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Abstract 
In this paper, the thermal field of underground power cable is 
solved using two intelligent techniques which are newly 
introduced for thermal assessment of power cables. A back-
propagation neural network (BPNN) and an adaptive neuro-fuzzy 
inference system (ANFIS) models were developed to predict the 
cable temperature under geometrical parameter variations. The 
effect of cable spacing and cable burial depth on cable ampacity 
is investigated. The two models are trained using an input-output 
pattern generated using finite element (FE) method, which is 
extensively used in this field. Furthermore, a portion of the FE-
generated output results, which have not been provided to the 
models – as input data - in the training phase, were utilized to 
compare the cable temperature of the three methods (FE, ANN 
and ANFIS). The results of the two intelligent methods show 
high agreement with the finite element solution, which confirms 
that introducing intelligent techniques provides a reliable and 
simple alternative approach for the thermal field evaluation by  
avoiding the numerous computational complexities of the 
numerical methods.  
 
Keywords:  Underground cables, ampacity, thermal, finite 

element methods, neural network, Adaptive neuro-
fuzzy inference system. 

 
1. Introduction 
The use of underground power distribution has grown 
significantly over the years with the rapid increase in demand for 
electric energy and the trend for large infra-structures and vast 
expansion of highly-populated metropolitan areas. It is of 
paramount importance to have an accurate assessment of the 
maximum allowable current which a cable can tolerate through 
its life without risking deterioration or damage. The actual 
current rating of an electric cable is based on the thermal 
environment in which the cable is installed. The traditional 
method of computing temperature distribution and cable 
ampacity is based on approximate formulas derived first by [1] in 
1957 and adopted later by the International Electro-technical 
Commission (IEC). In particular, the ambient temperature, depth 
of burial in the ground, presence and spacing in relation to other 
cables or other heat sources, and type of soil will have a 
profound effect on the actual current rating of an electric cable. 
The mathematical approximation provides tabulated values 
which are accepted as being the standard ampacity of most 

underground cable systems (IEEE, 1994; IEC 1994; IEC, 1995). 
The table, however, does not provide instructions for 
determination of ampacity when thermal changes occur along 
cable length [2] as happens for instance, when a cable crosses a 
paved parking lot. The situation unfortunately often happens 
when the cable must pass through a relatively short segment of 
conduit or when the cable shares underground space with other 
utilities. Power cables are usually installed in urban areas and the 
system geometry along their route is rarely fixed. Numerical 
methods such as finite element (FE) and finite difference (FD) 
[2-10] can deal with varying properties involved, the complexity 
of the system and the variability of the parameters with time. 
However, they are timely consuming and expensive in terms of 
the computations, especially, under such circumstances of 
parameters fluctuations. The effect of the geometrical parameters 
variation on the cable rating is investigated, where effective 
methodologies based on artificial intelligence are presented, to 
assess the cable performance under fluctuating parameters 
condition. These intelligent models were introduced as a reliable 
and simple alternative approach for the thermal field evaluation 
avoiding the numerous computational complexities of the 
numerical methods.  
This paper introduces the back-propagation neural network 
(BPNN) model and the adaptive neuro-fuzzy inference system 
(ANFIS) in predicting the cable temperature. The results 
obtained by BPNN and ANFIS models are trained using the 
finite element generated training data and then compared with the 
rest of generated data. 
 
2. Artificial Intelligence 
 

2.1 Technical Background 
Fuzzy systems and neural networks are both model-free 
numerical estimators. They share the ability to improve the 
predictive capability of a system working in uncertain, imprecise, 
and noisy environments. In a strict mathematical sense, ANNs do 
not provide closed form solutions for modeling problems but 
offer a complex and accurate solution based on a representative 
set of historical examples of the relationship. Fuzzy logic and 
neural networks are complementary technologies. In order to 
utilize the strengths of both, fuzzy systems and neural networks 
may be combined into an integrated system called (ANFIS). The 
integrated system then has the advantages of both neural 
networks (e.g., learning abilities, optimization abilities, and
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connectionist structure) and fuzzy systems (e.g., humanlike if-
then rules, and ease of incorporating expert knowledge available 
in linguistic terms). In the last two decades, researchers explored 
the potential of artificial neural networks (ANNs) and adaptive 
neuro-fuzzy inference system (ANFIS) as an analytical 
alternative to conventional techniques. However, they should be 
viewed as an additional tool instead of a replacement for 
conventional or other AI based power system techniques [11, 
12]. ANFIS and ANN network have been successfully applied to 
a number of power systems problems during recent years [13, 
14]. Recently, more implementation of both methods in 
underground cable system application is noticed [15-19].  
 
2.2 Finite element model and training set generation  
A finite element heat-transfer model has been developed, which 
can accommodate different practical cable system configuration, 
and is solved at various cable spacing and burial depth. The 
thermal parameters and geometrical specifications which affect 
the cable thermal performance are provided to the FE-model as 
inputs. The backfill materials around underground power cables 
affect the maximum current carrying capacity of these cables. 
The thermal resistivity of the mother soil, the backfill, and all 
other surrounding layers are identified to the model. The 
boundary conditions are defined as well. The ground interface 
was modeled as convective boundary condition with specified 
ambient temperature and heat convection losses. The other two 
side boundaries and the lower side boundary were set as thermal 
insulation, that is, zero heat flux crossing the boundary and were 
placed sufficiently far away from the cables, i.e., no appreciable 
change in temperature with distance. The cable spacing and 
burial depth for the FE model are considered as variable 
parameters in this study. The finite element model is utilized to 
calculate the corresponding thermal field under geometrical 
parameter variations, and is used to generate an input-output 
pattern as a training set for the artificial intelligence (ANN, 
ANFIS) networks. The blocks diagram of Figure 1 describes the 
proposed methodology of the combined FE-AI module. 
 
2.3 Artificial neural networks 
When compared to conventional digital computing techniques, 
neural networks are advantageous because of their special 
features, such as the massively parallel processing, distributed 
storing of information, low sensitivity to error, their very robust 
operation after training, generalization and adaptability to new 
information [20]. Neural networks represent a powerful 
computational tool which is able to learn from a set of examples 
with known inputs and outputs. An artificial neuron is composed 
of five main parts: inputs, weights, sum function, activation 
function and outputs. Inputs are information that enters the cell 
from other cells from the external world. Weights are values that 
express the effect of an input set or another process element in 
the previous layer on this process element. Sum function is a 
function that calculates the effect of inputs and weights totally on 
this process element. This function calculates the net input that 
comes to a cell [21]. ANN architecture consists of an input layer, 
one or more hidden layers and an output layer. Each layer is 
composed of different neurons, connected to the units of the next 
layer. The input from each neuron in the previous layer is 
multiplied by an adjustable connection weight (wij). At each 
neuron, the weighted input signals are summed and a threshold 
value (bi) is added that is called bias. This combined input is then 
passed through a non-linear transfer function to produce the 
output of the processing element. The output of one neuron 
provides the input to the neurons in the next layer. The 

information is propagated through the neural network layer by 
layer, always in the same direction. Weights are adaptive 
coefficients within the network that determine the intensity of the 
input signal [22]. Figure 2 shows Feed-forward neural network 
with one hidden layer. The input-layer neurons do not perform 
any computations; they merely distribute the inputs xi to the 
weights wh

ij of the hidden layer. In the neurons of the hidden 
layer, first the weighted sum of the inputs is computed:  
 
 

 

 

 

 

 

 

 

 

 

 
Fig.1: Block diagram of FE-AI based module 
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It is then passed through a nonlinear activation function, such as 
the tangent hyperbolic: 
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Other typical activation functions are the threshold function (hard 
limiter) and the sigmoidal function. The neurons in the output 
layer are linear, i.e. only compute the weighted sum of their 
inputs: 
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You can train an ANN to perform a particular function by 
adjusting the values of the connections (weights) between 
elements, so that a particular input leads to a specific target 
output. The tuning of the ANN parameters (weight and bias) is 
called the training of the network. The most widely used training 
algorithm is the back-propagation algorithm. In this algorithm, 
data are processed through the network, until it reaches the 
output layer (forward pass). The resultant value of the output 
layer is compared to the target and the error is processed back 
through the network (backward pass) updating the individual 
weights of the connections and the biases of the individual 
neurons. 
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Fig.2: Feedforward ANN with one hidden layer 
 
2.4 Adaptive neuro-fuzzy inference system  
Fuzzy inference [23] is a process of mapping from a given input 
to an output using the fuzzy set methods. The fuzzification 
component transforms each crisp input variable into a 
membership grade based on the membership functions defined. 
The inference engine then conducts the fuzzy reasoning process 
by applying the appropriate fuzzy operators in order to obtain the 
fuzzy set to be accumulated in the output variable. The 
defuzzifier transforms the fuzzy output into a crisp output by 
applying a specific defuzzification method.  
An ANFIS system can be considered as an implementation of a 
TS system in neural network architecture. In the following, we 
sketch briefly the outline of an ANFIS system using a model with 
two inputs as an example [24, 25]. Let the inputs of the fuzzy 
system be x and y, and let the output be f. We consider a TS 
system with first-order consequents as follows: 
 
Rule k : if (x is Ai) and (y is Bj)  

then  ( fk = pk x +qk y + rk)                         (4) 
 
Here, Ai and Bj are fuzzy sets describing the input and fk is a crisp 
(non-fuzzy) variable describing the output. In this structure, 
therefore, the inputs to the system are fuzzy, whereas the output 
is a crisp number. To construct the adaptive system, five layers 
are used as shown in Figure 3 for an illustrative ANFIS system 
using a model of two inputs and two rules. In this illustrative 
example, the number of if-then rules and the number of 
membership functions associated to each input were restricted to 
the number of the inputs (i.e k=i=j= 1,2). Each layer involves 
several nodes described by a node function. The circles in the 
network represent nodes that possess no variable parameters, 
while the squares represent nodes that possess adaptive 
parameters to be determined by the network during training. The 
node function in each layer is described below. Throughout the 
presentation, Oln denotes the output of node n in layer l. 
 

 Layer 1:  
The nodes in this layer represent the fuzzy sets in the antecedents 
of the fuzzy rules. It has parameters that control the shape and 
the location of the centre of each fuzzy set.  All the nodes in this 
layer are adaptive nodes. The output of each node n is the degree 
of membership of the input to the fuzzy membership function 
(MF) represented by the node: 
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where µAi(x) is the degree of membership of a variable x into the 
fuzzy set Ai.  In this study, we choose µAi(x) to be Gaussian with 
height equal to 1. The membership function is given by: 

22 2)()( iicx
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where ci represents the centre of the Gaussian function, and σi  
represents the spread of the membership function. 
      

 Layer 2:  
The nodes in this layer are fixed (not adaptive). They are labeled 
M to indicate that they play the role of a simple multiplier. The 
outputs of these nodes are given by: 

2,1)()(,2 ==== inyxwO BiAinn µµ     (7) 
The aim of this layer is to compute the degrees of activation 
(firing strength) of particular fuzzy rule. 
 

 Layer 3:  
Nodes in this layer are also fixed nodes. They are labeled N to 
indicate that they perform a normalization of the firing strength 
of the rules, by calculating the ratio of the kth rule’s firing 
strength to the sum of all rules firing strengths. The output of 
each node in this layer is given by: 
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 Layer 4:  
All the nodes in this layer are adaptive nodes. The output of each 
node in this layer is simply the product of the normalized firing 
strength and the crisp output: 

2,1)( ,4 ==== kn y + r x +qpwfwO kkknknn         (9) 
where {pk, qk, rk} is the parameter set.  
 

 Layer 5:  
This layer has only one node, labeled S, to indicate that it 
performs the function of a simple summer. The output of this 
single node computes the overall output as the summation of all 
the inputs from the previous layer, i.e., 

 2,1,5 ===∑ knfwO
n
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In this study, a simple ANFIS Sugeno-type architecture has been 
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          Fig.3: ANFIS architecture for a two-rule fuzzy system 
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implemented. Particularly, sixteen fuzzy ‘‘if-then’’ rules have 
been chosen, that govern the operation of processing a set of 
applied input variables, to produce a single predicted output 
which can then be compared to the corresponding measured 
(target or desired) output for validation purposes. The number of 
inputs to the ANFIS is two; represent the cable spacing and the 
cable burial depth. Each input variable attracts four 
parameterized Gaussian-shaped membership functions (MFs) 
that represent its fuzzy linguistic labels or values (i.e. low, 
medium-low, medium-high and high). The rule base used in the 
ANFIS model of this study is of the form that appears in equation 
(4). x and y are the inputs (cable spacing and burial depth), fk is 
the kth output of the kth fuzzy rule (k = 1,….,16). Ai and Bj 
(i=1,….,4 & i=1,…., 4) are the membership functions assigned to 
the two inputs, respectively. pk, qk, and rk (k= 1,….,16) constitute 
the set of linear parameters (consequent parameters). The 
premise parameters set consists of the collective parameters of all 
inputs’ Gaussian MF’s. Each MF possesses and is characterized 
by two nonlinear parameters (premise parameters) of the form 
which is defined in the equation (6) for Ai. 
The overall predicted output-in this particular case can be 
extracted from equation (10) by extending the number of if-then 
rule to 16 as shown in equation (11)  
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where wk is the firing strength of the kth rule obtained by 
multiplying all membership grades of all inputs in that rule. Both 
the premise (nonlinear) and consequent (linear) parameters of the 
ANFIS should be tuned, utilizing the so-called learning process, 
to optimally represent the factual mathematical relationship 
between the input space and output space. Normally, as a first 
step, an approximate fuzzy model is initiated by the system and 
then improved through an iterative adaptive learning process. 
Basically, ANFIS takes the initial fuzzy model and tunes it by 
means of a hybrid technique combining gradient descent back-
propagation and mean least squares optimization algorithms [26]. 
At each epoch, an error measure, usually defined as the sum of 
the squared difference between actual and desired output, is 
reduced. Training stops when either the predefined epoch 
number or error rate is obtained. 
 
3. Practical Application 
 

3.1 Cable System Configuration  
Two practical cable systems are used in this study. Figure 4 
shows a schematic diagram of the cable geometry of the first 
cable system configuration.  
Three cables of 13.8 kV, three phase, single core are directly 
buried in a trench and covered by backfill layer, which are 
surrounded by the native soil. The nominal values for the thermal 
resistivity are 1.7 and 1.3 oC.m/W for the native soil and backfill 
respectively. S represents the direct distance between cable 
centers and L represents the cable burial depth. Figure 5 shows 
15 kV, 3×300 mm2 CU/XLPE three phase, three cores cable 
system. The three cables are directly buried in the soil with the 
shown actual practical configuration. The mother soil, the upper 
backfill and the lower backfill thermal resistivities are 2, 0.95 
and 0.8 oC. m /W respectively. 
 

 
 
 
 
 
 
 
 
 

 

Fig.4: System configuration- system #1 
 
3.2 Effect of Geometrical Parameter Variations  
The effect of variations in the cable spacing and burial depth on 
the cable temperature of the cable system of Figure 4 is 
investigated. The spacing between cables has been changed from 
the allowable minimum value of 1 mm to the maximum feasible 
value of 0.2567 m at various values of the cable burial depth. The 
effect of cable spacing on the cable temperature is shown in 
Figure 6. It can be noted that the spacing has a positive effect on 
reducing the cables temperature due to the mutual heating 
reduction. The impact is greater on the upper cable than the other 
two lower cables. This can be interpreted by recalling that the 
increase in the cable spacing, in this triangular configuration 
case, will result in increase of the lower cable buried depth, 
whereas, it is the opposite for the upper cable, the buried depth 
will decrease and allow more heat convection. Furthermore, the 
influence of cable burial depth is of interest, the burial depth has 
been changed in the range between 1 mm and 1m at various 
values of the cable spacing as shown in Figure 7. It can be noted 
that increasing of buried depth has a negative effect on rising the 
cables temperature due to the overall increase of the thermal 
resistance between the cable surface and the ground interface. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: System configuration- system #2 
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Fig.6: Effect of cable spacing variation 
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Fig.7: Effect of cable burial depth variation 

 
3.3 Intelligent model results  
The underlying model implemented in this study is completely 
based generated data using finite element method for different 
configurations in order to train and validate the two developed 
models (ANN and ANFIS). As described, the objective is to map 
a set of inputs (cable spacing and cable burial depth) to their 
corresponding outputs with the cable temperature being the target 
output of this prediction process. First, the developed AI 
technique has been implemented on the first cable system shown 
in Figure 4. In the case of BPNN, there is an input layer with two 
neurons, representing the two inputs, an output layer, with one 
neuron representing the cable temperature. One hidden layers as 
intermediate layers are also included. For both cable systems 
under investigation, the trials showed that the one-hidden layer 
network performs significantly better than the multi-hidden 
layers network. The network with twenty, nodes in the hidden 
layer gave the optimal configuration with the minimum mean 
square error (MSE) for first cable systems considered in figure 4. 
Figure 8 shows the structure of the proposed BPNN model. The 
back-propagation neural network is trained by feeding a set of 
mapping data with input and target variables. The main objective 
of training the neural network is to assign the connection weights 
by reducing the errors between the predicted and actual target 
values to a satisfactory level. This process is carried out through 
the minimization of the defined error function by updating the 
connection weights. Also, the number of hidden layers, number 
of hidden nodes, transfer functions, and normalization of data are 
chosen to get the best performance of the model. The network 
has been trained continually through the updating weights. On 
the other hand, in the development of the ANFIS model, Four 
Gaussian-shaped membership functions for each input variable 
were selected. Since the system has two inputs with four 
membership functions for each input, there will be a total sixteen 
fuzzy ‘‘if-then’’ rules represent all possible combinations. Figure 
9 presents architecture of the adaptive neuro-fuzzy inference 
system to the cable temperature. Figure 10 depicts the initial 
membership functions of the burial depth input which are equally 
spaced along the normalized range of the prospective input 
variable.  
Both ANN and AFIS Network architectures were optimized in 
terms of the design parameters based on iterative approach. In 
order to show the applicability of the two developed AI 
techniques, they were implemented on the cable system of Figure 
5. The optimal network structure for the ANN is one hidden layer 
with six neurons, whereas two MF was used for the ANFIS 
simulation. 
In order to validate the ANN and ANFIS models, the two models 
are tested with a separate set of testing data that is not used in the 
training phase. The deviation of the cable temperature of ANN 

and ANFIS from that calculated using the FE is carried out at 
various values of the cable spacing and burial depth. Figure 11 
and Figure 12 show comparison of the ANN deviation against 
ANFIS deviation both from the FE solution for both cable 
systems. Table .1 shows the mean square error and the maximum 
absolute error of ANN and ANFIS of the two cable systems. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.8: ANN architecture 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.9: ANFIS architecture 

 
 

 
 
 
 
 
 
 
 
 

 
Fig.10: Initial membership function of the burial depth input 

 
In order to show the effectiveness of the two introduced 
intelligent techniques in terms of the computational time, a 
comparison with finite element has been conducted. In this first 
case study, a finite element mesh of 9423 nodes and 18746 
elements were utilized for the domain discretization, and 
consequently a liner system of equations with 9423 unknowns, 
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represent the node temperatures is needed to be solved 256 times 
according to the input set size which consist of various 
combination of the input cable spacing and buried depth.   

 
Table.1: AI relative error to FE 

Cable 
system 

Maximum absolute 
error ( oC) 

Mean square error  
(%) 

 ANN ANFIS ANN ANFIS 
1 0.1632 0.2006 0.0004 0.0014 
2 0.9209 0.9210 0.0335 0.0185 

 
The computation times for are 33.1 and 7.7 seconds for the ANN 
and ANFIS respectively, whereas 2.1607×104 sec is needed in 
case of using the FE. In the case of the cable system# 2, the input 
set size is 638, the size of the mesh is 14,265 nodes and the finite 
element simulation time is 155148 sec. On the other hand, the 
simulation time of the ANN and ANFIS are 320.4 and 6.1 
seconds respectively. Obviously, the FE method under parameter 
variations will be costly in terms of computational efforts as the 
number of inputs increases. On the other hand, the intelligent 
techniques can be adopted as effective alternative to the FE as it 
provides correspondence results with much less commotional 
complexity and execution time.    
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Fig.11: Deviation of the ANN and ANFIS from the FE solution- 

system #1 
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Fig.12: Deviation of the ANN and ANFIS from the FE solution- 

system #2 
 
4. Discussion and Findings 
In this paper, ANFIS and ANN are addressed in order to estimate 
the thermal field of underground power cable. The proposed AI 
methods were also compared with a conventional FE. Results 
have shown high correspondence with the conventional FE.  The 
model has been applied on two different practical cable systems 
in terms of cable specifications, structure and system 
configuration.  

In the case of thermal study of underground power cable, most of 
the thermal parameters are subjected to variations from time to 
time, such as the ambient temperature and the moisture contents. 
Furthermore, variations encounter as a sequence of natural 
difference of the soil and due to expected dislocation of the cable 
and consequently, changing in cable depth and spacing along the 
cable route. Finite elements method can deal with varying 
properties including the complexity of the system. However, in 
case of variability of the parameters, the finite element is timely 
consuming and expensive in terms of the computations. The 
major advantage of AI is their ability to interpret data and 
facilitate corrective action without resorting to a mathematical 
model. 
AI techniques can be used in conjunction with limited FE 
analysis to capture the effect of influential parameter variations 
and provide a solution for such complex mapping avoiding the 
extensive numerical computations.  
 In the proposed algorithm, FE calculations, has not been limited 
to cable temperature, in fact, it covers geometrically area around 
the cable including mother soil.  On the other hand, AI is limited 
to capture the trend of the cable temperature due to variation of 
selected input parameters. Furthermore, FE needs full profile of 
the model characteristic (geometrical, boundary and medium 
specifications) which have to be provided as inputs. For AI, the 
important parameters that have the great influence on the cable 
performance will only be utilized to generalize the problem with 
the minimum structure complexity. The input parameters are 
subjected to distribution in the whole solution area of the above 
problem, only the necessary fuzzy rules- in case of ANFIS-
within the premise space is included, leading to a minimum of 
training parameters. It is worth mentioning that input space 
partitioning for both ANFIS and ANN and the size of rule-base 
for ANFIS are crucial for computational expense. Consequently, 
they are appropriate for problems having relatively small number 
of input variables and/or involving small to medium number of 
training patterns. 
 In conclusion, FE is superior in terms of modeling precision, 
whereas the AI comes in the picture due to its capability in terms 
of uncertainty handling, computational expense, and data 
requirements. Results indicated that, both techniques are valid 
and have certain advantages over each other and should be 
preferred with respect to quantity and quality of the data at hand. 
This paper introduces merging of numerical and artificial 
intelligence techniques in one comprehensive module in order to 
gain the unique advantages of both. The developed method can 
be a very efficient tool for the study of thermal fields under 
various underground power cable system configurations and 
useful alternative in circumstances of model parameter 
variations. Further Advantage of this method would be obvious 
when combine with underground cable online monitoring when 
measurement data set for network training is available. The 
proposed intelligence system might also be adapted to similar 
studies for analysis and design of electric power systems. 
  
5. Conclusion 
This paper has presented a comparative evaluation of two 
intelligent techniques, which are newly introduced in this paper 
for thermal assessment of power cables. The two techniques 
employ the back-propagation neural network (BPNN) and 
adaptive neuro-fuzzy inference system (ANFIS) models, which 
are developed to predict the cable temperature under geometrical 
parameter variations. The effect of cable spacing and cable burial 
depth on cable ampacity has been investigated. The two models 
are trained using an input-output pattern generated using FE 
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method, which is extensively used in this field of study. In the 
work of the paper, a portion of the FE-generated output results, 
which have not been provided to the models – as input data - in 
the training phase, were utilized to compare the cable 
temperature of the three methods (FE, ANN and ANFIS). The 
results presented in the paper for the two intelligent methods 
have shown high correspondence with the finite element 
solution. This conclusion confirms that the introduction of the 
intelligent techniques provides a reliable and simple alternative 
approach for the thermal field evaluation by avoiding numerous 
computational complexities of the numerical methods. 
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