
Open AccessISSN: 2090-4886

International Journal of
Sensor Networks and Data Communications

Research Article
Volume 12:06, 2023

Comparative Study of Operating Modes for Low-power Wire-
less Sensor Networks in Vibration-based Machine Condition
Monitoring

Abstract
Wireless Sensor Networks (WSNs) can be used for machine condition monitoring to improve performance and safety. However, they present
challenges with respect to energy and data management. This paper presents a novel low-power WSN and compares the performance of operating
modes and data processing methods for vibration-based machine condition monitoring. The necessary software was developed to perform time
and frequency analysis, and a data reduction method was proposed to reduce the data packet size. The performance of the WSN end node was
then tested, and its energy consumption was compared for different operating modes. Testing showed that the end node was capable of performing
basic vibration analysis. However, contrary to expectations and other reports, results showed that processing data locally to reduce the packet size
consumed more energy than transmitting the raw vibration data. While the data packet was effectively reduced by 98.6 percent from 4096 bytes to
56 bytes, results showed that processing data locally consumed 8.8 to 21.4 percent more energy than transmitting the raw data.

Keywords: Wireless sensor network • Capacitive MEMS accelerometer • Machine condition monitoring • Vibration analysis • Data processing

David Alexander Ells*, Christopher Mechefske and Yongjun Lai
Department of Mechanical and Materials Engineering, Smith Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada

*Address for Correspondence: David Alexander Ells, Department of
Mechanical and Materials Engineering, Smith Engineering, Queen’s University,
Kingston, ON, K7L 3N6, Canada, Tel: +16135336535, E-mail: lai@queensu.ca,
yongjunlai20@gmail.com
Copyright: © 2023 Ells DA, et al. This is an open-access article distributed under
the terms of the creative commons attribution license which permits unrestricted
use, distribution and reproduction in any medium, provided the original author
and source are credited.
Received: 01 December, 2023; Manuscript No. sndc-23-122153; Editor
Assigned: 03 December, 2023; PreQC No. P-122153; Reviewed: 15 December,
2023; QC No. Q-122153; Revised: 21 December, 2023, Manuscript No. R-122153;
Published: 28 December, 2023, DOI: 10.37421/2090-4886.2023.12.239

Introduction

Sensor Networks (SNs) and Wireless Sensor Networks (WSNs) can be
used to measure conditions such as temperature, pressure, and vibrations
to monitor systems or environments [1,2]. More specifically, these networks
can be used for machine condition monitoring by performing vibration analysis
[3-5]. Machine condition monitoring can offer several benefits including
improved performance, reduced operating costs, and enhanced safety. The
most common methods of vibration analysis for machine condition monitoring
include time domain and frequency domain analysis [6-8].

For the purpose of machine condition monitoring, WSNs can offer
several advantages over traditional SNs. These advantages include ease of
deployment, greater flexibility, better scalability, and reduced cost [4]. However,
WSNs present new challenges with respect to managing energy consumption
and battery life, and data processing and management [1,2].

Considerable research has been done to address these challenges with
power consumption and battery life [9,10]. Solutions include optimizing the
hardware, software, configuration, and routing of the WSN for low-power
operation. The hardware can be optimized by using specifically designed
low-power controllers, sensors, and antennas. Software-based solutions
include optimizing data collection, processing, and transmission. More specific
data reduction solutions include local data aggregation, compression, and
prediction [9]. Since transmitting data consumes more energy than processing,
it has often been reported that data processing and reduction performed on the
end node can reduce the net power consumption [1,2,11].

With advancements in Micro-Electro-Mechanical Systems (MEMS),
battery technology, and data processing methods, WSNs are becoming more
effective, and these challenges can be overcome. The objective of this work
was to develop a WSN that can effectively perform vibration-based machine
condition monitoring with low power consumption by incorporating these recent
advancements. A WSN end node is presented, that is based on a capacitive
MEMS accelerometer and an integrated microcontroller. The necessary
software was developed to perform time and frequency analysis, and a new
data reduction method is presented that reduces the frequency spectrum
while preserving the important data. The hardware and software of the WSN
end node was then tested experimentally, and its energy consumption was
compared for different operating modes with the objective of determining the
best data processing method for low-power operation.

Materials and Methods

End node hardware

The WSN end node is based on the ATmega256RFR2 Microcontroller
(MCU) and a KX132 capacitive MEMS accelerometer. An image of the end
node prototype can be seen in Figure 1. The ATmega256RFR2 is a high-
performance, low-power AVR 8-Bit microcontroller from Atmel, with 256 KB
flash memory, 32 KB internal SRAM memory, 8 KB EEPROM, and integrated
2.4 GHz radio transceiver. The KX132 is a three-axis accelerometer with a
selectable measurement range from ± 2 g to ± 16 g and is capable of sampling
at a rate of 25600 Hz. The microcontroller and accelerometer communicate
through the SPI interface (Figure 1).

Data processing method and development

The end node was programmed to collect 1024 acceleration samples at a
rate of 1600 Hz. The 16-bit samples were converted to acceleration in g, stored
as 4-byte decimals, and the mean was removed. The mean removal involved
calculating the average of the samples and subtracting it from each sample
in-place. The size of the converted acceleration data was 4096 bytes total.

Time domain analysis

Calculating the max acceleration and the RMS parameters is a relatively
low-memory and low-complexity process. The peak amplitude is simply the
largest absolute sample of acceleration, and the RMS is the square root of the

mailto:lai@queensu.ca
mailto:yongjunlai20@gmail.com

Int J Sens Netw Data Commun, Volume 12:06, 2023Ells DA, et al.

Page 2 of 5

mean square of the set of samples. For a discrete set of numbers, the RMS is
calculated as follows [7]

21

0

1 (()) (1)
N

n
RMS x n

N

−

=

= ∑

Table 1 shows the program memory, data memory, and compute time for
processing 1024 samples on the end node. The size of the peak amplitude and
RMS results were 4 bytes each (Table 1).

Frequency domain analysis

Converting the acceleration over time to the frequency domain can be
done with several different transforms. The most commonly used algorithms
are based on the Fourier Transform, called Fast Fourier Transforms (FFTs).
These algorithms compute the Discrete Fourier Transform (DFT) to process
finite-length, discrete-time signals with fewer operations. The DFT is defined
as follows, where X(k) is the computed frequency, x(n) is the input signal, N is
the number of samples, and j is the imaginary unit [7,8].

1
2 /

0
() () (2)

N
j kn N

n
X k x n e π

−
−

=
∑

Typically, FFTs reduce the number of operations needed to compute the
DFT by taking advantage of the symmetry of the expression. While the DFT
computes the sum directly and has a complexity of O(N2), FFTs reduce the
complexity to O(N log N). There are many different FFT types and permutations
that can be implemented to reduce complexity and improve performance for
the specific use case.

FFTs can use a recursive or iterative structure. The difference between
these structures can affect the complexity, compute speed, and what other
permutations may be incorporated in the algorithm. Depending on the size
of the dataset, FFTs can use different radices. Common implementations
include radix-2, radix-3, radix-4, and mixed-radix FFTs. The radix can affect
the complexity, the memory needed, and the compute speed of the algorithm.
As well, FFTs can use a Decimation In Time (DIT) or Decimation In Frequency
(DIF) structure, however there is no inherent difference in performance
between the two.

A commonly implemented strategy is to precompute the twiddle factors.

In the context of DFTs, twiddle factors are the complex exponential constants,
defined as follows.

2 / (3)k j kn N
NW e π−=

The twiddle factors can also be expressed using cosine and sine functions
[7]. Where, the cosine term represents the real part, and the sine term
represents the imaginary part.

2 2cos sin (4)k
N

kn knW j
N N
π π   = −   

   

By precomputing and storing these constants, the algorithm reduces the
number of redundant computations, trading the use of additional memory for
reduced compute time. These permutations cater to specific applications and
balance trade-offs between complexity, memory usage, flexibility, and compute
speed.

Several different FFT algorithms were written and tested on the WSN
end node. Table 2 below, compares the program memory, data memory, and
compute time processing 1024 samples for each algorithm. All FFTs used the
same predefined complex type and macros for the complex operations. Of
those tested, the FFT with the fastest compute time was a recursive radix-2
decimation-in-time FFT algorithm with precomputed twiddle factors. The FFT
used 1690 bytes in program memory and took 0.6350 seconds to complete.
The size of the resulting frequency spectrum data is 4 bytes per magnitude,
and 2 bytes per frequency (Table 2).

There are many other methods that can be used to reduce the compute
time of FFTs. These include optimizing the data type, optimizing the memory
access and allocation, reducing the number of operations, and optimizing
the operations and macros. Several different methods were tested in the
development of the FFT algorithms. Table 3 presents a comparison of complex
type and operation method used. By implementing a complex type structure
rather than the compiler complex type, and macros for the complex operations,
the compute time was reduced by 12.65 percent for the fastest FFT algorithm
(Table 3).

Frequency spectrum data reduction

The objective of the data reduction method was to reduce the frequency

Figure 1. Image of the WSN end node mounted to a plate for testing.

Table 1. Max acceleration and RMS functions.

Function Program Memory
(Bytes)

Temporary
Data Memory

(Bytes)

Result Data
Memory
(Bytes)

Compute
Time

(Seconds)
Max

acceleration 236 10 4 0.0045

RMS 338 18 4 0.0178

Table 2. Comparison of memory demands and compute time of FFT algorithms.

Algorithm
Program
Memory
(Bytes)

Temporary
Data

Memory
(Bytes)

Result Data
Memory
(Bytes)

Compute
Time (s)

DFT 210 8246 3072 378.321
Recursive radix-2 FFT 1534 8254 3072 1.81
Recursive radix-2 FFT

with precomputed twiddle
factors

1690 12362 3072 0.635

Recursive radix-4 FFT 2420 8318 3072 1.4324
Recursive radix-4 FFT

with precomputed twiddle
factors

2758 14474 3072 0.7342

Iterative radix-2 FFT 1878 8272 3072 1.805
Iterative radix-2 FFT with

precomputed twiddle
factors

2106 12380 3072 0.706

Int J Sens Netw Data Commun, Volume 12:06, 2023Ells DA, et al.

Page 3 of 5

spectrum to the fewest data points necessary while preserving the relevant
information. The process was separated into two steps, correcting the
magnitude of the frequency spectrum, and defining the peaks to be selected.

The purpose of the correction step was to normalize the spectrum and
emphasize peaks based on local prominence. The process calculated the
simple moving average, of a user configurable window size, and divided the
frequency amplitude by this average. The simple moving average is defined as
follows, where k is the offset, and 2k + 1 is the total size of the average window.
The greater the window size is, the smoother the average and the better the
correction result, but the greater the compute time.

1 () (5)
2 1

k

i k
SMA x i

k =−

=
+ ∑

A predetermined number of peaks were then defined as the greatest local
maximum inside a window of configurable size. The amplitude and frequency
of the peaks were then saved. Table 4 compares the memory and compute
time of the selective data processing method for different numbers of selected
peaks with a moving average offset of 10 and a local maximum offset of 2. The
size of the reduced data was 384, 192, 96, and 48 bytes for 64, 32, 16, and 8
selected peaks respectively (Table 4).

Vibration testing setup

To test the WSN end node and data processing method, it was mounted
to a LabWorks ET-139 permanent magnet vibration shaker, as seen in Figure
2. The shaker was powered and controlled by an Agilent 33220A arbitrary
waveform generator and a LabWorks PA-141 linear power amplifier. A
calibrated PCB model 288D01 impedance head was mounted to the same
plate as the end node and served as a reference accelerometer. The data
collected and processed by both the WSN end node and the PCB impedance
head was monitored and saved on a computer (Figure 2).

Results and Discussion

Data processing results

To evaluate the performance of the WSN end node, the shaker was
programmed to generate discrete sine waveform vibrations at 100, 200, 300,
400, 500, and 600 Hz. Figure 3 compares the acceleration samples of PCB
impedance head and the WSN end node for the 100, 200, and 300 Hz shaker
tests. The plots show the magnitude of acceleration in g vs. time in seconds
(Figure 3) (Tables 5 and 6).

The magnitudes of both the max acceleration and RMS results for the end
node are significantly less than those measured on the PCB impedance head.
This discrepancy may be the result of several factors including less secure
packaging of the accelerometer, greater damping from additional components,
and lower sensitivity of the MEMS accelerometer.

Figure 4 shows the frequency spectrum of the WSN end node
measurements plotted for each of the 100, 200, 300, 400, 500, and 600 Hz
shaker tests. The plots show the magnitude of acceleration in g vs. frequency
in hertz. In each case the characteristic frequency is accurately measured and
clearly shown (Figure 4).

Table 7 compares the peak frequency of the FFT results for the PCB
impedance head and the WSN end node (Table 7).

While the WSN end node can accurately measure and clearly show the
characteristic frequency of the vibration, the magnitude of the acceleration is
significantly less than what was measured on the PCB impedance head. This
discrepancy in magnitude is reflected in the FFT results and is highlighted by
the difference in peak frequency magnitude.

To evaluate the selective data processing method, the shaker was
programmed to generate a multi-sine-on-random waveform. The signal was a

Table 3. Memory, compute time, and results for different data selection methods.

Algorithm Type and Operation Compute Time
(Seconds)

Recursive radix-2 FFT with
precomputed twiddle factors

Standard compiler complex type and
standard operations 0.727

Recursive radix-2 FFT with
precomputed twiddle factors

Standard compiler complex type and
operation macros 0.804

Recursive radix-2 FFT with
precomputed twiddle factors

Simple complex type structure and
operation macros 0.635

Table 4. Compute time and memory needed for selective data processing method.

Number of
Peaks

Program
Memory
(Bytes)

Temporary Data
Memory (Bytes)

Result Data
Memory
(Bytes)

Compute Time
(Seconds)

64 1504 8498 384 0.1591
32 1504 8370 192 0.1554
16 1504 8306 96 0.1526
8 1504 8219 48 0.151

Table 5. Max acceleration compared for the PCB impedance head and the WSN end
node.

Test Frequency (Hz) 100 200 300 400 500 600
PCB accelerometer

result (g) 1.5127 1.2472 1.2152 1.1753 1.181 1.0965

WSN end node result (g) 1.4063 0.8588 0.6408 0.4358 0.2905 0.1818

Table 6. RMS results compared for the PCB impedance head and the WSN end node.

Test Frequency (Hz) 100 200 300 400 500 600
PCB accelerometer

result (g) 1.079 0.917 0.8554 0.8347 0.8302 0.8278

WSN end node result (g) 0.9866 0.5985 0.4464 0.2985 0.1956 0.1172

Figure 2. WSN end node mounted to the PCB impedance head and shaker.

Figure 3. Acceleration measured by the PCB impedance head for tests at: a) 100 Hz, b)
200 Hz and c) 300 Hz and the WSN end node at: d) 100 Hz, e) 200 Hz and f) 300 Hz.

Int J Sens Netw Data Commun, Volume 12:06, 2023Ells DA, et al.

Page 4 of 5

sum of sine waves at 30, 60, 100, 120, 200, 240, 300, and 400 Hz of different
amplitudes and some randomly generated number.

The vibration shaker was programmed to generate the signal with the
Agilent 33220A arbitrary waveform generator. Both the PCB impedance head
and the WSN end node collected and processed the vibration data separately.
Table 8 compares the max acceleration and RMS result for the PCB impedance
head and the WSN end node (Table 8).

Figures 5 and 6 compare the frequency spectra for the data collected by
the PCB impedance head and the WSN end node for the multi-sine-on-random
waveform. The memory needed to store the frequency spectrum data is 3072
bytes (Figures 5 and 6).

The results for the WSN end node show the same decrease in magnitude
with increase in frequency as seen in the peak acceleration and RMS results.
While both spectrums show the same characteristic frequency responses,
the end node results are significantly lower. For example, the peak frequency
magnitude at 400 Hz in the WSN end node results is 68.8 percent less than in
the PCB impedance head results.

The end node then performed the selective data processing method.
Figure 7 shows the frequency spectrum collected and processed by the WSN
end node after the spectrum correction process was performed. Most notably
the lower magnitude peaks at 200, 300, and 400 Hz are enhanced relative to
the rest of the spectrum (Figure 7).

The program then performed the peak selection process. To demonstrate
the data reduction method for different numbers of peaks, the peak selection
process was performed for 64, 32, 16, and 8 selected peaks. The memory
needed to store the reduced data was 384, 192, 96, and 48 bytes respectively.
Figure 8 compares these results. It can be seen that all 8 characteristic sine
waves are preserved in the data reduced to 8 peaks. Depending on the
machinery or system being monitored, and the complexity of the vibration
signal, the number of selected peaks can be configured (Figure 8).

To assess the performance of the data reduction method, it was tested and
compared to a basic data reduction method. Both methods were tested using
the same dataset of 1024 samples and configured to select 8 representative
peaks for analysis. The basic method selected the 8 largest numbers by
magnitude. The results, presented in Table 9, show the trade-off between
memory, compute time, and effectiveness. While the corrective data selection
method needed more memory and compute time, it successfully selected all 8
characteristic sine waves (Table 9).

Energy consumption results

The energy consumption of the end node was then measured and
compared for different operating modes. The results are shown in Table

Figure 4. The frequency spectra of the WSN end node results for tests at: a) 100 Hz, b)
200 Hz, c) 300 Hz, d) 400 Hz, e) 500 Hz and f) 600 Hz.

Table 7. Peak frequency results compared for the PCB impedance head and the WSN
end node.

Test Frequency (Hz) 100 200 300 400 500 600
PCB accelerometer

result (g) 1.5259 1.2968 1.2097 1.1797 1.1741 1.1707

WSN end node result (g) 1.3841 0.8082 0.5782 0.3299 0.1885 0.1345

Table 8. The RMS result for the PCB impedance head and the WSN end node.

Device Max Acceleration (g) RMS Result (g)
PCB impedance head 1.4404 0.5222

WSN end node 1.0534 0.373

Figure 5. The frequency spectrum of the PCB impedance head results.

Figure 6. The frequency spectrum of the WSN end node results.

Figure 7. Frequency spectrum of the WSN end node results after magnitude correction.

Figure 8. The corrected frequency spectrum reduced to 64, 32, 16 and 8 peaks.

Table 9. Memory, compute time, and results for different data selection methods.

Data Reduction Method
Program
Memory
(Bytes)

Temporary
Data

Memory
(Bytes)

Compute
Time

(Seconds)

Number
of Peaks
Selected
Correctly

Basic data reduction 862 73 0.0065 6
Corrective data reduction 1506 8274 0.151 8

Int J Sens Netw Data Commun, Volume 12:06, 2023Ells DA, et al.

Page 5 of 5

Table 10. Energy consumption compared for the different operating modes.

Operating Mode Description Data Size (Bytes) Time Active (Seconds) Energy Consumption (mWh)
(a) Collecting and transmitting raw data 4096 0.919 0.0099
(b) Processing and sending processed data 2056 1.4805 0.01297
(c) Processing, correcting, and sending reduced data 56 1.533 0.01203
(d) Processing and sending reduced data 56 1.365 0.01077
(e) Processing, checking, and not sending data 0 1.352 0.01064

10 below. Operating mode (a) involved collecting and transmitting the raw
acceleration data. Vibration data was collected, converted to acceleration (in
g) that was stored as decimals, at 4 bytes per sample or 4096 bytes total, and
transmitted to the gateway. Operating mode (b) involved collecting, processing
the data, and transmitting the processed data packet. After collection, the
vibration data was processed locally to determine the max acceleration, RMS
parameter, and frequency spectrum, 2056 bytes total, and transmitted to the
gateway. Operating mode (c) involved collecting, processing, correcting and
selectively reducing the data and transmitting the reduced data. After time
and frequency analysis was processed locally, the frequency spectrum was
corrected and selectively reduced to 8 peaks, resulting in a reduced data
packet of 56 bytes total. Operating mode (d) involved collecting, processing,
and selectively reducing the data and transmitting the reduced data. The last
operating mode (e) involved collecting and processing the vibration data,
checking thresholds, and not sending any data if the thresholds were not met.
This method, presented in [11], is intended to save energy by not transmitting
any data unless a predetermined threshold is met. For testing purposes, no
data was sent (Table 10).

Every strategy that involved processing data locally to reduce the size
of the data packet, consumed more energy than transmitting the raw data.
Processing and transmitting the data packet reduced by 49.8 percent
consumed 31.0 percent more energy. Processing and selectively reducing
the data packet by 98.6 percent consumed 8.8 to 21.4 percent more energy,
depending on the data reduction method. And processing the data, comparing
it to thresholds, and not sending any data consumed 7.4 percent more energy.
These results likely differ from other reports because of the specific hardware
and software that was implemented. Specifically, the low-power MCU that was
used. Transmitting data was relatively low-power, and data processing was
relatively slow, consuming more energy than expected.

Conclusion

In this work, a novel WSN end node was presented for machine
condition monitoring. The necessary software to perform vibration analysis
was developed, and a data reduction method was proposed to reduce the
frequency spectrum and the size of the data packet. The performance of the
WSN end node was tested experimentally, and its energy consumption was
compared for different operating modes.

Tests showed that the WSN end node was capable of collecting and
processing vibration data successfully. While the results were not as accurate
as the reference accelerometer, the capacitive MEMS accelerometer was
not expected to have the same level of sensitivity. These results can still
be effectively monitored for trends and use hardware-specific thresholds for
machine condition monitoring.

The proposed data reduction method was shown to reduce the frequency
spectrum more effectively than past methods. The magnitude correction step
successfully emphasized peaks in the frequency spectrum based on local
prominence, resulting in less of the characteristic responses being accidentally
discarded. As well, the peak selection step allowed for more configurability in
how the characteristic responses were selected. However, the improvement
in effectiveness came at the cost of additional compute time and power
consumption.

Results for the comparison of energy consumption for different operating
modes did not match expectations or other reports. Every mode that processed
the vibration data locally to reduce the packet size consumed more energy than

transmitting the raw data. While the data packet was reduced by 98.6 percent,
results showed that processing and reducing the data locally consumed 8.8 to
21.4 percent more energy than transmitting the raw data. It can be concluded
that, for the WSN end node presented, transmitting raw vibration data is a
better strategy for low-power operations than processing the data locally.

Acknowledgment

None.

Conflict of Interest

None.

References
1. Yang, Kun. “Wireless sensor networks.” (2014).

2. Akyildiz, F. and M. C. Vuran. “Wireless Sensor Networks.” Wiley (2010).

3. V. C. Gungor. “Industrial wireless sensor networks: Applications, protocols, and
standards.” CRC Press/Taylor & Francis (2013).

4. Hou, Liqun and Neil W. Bergmann. "Novel industrial wireless sensor networks for
machine condition monitoring and fault diagnosis." IEEE Trans Instrum Meas 61
(2012): 2787-2798.

5. Neuzil, Jan, Ondrej Kreibich and Radislav Smid. "A distributed fault detection
system based on IWSN for machine condition monitoring." IEEE Trans Instrum
Meas 10 (2013): 1118-1123.

6. Scheffer, Cornelius and Paresh Girdhar. “Practical machinery vibration analysis
and predictive maintenance.” Elsevier (2004).

7. Ahmed, Hosameldin and Asoke K. Nandi. “Condition monitoring with vibration
signals: Compressive sampling and learning algorithms for rotating machines.”
JWS (2020).

8. Jain, Prashant H. and Santosh P. Bhosle. "Analysis on vibration signal analysis
techniques used in diagnosis of faults in rotating machinery." Int J Mech Prod Eng
Res Develop 10 (2020): 3377-3396.

9. Anastasi, Giuseppe, Marco Conti, Mario Di Francesco and Andrea Passarella.
"Energy conservation in wireless sensor networks: A survey." Ad Hoc Networks 7
(2009): 537-568.

10. Rault, Tifenn, Abdelmadjid Bouabdallah and Yacine Challal. "Energy efficiency in
wireless sensor networks: A top-down survey." Comput Netw 67 (2014): 104-122.

11. Bergmann, Neil W. and Li-Qun Hou. "Energy efficient machine condition monitoring
using wireless sensor networks." icWC (2014): 285-290.

How to cite this article: Ells, David Alexander, Christopher Mechefske and
Yongjun Lai. “Comparative Study of Operating Modes for Low-power Wireless
Sensor Networks in Vibration-based Machine Condition Monitoring.” Int J Sens
Netw Data Commun 12 (2023): 239.

https://link.springer.com/book/10.1007/978-1-4471-5505-8
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470515181
https://www.taylorfrancis.com/books/edit/10.1201/b14072/industrial-wireless-sensor-networks-%C3%A7a%C4%9Fr%C4%B1-g%C3%BCng%C3%B6r-gerhard-hancke
https://www.taylorfrancis.com/books/edit/10.1201/b14072/industrial-wireless-sensor-networks-%C3%A7a%C4%9Fr%C4%B1-g%C3%BCng%C3%B6r-gerhard-hancke
https://ieeexplore.ieee.org/abstract/document/6215047
https://ieeexplore.ieee.org/abstract/document/6215047
https://ieeexplore.ieee.org/abstract/document/6661382
https://ieeexplore.ieee.org/abstract/document/6661382
https://bitly.ws/34MVS
https://bitly.ws/34MVS
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119544678
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119544678
https://bitly.ws/34Niz
https://bitly.ws/34Niz
https://www.sciencedirect.com/science/article/abs/pii/S1570870508000954
https://www.sciencedirect.com/science/article/abs/pii/S1389128614001418
https://www.sciencedirect.com/science/article/abs/pii/S1389128614001418
https://ieeexplore.ieee.org/abstract/document/7061741
https://ieeexplore.ieee.org/abstract/document/7061741

