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metabolites. Therefore, we considered potato tuber flesh colour as 
the phenotypic trait of interest, the response in our regression and a 
large metabolomics data set as the set of predictor variables. For tuber 
flesh colour, there is a well-established relationship to the carotenoid 
pathway, and especially to beta caroteen [10], therefore, compounds 
related to this pathway are expected to be observed in a top list or 
selected set of predictive variables.

We apply a double cross validation scheme to include optimization 
of any hyperparameters needed in the models and allow estimation of 
prediction error. 

We apply different regression methods: ridge regression (RR) [11], 
LASSO [12], elastic net (EN) [13], principal component regression 
(PCR) [14], partial least squares regression (PLS) [15], sparse PLS 
regression (SPLS) [16], support vector regression (SVR) [17] and 
random forest regression (RF) [18].

We use univariate regression as a reference and compare the results 
of univariate regressions with multiple regression methods. We also 
study the properties of these methods both from a theoretical point 
of view, as well as their performance in practical situations in terms 
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Introduction
High-throughput technologies like microarrays [1,2], mass 

spectrometry (e.g. LC-MS, GC-MS) [3,4] and protein chips [5-7] have 
gained much interest in the biological domain. These techniques allow 
one to measure thousands of variables (genes, metabolites, proteins) 
simultaneously. The data generated by these techniques are often 
denoted as ~omics data [8]. These data sets are generally very large in 
terms of the number of variables (p) and often small in terms of the 
number of the biological samples (n). In statistics, this problem is often 
termed as the “large p and small n problem” (p>>n). In such wide data 
sets, there will be collinearity due to p>>n [9], but also because of high 
correlations due to common biological functions (e.g. metabolites in 
the same pathway).

In many of these ~omics situations, one wants to find functional 
relationships between a phenotypic traits of interest and the ~omics 
variables, and often the interest would also be in selecting a smaller 
subset of the variables that have good prediction of the trait. Even if the 
prediction is not very strong, the top ranked or selected variables may 
still be meaningful with respect to having a functional relationship to 
the phenotypic trait. 

In traditional statistical methods, multiple linear regression 
techniques are used for prediction situations such as outlined above, 
but due to the high collinearity, these methods cannot be applied. 
Therefore, we need different approaches: penalization regression 
methods or machine learning methods. 

We wanted to compare the different methods on real data, but 
we still wanted to be able to infer whether results were biologically 
meaningful, so we chose a trait for which a fair amount of information 
is already available, including a possible relationship to underlying 
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Background: In this study, we compare methods that can be used to relate a phenotypic trait of interest to an 

~omics data set, where the number or variables outnumbers by far the number of samples. 

Methods: We apply univariate regression and different regularized multiple regression methods: ridge regression 
(RR), LASSO, elastic net (EN), principal components regression (PCR), partial least squares regression (PLS), sparse 
partial least squares regression (SPLS), support vector regression (SVR) and random forest regression (RF). These 
regression methods were applied to a data set from a potato mapping population, where we predict potato flesh colour 
from a metabolomics data set. 

Results: We compare the methods in terms of the mean square error of prediction of the trait, goodness of fit of the 
models, and the selection and ranking of the metabolites. In terms of the prediction error, elastic net performed better 
than the other methods. Different numbers of variables are selected by the methods that allow variable selection but 
seven variables were in common between LASSO, EN and SPLS. SPLS performed better than EN with respect to the 
selection of grouped correlated variables. 

Conclusions: Four out of these seven variables selected by LASSO, EN, SPLS were putatively identified as 
carotenoid derived compounds; since the carotenoid pathway is important for flesh colour of potato, this indicates that 
meaningful compounds are selected. We developed a web application that can perform all the described methods, and 
that includes a double cross validation for optimization of the methods and for proper estimation of the prediction error.
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of variable selection [19], or ranking of the variables, grouping of 
correlated variables in variable selection [13], and the prediction error. 
Regarding the grouping of correlated variables, we are interested in 
finding out whether in the variable selection methods (LASSO, EN, 
SPLS) variables are selected as a group or not, and we also compare 
regression coefficients of these correlated variables. In addition to the 
real data, we used simulated data to study the selection and grouping 
properties of the methods with respect to highly correlated variables.

So far in literature, comparison studies are usually focused on 
classification methods instead of regression methods [20], and data 
used in these studies often were transcriptomics data [21,22]. In the 
context of regression, Kiers and Smilde [9] did a comparison of various 
multiple regression methods on simulated data with collinear variables, 
but their study was mainly focused on prediction and comparison of 
the regression coefficients when predictor variables are collinear. 
Menendez et al. [23] reported comparison of stepwise linear regression, 
LASSO, EN and RR, but did not cover other penalization methods, 
such as SPLS, PLS, PCR, RF and SVM. We compare these methods 
(RR, EN, LASSO, SPLS, RF, SVM, PLS, PCR), in terms of mean square 
error of prediction, goodness of fit, variable selection and the ranking 
of the variables. In addition, we developed a web application Omics 
Fusion with all the methods mentioned, including a double cross 
validation procedure. This website can be accessed from: http://www.
plantbreeding.wur.nl/omicsFusion/

Materials and Methods
Plant material

Ninety-one individuals from a diploid mapping population of 
potato (denoted as CxE) were used in this study. Clone C is a hybrid 
between Solanum phureja and Solanum tuberosum. Clone E is the result 
of a cross between Clone C and Solanum vernei [24]. All clones were 
grown in the field, Wageningen, The Netherlands in 1998. For each 
genotype, tubers from two plants were collected and representative 
samples from these tubers of each genotype, were used for phenotypic 
analysis directly after harvest, and for LC-MS. 

Evaluation of phenotypic traits

Many quality traits were collected for this potato population [24-
26]. In this study, we used one well-studied phenotypic trait (potato 
tuber flesh colour), allowing better to compare methodology and to 
be able to verify the obtained results. Potato tuber flesh colour was 
visually scored on a scale from 1 (white) to 9 (dark yellow/orange) in 
three repeats, consisting of two plants each. Flesh colour scores were 
averaged over the three repeats. 

Data preprocessing

For metabolomics analysis, the exact same material (potato tubers 
of the same genotypes) was used for Liquid chromatography–time 
of flight mass spectrometry (LC-QTOF MS) analysis, which resulted 
in over 16,000 individual mass peaks. Mass peak signals below 
background were removed, resulting in about 10,000 remaining mass 
peaks. The next step was to make a selection of these 10,000 peaks based 
on skewness of the data, and all mass peaks with a skewness score below 
-2 and above 2 for the progeny and a score below -1 and above 1 for 
the parental repeats were discarded. The signal intensities of the 1,100 
remaining mass peaks were then correlated to the available quality 
trait data of this population, in order to obtain the most interesting 
metabolites, i.e. the metabolites linked to quality traits. Significance of 
these correlations was calculated using Student’s t-test. A number of 

163 mass peaks with the highest significance (p<0.0005) was selected. 
Before analysis, the metabolite data was 10log transformed for symmetry 
and then autoscaled. Autoscaled variables have a mean of zero and 
a variance (and also standard deviation) of one, thereby giving all 
variables (mass scan numbers) an equal weight in the analysis. LC-MS 
peaks are characterized by their mass and scan number (mass_scan).

Statistical methods for regression in p >> n situations

Methods used: We compared the prediction, variable selection 
and ranking of variables. In this section, we first review the regression 
model in these eight methods. For all methods, values for one or more 
tuning parameters needed to be chosen. This was done using tenfold 
cross-validation, as described in the section on criteria for comparison 
of the methods.

Regression methods: Regression methods are essentially curve-
fitting approaches. When there is one response variable and one 
predictor variable, simple linear regression consists of finding the best 
straight line relating the response to the predictor variable. In case of 
multiple predictors, a hyperplane is fitted. The usual criterion, the least 
squares criterion, minimizes the sum of squared distances between the 
observed responses and the fitted responses from the regression model 
[27]. We can represent the least squares criterion as: 
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Where; y=response vector (here: flesh colour); β=regression 
coefficients; x=predictor variables (the log intensity values of the mass 
scans from LC-MS data measured over different samples).

Here, we are describing nine different regression methods which 
were applied to relate potato tuber flesh colour to the LC-MS data set.

Univariate regression: Univariate regression was used as a 
reference. We compare the variable selection and ranking of variables 
in the multivariate regression methods to the results from the univariate 
regressions of flesh colour to each of the individual LC-MS peaks. 
Univariate regression with a FDR (False discovery rate) adjustment 
was done according to the procedure of Benjamini and Hochberg [28].

 Penalization or shrinkage methods: Shrinkage methods, also 
called penalization methods, impose a penalty on the size of the 
regression coefficients. The penalty term is also called a ‘regularization 
parameter’. We have grouped the methods according to the type 
of penalty applied to the regression coefficients. The mean square 
error (MSE) of a regression model can be decomposed into two 
components: the square of the bias (difference between the estimate 
and the expectation of a parameter) and the variance. In situations with 
high collinearity (p >> n), regression models usually have a very large 
variance, and the MSE will mainly be determined by this large variance. 
Therefore, in such situations, it can be advantageous (in terms of 
decreasing the MSE) to accept some bias if it is allows us to decrease the 
variance by considerable amount [29]. Penalization methods impose a 
bias by applying a penalty to the regression coefficients. 

Continuous penalization methods: In this category of regression 
methods, shrinkage factors can take any value between zero and 
infinity. LASSO, RR and EN belong to this category. The value of the 
shrinkage parameter decides the amount of penalization applied to the 
regression coefficients. We use tenfold cross validation [20], to choose 
the optimum penalty value; this will be discussed in detail in the section 
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about criteria for comparison of the methods

Ridge regression (RR): Ridge regression [11] shrinks the regression 
coefficients by imposing a penalty on the sum of squares (L2 norm) of 
the regression coefficients. 
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The left part of the term shown above is the usual least squares 
criterion. In the right part, λ2 is a shrinkage factor applied to the sum of 
the squared values of the regression coefficients. The larger the value of 
λ2,the heavier the penalty on the regression coefficients, and the more 
they are shrunk towards zero. In ridge regression, all the regressor 
variables stay in the model since regression coefficients do not become 
exactly zero (that would be equivalent to variables dropping out of the 
regression model). Ridge gives equal weight to absolutely correlated 
variables in the data set [29].

Lasso: The LASSO (Least Absolute Shrinkage and Selection 
Operator, Tibshirani [12] is another regularization method, but here 
the penalty is applied to the sum of the absolute values of the regression 
coefficients, the L1 norm. Mathematically, we can write this in the 
following way:
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Again, the left part of the term is the normal least squares criterion. 
The right part now is the penalized sum of the absolute values of the 
regression coefficients. Similar to ridge regression, the shrinkage 
parameter (λ1) has to be decided on, and again we use tenfold cross 
validation for this. Penalizing the absolute values of the regression 
coefficients has the effect that a number of the estimated coefficients 
will become exactly zero, which means that some regressors drop out of 
the regression model so that a LASSO fitted model will consist of fewer 
variables than the original number of available regressors. In other 
words, LASSO can implicitly perform variable selection. The number 
of selected variables is upper limited by the numbers of samples (n). In 
case of absolutely correlated variables, LASSO just selects one of these 
variables and ignores the rest in the group [29].

Elastic net (EN): Elastic net [13] is a combination of LASSO and 
ridge regression. It uses both a ridge penalty (penalty on the sum of 
the squares of the regression coefficients) and a LASSO penalty (on the 
sum of the absolute values of the regression coefficients): 
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In elastic net, we optimize both penalty parameters, simultaneously 
using tenfold cross validation. Variable selection is encouraged by the 
LASSO penalty (λ1) and groups of correlated variables get similar 
regression coefficients. Groups of correlated variables are either in or 
out of the model [13]. In contrast with LASSO, the number of selected 
variables is not limited by the number of individuals. 

Discrete penalization methods: Partial least squares (PLS) and 
Principal components regression (PCR) are based on latent variables or 
components, which are linear combination of the original variables. For 
both methods, it is essential to select the optimum numbers of latent 
components for prediction of the response variable. We used tenfold 

cross validation to choose the optimum number of latent components 
based on the smallest mean square error of prediction (MSEP) value. 
The number of latent components can only take discrete values; hence 
these methods are discrete penalization methods. 

Principal components regression (PCR): Principal components 
regression [30] is a combination of principal components analysis 
(PCA) and multiple linear regression. First, PCA is done on all original 
regressors and each component (latent variable) is represented by 
a linear combination of the original variables. The number of latent 
variables (components) is chosen by tenfold cross validation and the 
response is regressed on the selected latent variables. These latent 
variables in PCA are uncorrelated, and there are fewer latent variables 
than the number of individuals, therefore solving the collinearity 
problem. In PCR, the principal components are found by maximization 
of the variance in the predictors; the covariance of the predictors with 
the response variable is not taken into account, as is the case in partial 
least squares regression. 

Partial least squares (PLS): Partial least squares (PLS) [15,31,32] 
is a method to relate a single response variable or a matrix of response 
variables to a matrix of regressor variables. Here, we are considering only 
a single trait as the response. PLS is a dimension reduction method like 
PCA, but it uses a different criterion: maximization of the covariance 
between the latent variables and the response. As a consequence, 
usually fewer components are required for prediction as compared to 
PCR. The optimum number of latent components is chosen by tenfold 
cross validation. Since the optimum number of latent components is 
a discrete number, this method is also a discrete penalization method. 
Like in PCR, latent variables in PLS are also uncorrelated.

A hybrid penalization method: In this section, we consider 
a method in which two different types of penalties (continuous and 
discrete) are applied simultaneously. 

Sparse partial least square (SPLS): SPLS [16] is a combination 
of two different penalties. The continuous penalty is a LASSO penalty 
and discrete penalization is achieved by PLS. Variable selection is 
achieved by LASSO, dimension reduction by PLS. The respective 
hyperparameters, i.e. the number of PLS components and the size 
of the LASSO penalty are optimized simultaneously by tenfold cross 
validation. As in normal PLS, each of the latent components is a linear 
combination of the original variables. 

Machine learning methods: The goal of machine learning is to 
build a computer system that can adapt and learn from experience [33]. 
Machine learning methods can handle data which are not normally 
distributed, whereas the methods mentioned above assume normality. 
Machine learning methods can also handle nonlinear relationships 
between response and predictor variables. 

 Support vector machine (SVM): The support vector machine 
(SVM) [17] was originally developed in a classification [34] context 
and maximizes predictive accuracy, while avoiding overfitting [29,35] 
to the data. Two parameters, such as epsilon (insensitive zone) 
and regularization parameter “C”, are optimized [17]. However, 
the methodology can also be used in a regression model [35]. 
Mathematically, given the input data {(x1, y1), …., (xn,yn)}, we want to 
find a function which will fit the following equation:

f ( x) wx b,= +

Where w is a weight vector and b is a constant.

The goal of support vector regression (SVR) is to find a function 
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f(x) that has at most ε deviation [35] from the actually obtained targets 
(response) for all the predictors, and at the same time, minimizes the 
distance between predicted and target values. SVR does not encourage 
grouping or variable selection.

Random Forest (RF): A random forest [18] is a collection of 
unpruned decision trees [29], usually developed for a classification 
purpose, but this method can be applied in a regression context as 
well [36]. A random forest model is typically made up of hundreds of 
decision trees. Each decision tree is built from bootstrap samples of the 
data set. That is, some samples will be included more than once in the 
bootstrap sample, and others will not appear at all. Generally, about two 
thirds of the samples will be included in this training dataset, and one 
third will be left out (called the out-of-bag samples or OOB samples). 
In RF regression, the prediction error is calculated as the average 
prediction error over OOB predictions. Variable importance [18] 
can be quantified in random forest regression. Variables used which 
decrease the prediction error obtain a higher variable importance. 
Two parameters have to be chosen in RF regression: the number of 
candidate variables (mtry) to choose from at any split in the regression 
trees, and the number of trees (ntree). The number of variables to 
choose from was optimized by cross validation. The number of trees 
was fixed at 500 trees. 

Criteria for comparison of the methods

Double cross validation: All methods above require input values 
for one or more hyperparameters (e.g. the number of components in 
PCR and PLS, the penalty parameter lambda in ridge regression and 
LASSO, etc.), and the values for these hyperparameters were optimized 
using cross validation. Using a single cross validation to estimate both 
the hyperparameters and the prediction error will result in an overly 
optimistic estimate of the error rate value [37]. Hence, a double cross 
validation scheme was used [20,38,39]. We used tenfold double cross 
validation [29] for choosing optimum values for the hyperparameters, 
and to estimate prediction error. First, tenfold cross validation is 
performed and one tenth portion of the data is left out for estimation 
of the prediction error, this portion is called the outer test set. The 
remaining nine tenth portions is the outer training set. Another 
tenfold cross validation uses nine tenth portions of the outer training 
data set, which then are called the inner training sets and one tenth 
portions, which are called the inner test sets. The inner cross validation 
loop is performed to optimize hyperparameters such as the number of 
principal components or PLS components, or the amount of shrinkage 
in ridge, lasso, elastic net. The outer loop cross validation is used to 
quantify properly the predictive value of the model on independent 
data. The hyperparameters are chosen which give the lowest MSEP 
values on the inner test data. We run this procedure 100 times, each 
with different tenfold divisions, and in each division, prediction was 

done and then averaged over the results from 100 runs to obtain results 
in Table 1. The same divisions were used for all regression methods. 

Mean squared error of prediction (MSEP): The mean squared 
error of prediction (MSEP) is frequently used to assess the performance 
of regressions [40,41]. MSEP of a regression can be estimated by 
predicting the test data set and comparing the predicted response with 
the observed response of the test set samples. Often, a (large enough) 
independent test set is not available. In such situations, the MSEP has 
to be estimated from the test data in cross-validation. An estimate of 
the MSEP is obtained by averaging the squared prediction errors of the 
outer test samples. Mathematically, we can write 

MSEP = (1/n)
n

i 1=
∑ (yi – ypredicted)2 

Where y and ypredicted are the observed and predicted response values 
for the i th test sample, respectively. We calculated and compared the 
MSEP on outer test sets for all the regression methods to evaluate the 
different methods. We consider the lowest MSEP to correspond to a 
better predictive model. 

Variable selection or ranking: Variable selection is defined as 
selecting subsets of variables that together have predictive power. 
LASSO, SPLS and EN are variable selection methods, as they select a 
subset of the predictor variables. For the variable selection methods, we 
investigated the numbers of variables and the identity of the variables 
which were selected by those methods. For the methods that do not 
include variable selection, we can still rank the variables, according 
to their estimated regression coefficients or variable importance 
measures. In case of RR, PLS, PCR, RF, all the variables remain in the 
regression model. In case of SVM, we do not perform variable ranking 
or variable selection, as we cannot estimate regression coefficients. We 
compare the ranking between these different methods and we compare 
the ranks in the ranking methods with the selection of variables in the 
variable selection methods. 

Goodness of fit (R2): Goodness of fit (R2) of statistical models is 
used to describe how well the predictions fit a set of observations. It is a 
measure for the proportion of variability in a data set that is accounted 
for by the statistical model. In our analysis, we use R2 values to compare 
the methods. R2 is calculated as the square of the Pearson correlation 
between observed and fitted values for training and test data set, and is 
converted to a percentage. The usual R2 from a linear regression is just 
a measure of goodness-of-fit of the data at hand (training data), and 
not for future predictions (test data). We calculated R2 values both for 
training and for the cross-validation test data. It is important to realize 
that the R2 on the cross-validation test data is a prediction R2, not just 
a goodness-of-fit for the data at hand; it refers to future predictions on 
independent samples.

Table 1: Comparison of the eight multivariate regression methods based on R2 for training data, standard deviation of R2 (sd) for training data, MSEP, sd of MSEP and R2 
for test data set. R2 for training data, MSEP and R2 for test data are the mean values of the double cross validation scheme for 10 different divisions with 100 runs and then 
averaged.

Method Training data (R2) %                 Training data (sd ) MSEP MSEP (sd) Test data (R2)%      
RR 48.1 1.979 1.30 0.031  36.1

LASSO 61.8 5.242 1.24 0.033 41.4
EN 65.4 3.804 1.21 0.035 44.1

PCR 61.8 7.180 1.29 0.032 37.2
PLS 60.0 8.927 1.32 0.037 35.9

SPLS 36.5 11.593 1.31 0.044 36. 36.536.5     36.5
RF 25.0 4.653 1.27 0.032 40.5

SVM 79.7 6.713 1.37 0.032 30.8
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Omics fusion web application

Omics Fusion is a web-based application written in Java EE 6 and 
Struts 2 and runs on a glassfish v3 application server. SQLite v3 (http://
www.sqlite.org) is used as the back end database management system. 
Standardized excel sheets are used to upload data to Omics Fusion. The 
end user can select one or several of the described methods for data 
analysis. An Oracle Grid Engine 6.2u5-1 cluster (http://www.oracle.
com) is used to execute the R based (http://cran.r-project.org/) script 
in parallel. The end user is notified by email upon completion of the 
analysis. Results are summarized within the web-based interface. 

Simulation study

In order to compare the methods with respect to their properties 
and performance when effects and characteristics of predictors and 
response are exactly known, we performed a small simulation study 
in which a population of 100 individuals was generated, with a 
response y that depended on only 12 out of 1000 variables, no error 
added (y=x1+x2+...+x12). The effect of these 12 variables was large 
(together completely determining y), if combined, but each predictor 
by itself had just an effect the size of roughly 0.2 standard deviations 
of the response, simple linear regression R2 per true predictor was 
around 0.2, as well. From these 12 variables, two at a time (six pairs of 
two) had pairwise stronger and less strong positive correlations, with 
correlations 1.0, 0.95, 0.9, 0.85, 0.8 and 0.5 for the six pairs. We were 
interested in whether or not the true predictors were selected by the 
methods that perform variable selection; in the rankings of the true 
predictors in the methods that do not perform variables selection; in 
the size of the estimated regression coefficients (close to the true effect 
or not), and in the effect of the correlations among the six pairs of true 
predictors. 

Results 
Univariate regression

Univariate regression analysis without FDR correction resulted in 
29 significant variables (p<0.05). MSEP and R2 (training) values were 
calculated (Supplementary Table S1). Univariate regression followed 
by an FDR adjustment according to Benjamini and Hochberg [28] 
resulted in still 23 significant variables at an FDR threshold of 0.05. 
Variable 294_0182 had the highest R2 (training) of 22.6% and lowest 
MSEP value of 1.92. 

Comparison of the regression methods

We used a double cross-validation scheme for comparison among 
the methods in 100 runs with different divisions of the data. Differences 
in MSEP values between different methods were rather small (Table 
1). EN had the lowest MSEP value, lower than RR, PLS, SPLS, LASSO, 
SVM and RF (Table 1). The standard deviation of the MSEP values 
was about 0.03 for all the methods except SPLS (Table 1). Although 
SVM showed the highest R2 value for the training data sets, it did not 
perform well for prediction on the test data.

Metabolite identification 

In the metabolomics analysis, out of 163 mass scans, only a few 
were putatively identified as being important as they are ranked and 
also selected by variable section methods. Mass scans 396_1508, 
193_1508, 373_1301 and 557_1301 were identified as important 
variables and were putatively identified as carotenoid derived 
compounds. More specifically, scan number 1508 putatively identified 
as 4,7-megastigmadiene-3,9-diol-glucoside and scan number 1301 

as 2,3-dihydroxy-4-megastigmen-9-one-glucoside, which are non-
volatile glucosides of carotenoid-derived volatile metabolites. From 
the literature, the relationship between potato flesh colour and the 
carotenoid pathway is well established [10], so these results makes 
sense even when the models are not explaining huge parts of the 
phenotypic variation. Additionally, combining the metabolite data 
with gene expression profiling for this population (CxE) resulted in the 
observation that the gene beta-carotene hydroxylase (Bch), the most 
important gene responsible for flesh colour in potato [10], is also highly 
correlated with these two metabolites [42].

Comparison of standardized regression coefficients 

We ranked the variables based on the standardized regression 
coefficients in all regression methods and then compared them to 
the ranks in univariate regression (Figure 1). In Figure 1, variables 
are in x-axis, whereas standardized regression coefficients are plotted 
in y-axis. Some of the variables get a zero value for the regression 
coefficient for those methods that also do variable selection (LASSO, 
SPLS, EN). Variables that were selected in these methods mostly 
correspond to variables that also had the largest regression coefficients 
in the univariate regressions, for example: mass_scan 294_0182 gets 
the largest negative regression coefficient for both the variable selection 
(LASSO, EN, SPLS) and the ranking methods (PCR, PLS, RR and RF), 
and also in univariate regression (Supplementary Table S2). We also 
compared the ranking of the LASSO selected variables (24 mass_scans) 
in the ranking methods (PCR, PLS, RR, RF) and the variable selection 
methods (EN, SPLS) (Table 2).

Pearson correlation coefficients of the twenty-four variables 
selected by LASSO and flesh colour were visualized in a heat map 
(Figure 2). There were high correlations among some of the selected 
variables, for example: between mass_scans 396_1508 and 193_1508 
with a correlation coefficient of 0.86; between 373_1301 and 557_1301 
with a correlation coefficient of 0.85; between 396_1508 and 373_1301 
with a correlation coefficient of 0.65; between 396_1508 and 557_1301 
with a correlation coefficient of 0.60. 

Comparison of standardized regression coefficients based on 
variable selection

We compared EN, LASSO and SPLS in terms of the numbers of 
selected variables. EN, LASSO and SPLS select 17, 24 and 10 variables, 
respectively. For the pairwise comparison between EN and LASSO, 17 
variables are in common. Between LASSO and SPLS, seven variables 
are in common, the same set of seven are also in common between EN 

Estimated reg. coeff. of different regression methods
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Figure 1: Standardized regression coefficients in the different regression 
methods. The order of the mass scans on the x-axis is based on the regression 
coefficients from the univariate regressions. Variable 294_0182 has the highest 
negative regression coefficient in all the methods shown. 
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and SPLS, so these seven are in common between all three methods 
(Supplementary Figure S1).

Omics fusion

The interface of Omics Fusion contains two major parts: data 
submission and results visualization. Data submission allows end users 
to start a new analysis in four distinctive steps: provide user details, 
upload of excel sheets with the data, select analysis methods and start 
analysis after final confirmation. An unique token will be sent via email 
to the user. The Omics Fusion analysis for the data set described in 
this manuscript takes 38 minutes using 20 cores in parallel. Users are 
notified upon completion of the analysis via e-mail. The results of each 
analysis can be obtained after entering the unique token. The results 
of all selected methods will be summarized in a table, a snapshot of 
which is shown (Figure 3). An overall mean rank is calculated for each 
of the predictor variables and the resulting table is ordered accordingly. 
The rank for the individual methods can be obtained by hovering over 
the coefficients. To quickly scan the results, the background of each 
coefficient is color coded blue (top ranks) to white (lowest ranks). Each 
predictor variable is hyperlinked and can be used to show the response 
variable vs. predict or variable for easy interpretation of the results 
(Supplementary Figure S2). This tool can be found: URL: http://www.
plantbreeding.wur.nl/omicsFusion/

Simulation results

In the simulated data, the variable selection methods LASSO, SPLS 
and elastic net were often able to select the twelve true predictors, 
while only few or hardly any of the noise variables were selected. 
If noise variables were selected, they had much lower regression 
coefficients than the true predictors, and regression coefficients of the 
true predictors were often close to the true effect (generally a little bit 
underestimated, shrunken). In some instances, especially LASSO, but 
also SPLS and elastic net selected only one of two highly correlated true 
predictors, in which case, usually this selected predictor absorbed the 
effect of the one that was not selected, so that the regression coefficient 
of the selected predictor was estimated as almost twice its true effect. 
For the methods that do not perform variable selection, usually most 
of the twelve true predictors were ranked on top and present in the top 
12. Occasionally, one to four true predictors were not present in the top 
12, but then very often, although not always, they still had high ranks in 
comparison with the noise variables, for example ranking 14 or 17. In 
contrast with the variable selection methods (LASSO, elastic net, SPLS), 
for ridge regression, PCR and PLS the regression coefficients of the true 
predictors were strongly shrunken (because of the presence of all the 
noise variables in the model). The two predictors that had a correlation 
of 1 had, as expected, exactly equal regression coefficients in these 
methods; with lower correlations, the estimated regression coefficients 
were still very similar, but more dissimilar as the correlation decreased.

Conclusions
We compared nine regression methods based on MSEP, R2 on the 

training and on the test set, variable selection and variable ranking. The 
range of R2 values for the training set across different methods is from 
48.1% to 79.7%. As expected, R2 is always lower on the test than on the 
training data, except for RF. RF includes an internal cross validation 
on the training data already, using the out-of-bag (OOB) samples. In 
addition, we used a double cross validation scheme for RF and the 
other multivariate methods. As a consequence the RF model is actually 
based on fewer samples than the other methods, and therefore, the R2 
value might be lower.

In the case of other methods, there is a difference between the R2 
for the training and the R2 for the test set. Taking the R2 for the training 

Figure 2: Correlation heat map of 24 variables selected with LASSO. Positive 
correlations among variables are shown in red, negative correlations are 
shown in blue. Variables 396_1508, 193_1508, 373_1301 and 557_1301 are 
grouped together based on high positive correlations. 

Table 2: Ranking of the twenty-four variables (mass_scans) selected by LASSO is 
shown in the first column. The other columns show the ranks of these twenty-four 
variables in PLS, PCR, RR, RF, EN, SPLS and univariate regression analysis. 
In RF ranking was done based on increase in MSE of the OOB samples after 
permutation of the variable. Out of these twenty-four variables, some are not 
selected by EN (17 variables selected) and SPLS (10 variables selected) and these 
are marked as 0. Variables in bold font are also selected in EN and SPLS.

LASSO 
selected 
(mass_scan)     

PLS PCR RR RF EN SPLS Univariate

294_0182 1 1 1 1 1 1 1

187_0439 6 5 2 24 4 3 18

557_1301 2 9 3 5 3 4 4

225_0983 7 3 6 3 5 2 2

622_0122 14 35 4 71 2 0 20

373_1301 3 15 8 9 7 10 9

157_0111 11 2 11 87 6 0 32

1396_0110              18 10 9 88 8 0 38

393_1416                5 6 5 7 9 0 10

843_0095              24 13 13 16 15 0 51

239_0200              23 79 20 93 11 0 23

207_0918              30 32 25 12 16 0 14

499_1599              17 4 14 106 17 0 30

192_0142              13 11 12 35 12 0 26

193_1508 10 75 18 19 10 7 6

738_0133              15 41 7 10 13 0 22

491_0148              26 24 35  161 0 0 144

396_1508 9 36 21 17 14 9 7

323_0837               56 76 53 149 0 0 110

719_0105               20          88 17 90 0 0 35

589_0148               28 33 33 108 0 0 163

303_1245               61 65 43 77 0 0 101

225_1296               21 43 19 62 0 0 64

484_1597 72 155 29 13 0 0 31
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set as a criterion for evaluation of the methods to be used in regression 
of ~omics data is of limited use, because it only refers to the fit of the 
data at hand and would be too optimistic for prediction purposes. 
Therefore, we need instead to have a look at the MSEP. This is why 
we performed a double cross validation. EN has the lowest MSEP 
value, which means that EN finds a better predictive model than other 
methods like RR, LASSO, SVM, PCR, PLS, RF and SPLS. RR, PCR 
and PLS have similar MSEP values. The lowest univariate MSEP was 
1.92 for the variable 294_0182, but for the other methods the MSEP 
values are lower, which suggests that these methods, which use more 
than single variables, are predicting better than the best univariate 
predictor. None of the prediction R2 values are higher than 50%. For 
most phenotypic traits, very high R2 values are not expected, since 
the phenotype is not just determined by biology, but also by variation 
in environmental conditions, interactions of genotypes with the 
environment, measurement and observation error in both the response 
and the predictors. Moreover, metabolites as quantified by LC-MS do 
not necessarily comprise the most important components (for example 
if they are volatile compounds or if they are proteins).

Comparing the variable selection methods, we see that LASSO 
selected 24 variables and EN selects 17, a subset of those selected by 
LASSO. The average number of selected variables over 100 runs for 

EN, LASSO and SPLS were 31.3, 16.1 and 26.7 with standard deviations 
11.9, 5.4 and 23.2, respectively. SPLS showed a high variability in the 
number of selected variables, whereas LASSO had the lowest variability 
across 100 runs. Regarding consistency of the selected seven variables 
(Figure 4) across 100 runs, we observed that variable 294_0182 was 
selected the highest number of times, almost always, in the different 
folds, whereas 396_1508 was selected the smallest number of times in 
EN, LASSO and SPLS. 

Variables 294_0182, 187_0439 and 225_0983 are consistent in 
terms of the sign and size of standardized regression coefficients, 
ranking and size of standardized regression coefficients across methods 
(Supplementary Figure S3 and S4).

According to Tibshirani [12], LASSO tries to select only one 
variable from a set of correlated variables, but in our analysis, we find 
that a group of correlated variables was selected, for example: mass_
scans 396_1508 and 193_1508 have a correlation coefficient of 0.86; 
373_1301 and 557_1301 have a correlation coefficient of 0.85 (Figure 
2). The simulation results showed that when there are two absolutely 
correlated variables (correlation coefficient of 1), LASSO usually picks 
only one of the two variables, and in that case, the regression coefficient 
of the selected variable was close to double the simulated regression 

Figure 3: Summary of the OmicsFusion analysis. The overall rank is calculated for each of the predictor variables and the resulting table is ordered accordingly. The 
rank for the individual methods can be obtained by hovering over the coefficients. To quickly scan the results, the background of each coefficient is color coded blue 
(top ranks) to white (lowest ranks).
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coefficient. For correlations lower than one this effect that one variable 
absorbs the regression coefficient of its correlated partner also happens, 
but usually both are still selected. Therefore, in a situation with strongly 
correlated variables, it is possible that all or a subset of the correlated 
variables are selected together.

Regarding the grouping of correlated variables: five variables, 
373_1508, 396_1508, 374_1508, 193_1508 and 212_1508, are correlated 
with different correlation coefficients. Among these, 373_1508 and 
374_1508 had a correlation coefficient of 0.97 (highest) and 193_1508 
and 212_1508, a correlation coefficient of 0.74 (lowest). EN selects 
396_1508 and 193_1508 with a correlation coefficient of 0.86, whereas 
SPLS selects 373_1508, 396_1508, 374_1508 and 193_1508.

The variables, 535_1301, 373_1301 and 557_1301, are also 
correlated with each other, with the highest correlation coefficient 
(0.94) between 535_1301 and 373_1301 and the lowest correlation 
coefficient (0.84) between 373_1301 and 557_1301. EN selects only two 
(373_1301 and 557_1301), whereas SPLS selects three of them. 

SPLS performs better for selecting groups of correlated variables, 
when compared to EN in the sense of selecting a larger number of 
correlated variables (simulation results, not shown).

If we evaluate the ranking methods (RR, PCR, PLS and RF), we 
see that mass_scan 294_182 showed the highest absolute standardized 
regression coefficient in the different methods used and also the 
highest variable importance in RF. LASSO selected 24 variables, 
which were ranked in decreasing order of the absolute standardized 
regression coefficients (Table 2). Within these 24 variables, the top 
18 from PLS, top 12 from PCR, top 18 from RR, top 12 from RF, top 
17 from EN, top 7 from SPLS and top 12 from univariate regressions 
were included. Variables like 557_1301 and 225_0983 obtained high 
ranks in all methods. Standardized regression coefficients of PLS, PCR 
and RR were more or less similar (Supplementary Figure S3). The 
standardized regression coefficients of RR and PLS are more similar 
than the regression coefficients of PCR. The correlation coefficient 
of standardized regression coefficients between PCR and PLS is 0.85, 
between RR and PCR is 0.85, between RR and PLS 0.95. These results 
confirm the observation of Hastie et al. [29], in saying that “PLS, PCR 
and RR tend to behave similarly. Variable selection methods rather than 
non-selection methods here performed better in terms of the MSEP. 
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Figure 4: Frequency of the seven variables 294_0182, 187_0439, 557_1301, 
225_0983, 373_1301, 193_1508 and 396_1508 over different folds in EN, 
LASSO and SPLS are shown. Variable 294_0182 shows highest number 
of times selected in all the methods where as 396_1508 selected lowest 
numbers of times.

This could be due to the fact that the variables which are not associated 
with the trait (noise variables) get regression coefficients with the value 
zero, so that they effectively drop out of the regression model. In the 
simulation studies where only 12 out of 1000 variables had a true 
relationship with the response, usually all twelve true predictors were 
selected, while hardly any of the ‘noise’ variables were selected. The 
estimated regression coefficients of the true predictors were close to the 
true effect, which would explain the good performance in prediction. 
For noise variables that were occasionally selected, the regression 
coefficients were much lower than those of the set of 12 true predictive 
variables. For the regularized regression methods that do not perform 
variable selection, but where all variables remain in the model, it is 
expected that true predictors will rank higher than noise variables (as 
observed in the simulation results), but due to the non-zero regression 
coefficients of large numbers of regression coefficients, the predictions 
are expected to be less good.

We implemented all methods used here in an intuitive web-
based interface Omics Fusion which offers non-statisticians to easily 
analyze their own data using the statistical approaches described in 
this manuscript. In addition, Omics Fusion allows end users to analyze 
data with more than one approach and summarizes the results of each 
method in a table which is easy to interpret. So, as an end user, this 
application serves as a web based omics analysis tool, which produces 
results in terms of ranking and selection among the ~omics variables for 
prediction of a phenotypic trait of interest, using a variety of different 
methods, and it provides an easy summary of the most important 
results. The results table can be exported to Excel for further analysis 
and visualization.

In this paper, we have applied regression methods relating a 
phenotypic trait of interest as the response with a metabolomics data 
set, but the same methodology can be used in prediction of quantitative 
variables from other ~omics data sets as transcriptomics or proteomics 
data, where also the numbers of samples (n) is usually much smaller 
than the number of variables (p). In addition, these prediction methods 
can also be applied in the context of genomic selection [43], where 
prediction of phenotype is done from large data sets of molecular 
markers [44].
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