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Introduction
The use of statistics in medicine provides generalization from the 

public to better understand their risks for certain diseases, such as links 
between certain behaviors and heart disease or cancer [1]. Survival 
analysis is an application of statistics mostly used in medicine and has 
over the years become a discipline itself, enriching not only medicine 
but statistics in general [2]. Survival analysis is generally defined as a 
set of methods for analyzing data where the outcome variable is the 
time until the occurrence of an event of interest [3]. Survival analysis 
aims to estimate the three survival (survivorship, density, and hazard) 
functions, denoted by S(t), f(t) and h(t), respectively [4]. There exist 
parametric as well as non-parametric methods for this purpose [5]. 
The survival function S(t) gives the probability of surviving beyond 
time t, and is the complement of the cumulative distribution function, 
F(t). The hazard function h(t) gives the instantaneous potential per 
unit time for the event to occur, given that the individual has survived 
up to time t [5]. White et al. studied four survival analysis models to 
evaluate differences in length of stay based on Phototherapy treatment 
of neonatal jaundice and concluded that neonates who received 
Phototherapy had significantly longer length of Stay than untreated 
neonates [6]. Folorunso et al. concluded that Termed neonates are 
at lower risk than Preterm neonates and Rhesus compatibility are at 
lower risk than neonates with Rhesus incompatibility [7]. Onatunji and 
Folorunso studied the space-varying effects of jaundice and emphasize 
the importance of jaundice, which is widely the cause of neonatal 
mortality [8]. Their results shown a high risk of mortality associated 
with jaundice within the first 33 days. The estimated residual spatial 
effects for neonatal mortality shown clear differences between the 
significantly better survival chances of babies in the Northern state of 
Nigeria (FCT and some part of Kwara state). Modelling survival data 
plays an important role in the application of statistics in medicine and 
health science [9,10], therefore, in this study; survival analysis was 
carried out on the neonatal jaundice data modeling time to surviving the 
disease. The Kaplan-Meier approach was used to describe the survival 
functions of the neonatal jaundice patients and Log-rank tests was used 

to compare the survival curves among groups. The time to surviving 
neonatal jaundice was modeled by using the following models viz: 
Cox Proportional Hazard Model and Accelerated Failure Time (AFT) 
models (Weibull AFT model, Logistic AFT model, Log-normal AFT 
model, Log-logistic AFT model and Exponential AFT model).

Materials and Methods
Data source

Neonatal Jaundice data of 232 patients were used and the data 
were obtained from Children outpatients (CHOP) units, University 
College Hospital, Ibadan, Nigeria between 2005 and December 2010 
with diagnoses time until death in days. Others variables that were 
considered are as follows age, sex, gestational age, mother illness, 
mother education, mode and place of delivery, parity, settlement, 
Rhesus factor, G6PD and jaundiced neonate which forms part of the 
predictor variables. Considering the data used, the survival of the 
jaundice neonates were used as the response variable that is when a 
jaundice neonate is alive or dead.

Ethical approval

This study will not be completed if the potential ethical problem 
that may arise in the study is not addressed. The following are some of 
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Abstract

A primary focus of Survival analysis in medicine is modelling time to surviving of a particular disease. In this 
paper, survival analysis was carried out on the neonatal jaundice data modeling time to surviving the disease. 
The data was gotten from collected from University College hospital (UCH), Ibadan, Nigeria. The Kaplan-Meier 
approach was used to describe the survival functions of the neonatal jaundice patients and Log-rank tests was used 
to compare the survival curves among groups. Different kinds of models such as Cox Proportional Hazard Model 
and Accelerated Failure Time (AFT) models like Weibull AFT model, Logistic AFT model, Log-normal AFT model, 
Log-logistic AFT model and Exponential AFT model are considered to be used for modelling the time to surviving 
neonatal jaundice. Models selection criteria were used as a guide to unravel the best model for modeling neonatal 
jaundice. The result revealed that the fitted cox proportional hazard model suggested that there were 0.2708 
chances of male neonates having higher median time of surviving jaundice compared to female neonates. Based 
on the mother's health history, neonates whose mother had illness during pregnancy will have 0.5329 chance of 
having higher median time of surviving the Jaundice compared to neonates whose mother do not have any illness 
during pregnancy. The log-logistic AFT model out-performed the other models since it has the lowest AIC and the 
highest log-likelihood value with 1131.461 and -550.7305 respectively.
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the anticipated ethical problems that may arise:

• Confidentiality of data: The information extracted from the 
medical records department of University College Hospital are used 
specifically for this research work, therefore all information’s was 
treated confidentially.

• Beneficence to participants: The information collected was 
used to evaluate the social and medical value of the study.

Data analysis
In this study, survival analysis was carried out on the data to model 

time to surviving neonatal jaundice. The Kaplan-Meier approach was 
used to describe the survival functions of the neonatal jaundice patients 
and the Log-rank tests was used to compare the survival curves among 
groups. The time to surviving neonatal jaundice was modelled by 
using the following models viz: Cox Proportional Hazard Model and 
Accelerated Failure Time (AFT) models (Weibull AFT model, Logistic 
AFT model, Log-normal AFT model, Log-logistic AFT model and 
Exponential AFT model).

The Kaplan Meier product limit method

In Kaplan Meier product limit method, survival probabilities can 
be obtained as:
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Where; dj = the number of failure in tj, nj is the number of incident 
cases at risk in tj, k is the number of sequential observations, n is the 
total number of incident cases.

The log rank test

The log rank test is a hypothesis test to compare the survival 
distributions of two samples. It is appropriate to use when the data are 
right skewed and censored.

Hypothesis:

H0: No difference between survival curves

H1: There is difference between survival curves the log rank statistic 
for two groups is
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The expected frequency is calculated as

Eij = proportion in risk set × failures over both groups
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Cox proportional hazard (ph) model

The Cox Proportional Hazards model is given as

( ) ( ) ( ) ( ) ( )0 1 1 2 2 0| exp expp ph t x h t x x x h t xιβ β β β= + + + =

where h0(t) is called the baseline hazard function which is the 
hazard function for an individual for whom all the variables included 

in the model are zero., x= (x, x, …ex)t is the value of the vector of 
explanatory variables for a particular individual, and βt=(β1, β2,…..βp) 
vector of regression coefficients.

The corresponding survival functions are related as follows
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This model, also known as the Cox regression model, makes no 
assumptions about the form of h0(t) (non-parametric part of model) 
but assumes parametric form for the effect of the predictors on the 
hazard (parametric part of model). The model is therefore referred to as 
a semi-parametric model.

The hazard ratio of two individuals with different covariates x and 
x* is
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This hazard ratio is time-independent, which is why this is called 
the proportional hazards model.

Accelerated failure time (aft) model

The AFT model describes the relationship between survival 
probabilities and a set of covariates. For a group with covariates (X 1, X2, 
, Xp ) , the AFT model is written mathematically as

( ) ( )0| ( | )S t x S t xη=

Where S0 (t) is the baseline survival function and h is an acceleration 
factor i.e. a ratio of survival times corresponding to any fixed value of 
S(t).

The acceleration factor is given according to the formula

( ) ( )1 1 2 2exp p px x x xη α α α= + + +

According to the relationship of survival function and hazard 
function, the hazard function for an individual with covariate X1 , X2 
, , Xp is given by
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Under an accelerated failure time model, the covariate effects are 
assumed to be constant and multiplicative on the time scale, that is, the 
covariate impacts on survival by a constant factor (acceleration factor). 
The corresponding log-linear form of the AFT model with respect to 
time is given by

1 1 2 2i i i p pi ilogT X X Xµ α α α σε= + + + + +

Where μ is intercept, σ is scale parameter and is a random variable, 
ei assumed to have a particular distribution.

Weibull AFT Model

Suppose the survival time T has W (γ; λ) distribution with scale 
parameter and shape parameter, under AFT model, the hazard function 
for the ith individual is
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Where ηi = exp(α1 x1 + α 2 x2 +  +αp xpi )for individual i with p 
explanatory variables, so the survival time is given as The Weibull 
distribution has the AFT property.

If Ti has a Weibull distribution, then ei has an extreme value 
distribution (Gumbel distribution). The survival function of Gumbel 
distribution is given as

( ) ( )( )exp expiSε ε ε= −

The AFT representation of the survival function of the Weibull 
model is given by
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The AFT representation of hazard function of the Weibull model 
is given by
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The median survival time is

( ) ( )50 exp log 2 it log xισ µ α = + + 

The log-logistic AFT model

The log-logistic survival and hazard function are given by
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Where θ and k are unknown parameters and k>0 suppose that the 
survival times have a log-logistic distribution with parameter and k, 
under the AFT model, the hazard function for the ith individual is
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Where ηi = exp(α1 x1 + α 2 x2 + +αp xp) for individual i with p 
explanatory variables. Therefore, the survival time for the ith individual 
has a log-logistic distribution with parameter θ − k log η and k, log-
logistic distribution has AFT property.

The AFT representation of survival function of the log-logistic 
model is given by

( ) 1 11/ 1[1 ]i p pi
i

X X
S t t expσ µ α α

σ
−− − − − 

= +  
 



The hazard function for the ith individual is given by
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The median survival time is

( ) ( )50 expi it xιµ α= +

The Log-normal AFT model

If the survival times are assumed to have a log-normal distribution, 

the baseline survival function and hazard function are given by
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Where µ is intercept, σ is scale parameter and is a random variable; 
ϕ (x) is the cumulative density function of the standard normal 
distribution. The survival function for the ith individual is
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Where ηi = exp(α1 x1 + α 2 x2 + +αp xp ).Therefore the log survival 
time for the ith individual has normal ( µ +α ι xi , σ ). The log-normal 
distribution has the AFT property.

The generalized gamma AFT model

The probability density function of the generalized gamma 
distribution with three parameters, λ, γ and α is defined by
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Its survival function is given as
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Where γ(s, t) = ∫x t s −1e −t dt is an incomplete gamma function, γ is 
the shape parameter of the distribution. The survival function and the 
hazard function do not have a closed form for the generalized gamma 
distribution. The exponential, Weibull and log-normal models are all 
special cases of the generalized gamma model. The generalized gamma 
distribution becomes the exponential distribution if α = γ =1; the 
Weibull distribution if γ=1; and the log-normal distribution if γ tends 
to infinity.

Results and Discussions 
In Table 1, the overall median of time to surviving neonatal Jaundice 

is found to be 13 days, this indicates that 50% of the neonatal patients 
survive jaundice in less than or equal to 13 days and the other 50% 
survive jaundice longer than 13 days. This is the survival time at which 
the cumulative survival function is equal to 0.5. This is summarized in 
Figure 1.

To describe how to evaluate whether or not K-M curves for two 
or more groups are statistically significant, a popular testing method 
called Log-rank test is used and the test used chi-square statistic. 
When two K-M curves are statistically the same or equivalent it means 
that based on testing procedure that compares the two curves in 
some overall sense, we do not have evidence to indicate that the true 
population survival curves (probabilities) are different. Table 2 suggest 
that there is a statistical difference between the survival probabilities 
of the levels of place of delivery, mother’s education, jaundice level, 

N events median 0.95LCL 0.95UCL
232 153 13 11 16

Table 1: Kaplan Meier estimate of time to surviving neonatal jaundice.
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Figure 1: Kaplan Meier survival curve of time to surviving neonatal jaundice.

Variables Levels N Observed Expected (O E)^2/E Chi-square P-value

Sex
Male 107 68 72.5 0.277 0.6 0.45

Female 125 85 80.5 0.25

Place of
delivery

Not hospital 53 18 36 8.97 12.8 0.000353*

Hospital 179 135 117 2.75

Mother
Education

Illiterate 83 50 64.8 3.39 6.5 0.0109*

Literate 149 103 88.2 2.49

Mode of
Delivery

CS 85 61 56 0.449 0.8 0.379

SVD 147 92 97 0.259

Settlement
Rural 37 19 28 2.911 3.9 0.0494

Urban 195 134 125 0.653

Jaundice
Level

Mild 112 105 86 4.2 10.6 0.00115*

Severe 120 48 67 5.39

GP6D
Normal 71 40 54.7 3.96 6.7 0.00945*

Deficient 161 113 98.3 2.21

Gestation
Age

Not term/Preterm 110 71 81.8 1.42 3.3 0.0695

Term 122 82 71.2 1.63

Rhesus
Factor

Incompatible 146 93 99.6 0.443 1.4 0.236

Compatible 86 60 53.4 0.828

Mother
Illness

Present 43 14 24.5 4.524 5.8 0.0157*

Absent 189 139 128.5 0.864

Variables with * suggests that there is a significance difference between the survival probabilities of the groups.

Table 2: Log rank test showing the difference in survival function between the groups.

G6PD and mother illness since their SIG. values are less than 5% level 
of significance. This implies that the probability of surviving jaundice of 
infant born in the hospital is significantly different from the infant not 
born in the hospital. The infant whose mother has no form of education 
have a significantly different probability of survival jaundice compare to 
infant whose mother was literate. Infant whose jaundice level was mild 
has a significantly different probability of surviving jaundice compare 
to infant with severe jaundice level. There is a significance difference in 
the probability of surviving jaundice between the infant whose mother 
has the disease and who mother did not.

In Table 3, the fitted cox proportional hazard model suggested that 
there was 0.2708 chance of male infant having higher median time of 

surviving jaundice compared to female infant. Based on the mother's 
health history, infant whose mother had jaundice will have 0.5329 
chance of having higher median time of surviving the illness compared 
to infant whose mother do not have the illness. Based on the place of 
delivery, there was 1.0755 chance of infant born in the hospital having 
lower median time of surviving jaundice compared to infant not born in 
the hospital. Infant whose mode of delivery was CS and whose mother 
do not have any form of education would have 0.2024 and 0.3392 
chance of having lower median time of surviving jaundice compared to 
infant who are born with SVD and whose mother are illiterate. There is 
0.0860 chance of infant in urban settlement to have lower median time 
of surviving jaundice compared to infant in rural settlement. Infant 
whose gestation age was term and jaundice level was severe would have 
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Variables Levels Value (B) exp(B) Std. Error z P

Sex
Male (RC)

Female 0.270758 1.310957 0.206015 1.314 0.188758

Mother
Illness

Present (RC)
Absent 0.532936 1.703928 0.306157 1.741 0.081731

Place of
Delivery

Not hospital (RC)
Hospital 1.075458 2.931335 0.312804 3.438 0.000586*

Mother
Education

Illiterate (RC)
Literate 0.33918 1.403797 0.198802 1.706 0.087985

Mode of
Delivery

CS (RC)
SVD 0.202361 1.22429 0.181097 1.117 0.263815

GP6D
Normal (RC)

Deficient 0.29507 1.343221 0.229669 1.285 0.198874

Settlement
Rural (RC)

Urban -0.08601 0.917584 0.301631 -0.285 0.775528

Gestation
Age

Not term/Preterm (RC)
Term -0.20864 0.811685 0.227235 -0.918 0.358524

Jaundice
Level

Mild (RC)
Severe -0.15477 0.856617 0.195494 -0.792 0.428559

Rhesus
Factor

Incompatible (RC)
Compatible -0.19332 0.824219 0.189992 -1.018 0.30891

Age 0.000577 1.000577 0.015513 0.037 0.970342
Parity -0.0358 0.964832 0.057892 -0.618 0.536297
Weight 0.522485 1.686213 0.128933 4.052 5.07E-05*

Table 3: Parameter estimate of cox proportional hazard model of time to surviving neonatal jaundice.

Variables Levels Value (B) exp(B) Std. Error z p
Intercept 4.0454 57.13404 0.2958 13.6749 1.43E-42

Sex
Male (RC)

Female -0.17125 0.843455 0.1159 -1.4684 1.42E-1

Mother Illness
Present (RC)

Absent -0.30251 0.738963 0.1585 -1.9082 5.64E-2

Place of Delivery
Not hospital (RC)

Hospital -0.68343 0.504882 0.177 -3.8605 1.13E-4

Mother Education
Illiterate (RC)

Literate -0.10524 0.900108 0.1187 -0.8868 3.75E-1

Mode of Delivery
CS (RC)

SVD -0.05342 0.947986 0.1089 -0.4906 6.24E-1

GP6D
Normal (RC)

Deficient -0.10036 0.904515 0.1372 -0.7317 4.64E-1

Settlement
Rural (RC)

Urban 0.069102 1.071546 0.1734 0.3985 6.90E-1

Gestation Age
Not term/Preterm (RC)

Term 0.186279 1.204758 0.1473 1.2642 2.06E-1

Jaundice Level
Mild (RC)
Severe 0.130109 1.138953 0.1131 1.1501 2.50E-1

Rhesus Factor
Incompatible (RC)

Compatible 0.028747 1.029164 0.1119 0.257 7.97E-1
Age -0.00082 0.999177 0.0106 -0.0778 9.38E-1

Parity 0.05417 1.055664 0.0371 1.4616 1.44E-1
Weight -0.31353 0.73086 0.0749 -4.1864 2.83E-5

Log (Scale) -0.99032 0.371459 0.0657 -15.0631 2.83E-51

Table 4: Parameter estimate of log-logistic accelerated failure time model of time to surviving neonatal. jaundice.

0.2086 and 0.1548 chance of having lower median time of surviving 
jaundice respectively compared to infant whose gestation age was not 
term and jaundice level was mild. Also, there is 0.0928 chance of infant 
whose rhesus factor was compatible was expected to have lower median 
time of surviving jaundice compared to infant whose rhesus factor was 
incompatible. A unit increase in the age and weight of the infant will 

cause 0.00058 and 0.5225 increase in the median time of surviving 
Jaundice. Also, a unit increase in the parity of infant will cause 0.0358 
decreases in the median time of surviving jaundice.

Also, place of delivery and weight have significant effect on the 
median time to surviving neonatal jaundice.
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In Table 4, the fitted log-logistic AFT model suggested that there was 
0.17125 chance of male infant having higher median time of surviving 
jaundice compared to female infant. Based on the mother's health 
history, infant whose mother had jaundice will have 3.0251 chance of 
having higher median time of surviving the illness compared to infant 
whose mother do not have the illness. Based on the place of delivery, 
there was 0.6834 chance of infant born in the hospital having lower 
median time of surviving jaundice compared to infant not born in the 
hospital. Infant whose mode of delivery was CS and whose mother do 
not have any form of education would have 0.0534 and 0.1052 chance 
of having higher median time of surviving jaundice compared to infant 
whose mother was literate and born with SVD. There was 0.0239 chance 
of infant in urban settlement to have higher median time of surviving 
jaundice compared to infant in rural settlement. Neonates whose 
gestation age was term and jaundice level was severe would have 0.1863 
and 0.1301 chance of having higher median time of surviving jaundice 
respectively compared to infant whose gestation age was not term and 
jaundice level was mild. Also, there was 0.0287 chance of infant whose 
rhesus factor was compatible to have higher median time of surviving 
jaundice compared to infant whose rhesus factor was incompatible. 
A unit increase in the age and weight of the infant will cause 0.00082 
and 0.3135 decrease in the median time of surviving Jaundice. Also, a 
unit increase in the parity of infant will cause 0.05417 increases in the 
median time of surviving jaundice (Supplementary Tables 1-4).

Table 5 showed the performance comparison of the models. The 
model with the lowest AIC and highest log-likelihood is chosen as 
the best model. The log-logistic AFT model outperformed the other 
models since it has the lowest AIC and the highest log-likelihood value 

Model AIC Value Log-Likelihood
Weibull AFT 1142.529 -556.264

Exponential AFT 1207.064 -589.532
Logistic AFT 1213.737 -591.869

Log-Logistic AFT 1131.461 -550.731
Cox PHM 1292.453 -633.227

Table 5: Performance comparison of the models.

with 1131.461 and -550.7305 respectively.

Conclusions
From our findings, we are able to determine that the log-logistic 

AFT model outperformed the other models. Also, the fitted log-logistic 
AFT model suggested that there was chance of male neonates having 
higher median time of surviving jaundice compared to female neonates 
There was chance of neonates in urban settlement to have higher 
median time of surviving jaundice compared to neonates in rural 
settlement. Also, there was chance of neonates whose rhesus factor was 
compatible to have higher median time of surviving jaundice compared 
to neonates whose rhesus factor was incompatible.
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