiberglass spray lay-up technique, filament winding, lanxide process, customised fiber placement, tufting, and z-pinning are some of the processes used to fabricate composites.

On a macroscopic or microscopic scale, composites might fail. In compression buckling, compression failures can occur on a macro scale or at the level of each individual reinforcing fibre. Tension failures can be net section failures of the part or microscopic degradation of the composite where one or more layers in the composite fail in tension of the matrix or failure of the matrix-fibre link. Some composites are brittle and have limited reserve strength after the initial beginning of failure, whereas others can have substantial deformations and have reserve energy absorbing capability beyond the initial onset of damage.

Composites are tested both before and after they are built to help forecast and prevent faults. For ply-by-ply study of curved surfaces and anticipating wrinkling, crimping, and dimpling of composites, pre-construction testing may use finite element analysis. Non-destructive technologies such as ultrasonic, thermography, shearography, and X-ray radiography, as well as laser bond inspection for NDT of relative bond strength integrity in a confined area, can be used to test materials during manufacturing and after construction.

How to cite this article: Noura Dosoky. Editorial on Composite materials." Chem Sci J 12 (2021): 232

***Address for Correspondence:** Noura Dosoky, Department of Chemistry, University of Alabama in Huntsville, USA. E-mail: nouradosoky@gmail.com

Copyright: © 2021 Dosoky N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.