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Introduction

The majority of living things have cytosolic Glutathione S-transferase 
(GST) isozymes, which were first discovered in rat liver in the early 1960s. 
Since then, GSTs have drawn a lot of study interest due to their numerous 
functions, including the detoxification of reactive electrophiles, cell signalling, 
anti-apoptotic activity and pro- and anti-inflammatory responses. According to 
their subcellular location, the GST enzymes are classified into three types: 
membrane-bound microsomal, mitochondrial and cytoplasmic. The scientific 
community is currently preparing to use novel methodologies to evaluate 
the association between GSTs and cancer risk or progression, which may 
ultimately present novel and exciting options for target discovery and 
therapeutic development. In this review, we provide a brief overview of the 
composition and functioning of mammalian GSTs. 

Description

The largest and most diverse group of GSTs is the cytosolic enzymes 
found in humans. There are at least eight different isoenzymes that make up 
these phase II detoxification enzymes: Alpha (A), Kappa (K), Mu (M), Omega 
(O), Pi (P), Sigma (S), Theta (T) and Zeta (T) (Z). The four distinct classes of 
this superfamily, beta, delta, phi and tau, are also found in bacteria, insects 
and plants. Members of the GST family have been the subject of numerous 
studies and it is evident that these molecules have advanced considerably 
[1,2]. Researchers are now urged to consider GSTs in ways other than their 
conventional role in drug detoxification as a result.

Every organ has a distinct GST profile because different GST genes 
appear to express differently in various tissues and cell types. It was noticed 
that while GSTP1 is more abundant in extrahepatic tissues, GSTA1 expression 
is highest in the liver, kidney and testicles. GSTT1 is expressed predominantly 
in kidneys and liver. GSTP1 generally seems to be expressed more strongly in 
proliferating cells than in differentiated cells. Chromosome 6p has a group of 
five GSTA (or alpha) genes, Chromosome 1p has a group of five GSTM (or mu) 
genes, Chromosome 10q has two GST-omega genes, Chromosome 11q has 
two GST-theta genes and Chromosome 14q has one GSTZ1 gene. Within the 
collection of functional genes, pseudogenes are frequently located in various 
chromosomal regions [3]. 

The light scattering results from the subsequent study of GSTP's 
interaction with 1-Cys peroxiredoxin confirmed that the active complex is a 
heterodimer made up of equimolar quantities of two proteins. This work also 
demonstrated that, in the presence of potassium bromate, GSTP is dissociated 
to monomer while maintaining its catalytic activity [4].

It has been shown that the dimermonomer equilibrium shifts toward the 

monomer by eliminating the charges at the subunit interface of GSTP, namely 
Arg70, Arg-74, Asp-90, or Asp-94 [5]. Additionally, it was shown that the 
monomer of GSTP maintains its catalytic activity because to the predominance 
of GSH and electrophilic substrate sites inside each subunit.

Furthermore, it was shown that Tyr-198 phosphorylation at the C-terminal 
region of GSTP by EGFR causes the dimer-monomer equilibrium of GSTP to 
shift to the monomeric form, where it binds to JNKs and inhibits downstream 
signaling. Together, these results show that there is still disagreement on the 
dimer-monomer transition of GSTs. However, several real-world examples of 
monomeric GSTP interacting with other proteins provide compelling evidence 
that monomeric GSTs are real and capable of catalysis.

Water, electrolyte and waste excretion are all regulated by the kidneys. 
Additionally, they support red blood cell production, bone calcification and 
systemic blood pressure (BP). The kidney has its own autocrine and paracrine 
signalling pathways in addition to responding to external hormonal cues. 
Depending on the disease, these signalling pathways may be maladaptive or 
adaptive during normal physiological function. To respond to physiologic and 
pathophysiological changes, they facilitate communication among podocytes, 
vascular endothelium, stroma and epithelial cells at various levels of the 
nephron [2]. With a focus on recent developments, this article reviews our 
current understanding of the signalling mechanisms among tubular, interstitial, 
vascular and glomerular cells. We'll talk about the importance of these systems 
for treatment, disease and health [6].

The kidney contains ETA and ETB, two groups of recognised endothelin 
receptors. Both are expressed in the inner medullary collecting duct, enabling 
these cells to engage in autocrine and paracrine signalling. When osmotic 
water permeability is induced by increased arginine vasopressin (AVP), ET-1 
and its receptors provide negative feedback control. Both collecting ducts and 
thick ascending limbs (TALs) contain ETB receptors and when these receptors 
are stimulated by ET-1, nitric oxide synthase is stimulated and NaCl transport 
is inhibited (NOS). Nitric oxide production is increased and this reduces the 
activity of epithelial sodium channels (ENaC) and Na+K+-ATPase in the 
collecting ducts and distal convoluted tubules.

Elevated urinary albumin excretion, reduced glomerular filtration rate 
(GFR) and progressive decline in kidney function, which ultimately results 
in end-stage kidney failure, are clinical features of DN. The pathogenesis of 
DN is primarily influenced by changes in intracellular metabolism brought on 
by hyperglycemia, such as the buildup of advanced glycation end products 
(AGEs), activation of protein kinase C and oxidative stress. The polyol 
pathway's increased glucose flux is a major contributor to oxidative stress. The 
diacylglycerol (DAG)-PKC pathway is also activated by chronic hyperglycemia 
and it plays a role in the control of vascular permeability, vasoconstriction, 
ECM synthesis and turnover, cell growth, angiogenesis, cytokine activation 
and leukocyte adhesion [7]. 

Conclusion

It is clear that the significance of GSTs, in particular GSTP, in the 
emergence of cancer is growing. The overexpression of GSTP found in many 
chemoresistant cancer types has contributed to the link between GSTP and 
cancer. However, from a functional standpoint, it was discovered that most 
anticancer medications are poor substrates for GSTP1 and have weaker 
catalytic constants for GSTP1 conjugation reactions. As a result, attention has 
shifted to GSTP's involvement in a number of cellular functions, especially 
in the regulation of various kinases and the post-translational process of 
S-glutathionylation of a number of proteins.
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