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Abstract
Wireless Sensor Networks (WSNs) can be used for machine condition monitoring to improve performance and safety. However, they present 
challenges with respect to energy and data management. This paper presents a novel low-power WSN and compares the performance of operating 
modes and data processing methods for vibration-based machine condition monitoring. The necessary software was developed to perform time 
and frequency analysis, and a data reduction method was proposed to reduce the data packet size. The performance of the WSN end node was 
then tested, and its energy consumption was compared for different operating modes. Testing showed that the end node was capable of performing 
basic vibration analysis. However, contrary to expectations and other reports, results showed that processing data locally to reduce the packet size 
consumed more energy than transmitting the raw vibration data. While the data packet was effectively reduced by 98.6 percent from 4096 bytes to 
56 bytes, results showed that processing data locally consumed 8.8 to 21.4 percent more energy than transmitting the raw data.
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Introduction

Sensor Networks (SNs) and Wireless Sensor Networks (WSNs) can be 
used to measure conditions such as temperature, pressure, and vibrations 
to monitor systems or environments [1,2]. More specifically, these networks 
can be used for machine condition monitoring by performing vibration analysis 
[3-5]. Machine condition monitoring can offer several benefits including 
improved performance, reduced operating costs, and enhanced safety. The 
most common methods of vibration analysis for machine condition monitoring 
include time domain and frequency domain analysis [6-8].

For the purpose of machine condition monitoring, WSNs can offer 
several advantages over traditional SNs. These advantages include ease of 
deployment, greater flexibility, better scalability, and reduced cost [4]. However, 
WSNs present new challenges with respect to managing energy consumption 
and battery life, and data processing and management [1,2].

Considerable research has been done to address these challenges with 
power consumption and battery life [9,10]. Solutions include optimizing the 
hardware, software, configuration, and routing of the WSN for low-power 
operation. The hardware can be optimized by using specifically designed 
low-power controllers, sensors, and antennas. Software-based solutions 
include optimizing data collection, processing, and transmission. More specific 
data reduction solutions include local data aggregation, compression, and 
prediction [9]. Since transmitting data consumes more energy than processing, 
it has often been reported that data processing and reduction performed on the 
end node can reduce the net power consumption [1,2,11].

With advancements in Micro-Electro-Mechanical Systems (MEMS), 
battery technology, and data processing methods, WSNs are becoming more 
effective, and these challenges can be overcome. The objective of this work 
was to develop a WSN that can effectively perform vibration-based machine 
condition monitoring with low power consumption by incorporating these recent 
advancements. A WSN end node is presented, that is based on a capacitive 
MEMS accelerometer and an integrated microcontroller. The necessary 
software was developed to perform time and frequency analysis, and a new 
data reduction method is presented that reduces the frequency spectrum 
while preserving the important data. The hardware and software of the WSN 
end node was then tested experimentally, and its energy consumption was 
compared for different operating modes with the objective of determining the 
best data processing method for low-power operation.

Materials and Methods

End node hardware

The WSN end node is based on the ATmega256RFR2 Microcontroller 
(MCU) and a KX132 capacitive MEMS accelerometer. An image of the end 
node prototype can be seen in Figure 1. The ATmega256RFR2 is a high-
performance, low-power AVR 8-Bit microcontroller from Atmel, with 256 KB 
flash memory, 32 KB internal SRAM memory, 8 KB EEPROM, and integrated 
2.4 GHz radio transceiver. The KX132 is a three-axis accelerometer with a 
selectable measurement range from ± 2 g to ± 16 g and is capable of sampling 
at a rate of 25600 Hz. The microcontroller and accelerometer communicate 
through the SPI interface (Figure 1).

Data processing method and development

The end node was programmed to collect 1024 acceleration samples at a 
rate of 1600 Hz. The 16-bit samples were converted to acceleration in g, stored 
as 4-byte decimals, and the mean was removed. The mean removal involved 
calculating the average of the samples and subtracting it from each sample 
in-place. The size of the converted acceleration data was 4096 bytes total.

Time domain analysis

Calculating the max acceleration and the RMS parameters is a relatively 
low-memory and low-complexity process. The peak amplitude is simply the 
largest absolute sample of acceleration, and the RMS is the square root of the 
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mean square of the set of samples. For a discrete set of numbers, the RMS is 
calculated as follows [7] 
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Table 1 shows the program memory, data memory, and compute time for 
processing 1024 samples on the end node. The size of the peak amplitude and 
RMS results were 4 bytes each (Table 1).

Frequency domain analysis

Converting the acceleration over time to the frequency domain can be 
done with several different transforms. The most commonly used algorithms 
are based on the Fourier Transform, called Fast Fourier Transforms (FFTs). 
These algorithms compute the Discrete Fourier Transform (DFT) to process 
finite-length, discrete-time signals with fewer operations. The DFT is defined 
as follows, where X(k) is the computed frequency, x(n) is the input signal, N is 
the number of samples, and j is the imaginary unit [7,8].
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Typically, FFTs reduce the number of operations needed to compute the 
DFT by taking advantage of the symmetry of the expression. While the DFT 
computes the sum directly and has a complexity of O(N2), FFTs reduce the 
complexity to O(N log N). There are many different FFT types and permutations 
that can be implemented to reduce complexity and improve performance for 
the specific use case.

FFTs can use a recursive or iterative structure. The difference between 
these structures can affect the complexity, compute speed, and what other 
permutations may be incorporated in the algorithm. Depending on the size 
of the dataset, FFTs can use different radices. Common implementations 
include radix-2, radix-3, radix-4, and mixed-radix FFTs. The radix can affect 
the complexity, the memory needed, and the compute speed of the algorithm. 
As well, FFTs can use a Decimation In Time (DIT) or Decimation In Frequency 
(DIF) structure, however there is no inherent difference in performance 
between the two.

A commonly implemented strategy is to precompute the twiddle factors. 

In the context of DFTs, twiddle factors are the complex exponential constants, 
defined as follows.
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The twiddle factors can also be expressed using cosine and sine functions 
[7]. Where, the cosine term represents the real part, and the sine term 
represents the imaginary part.
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By precomputing and storing these constants, the algorithm reduces the 
number of redundant computations, trading the use of additional memory for 
reduced compute time. These permutations cater to specific applications and 
balance trade-offs between complexity, memory usage, flexibility, and compute 
speed.

Several different FFT algorithms were written and tested on the WSN 
end node. Table 2 below, compares the program memory, data memory, and 
compute time processing 1024 samples for each algorithm. All FFTs used the 
same predefined complex type and macros for the complex operations. Of 
those tested, the FFT with the fastest compute time was a recursive radix-2 
decimation-in-time FFT algorithm with precomputed twiddle factors. The FFT 
used 1690 bytes in program memory and took 0.6350 seconds to complete. 
The size of the resulting frequency spectrum data is 4 bytes per magnitude, 
and 2 bytes per frequency (Table 2).

There are many other methods that can be used to reduce the compute 
time of FFTs. These include optimizing the data type, optimizing the memory 
access and allocation, reducing the number of operations, and optimizing 
the operations and macros. Several different methods were tested in the 
development of the FFT algorithms. Table 3 presents a comparison of complex 
type and operation method used. By implementing a complex type structure 
rather than the compiler complex type, and macros for the complex operations, 
the compute time was reduced by 12.65 percent for the fastest FFT algorithm 
(Table 3).

Frequency spectrum data reduction

The objective of the data reduction method was to reduce the frequency 

Figure 1. Image of the WSN end node mounted to a plate for testing.

Table 1. Max acceleration and RMS functions.

Function Program Memory 
(Bytes)

Temporary 
Data Memory 

(Bytes)

Result Data 
Memory 
(Bytes)

Compute 
Time 

(Seconds)
Max 

acceleration 236 10 4 0.0045

RMS 338 18 4 0.0178

Table 2. Comparison of memory demands and compute time of FFT algorithms.

Algorithm
Program 
Memory 
(Bytes)

Temporary 
Data 

Memory 
(Bytes)

Result Data 
Memory 
(Bytes)

Compute 
Time (s)

DFT 210 8246 3072 378.321
Recursive radix-2 FFT 1534 8254 3072 1.81
Recursive radix-2 FFT 

with precomputed twiddle 
factors

1690 12362 3072 0.635

Recursive radix-4 FFT 2420 8318 3072 1.4324
Recursive radix-4 FFT 

with precomputed twiddle 
factors

2758 14474 3072 0.7342

Iterative radix-2 FFT 1878 8272 3072 1.805
Iterative radix-2 FFT with 

precomputed twiddle 
factors

2106 12380 3072 0.706
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spectrum to the fewest data points necessary while preserving the relevant 
information. The process was separated into two steps, correcting the 
magnitude of the frequency spectrum, and defining the peaks to be selected.

The purpose of the correction step was to normalize the spectrum and 
emphasize peaks based on local prominence. The process calculated the 
simple moving average, of a user configurable window size, and divided the 
frequency amplitude by this average. The simple moving average is defined as 
follows, where k is the offset, and 2k + 1 is the total size of the average window. 
The greater the window size is, the smoother the average and the better the 
correction result, but the greater the compute time.
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A predetermined number of peaks were then defined as the greatest local 
maximum inside a window of configurable size. The amplitude and frequency 
of the peaks were then saved. Table 4 compares the memory and compute 
time of the selective data processing method for different numbers of selected 
peaks with a moving average offset of 10 and a local maximum offset of 2. The 
size of the reduced data was 384, 192, 96, and 48 bytes for 64, 32, 16, and 8 
selected peaks respectively (Table 4).

Vibration testing setup

To test the WSN end node and data processing method, it was mounted 
to a LabWorks ET-139 permanent magnet vibration shaker, as seen in Figure 
2. The shaker was powered and controlled by an Agilent 33220A arbitrary 
waveform generator and a LabWorks PA-141 linear power amplifier. A 
calibrated PCB model 288D01 impedance head was mounted to the same 
plate as the end node and served as a reference accelerometer. The data 
collected and processed by both the WSN end node and the PCB impedance 
head was monitored and saved on a computer (Figure 2).

Results and Discussion

Data processing results

To evaluate the performance of the WSN end node, the shaker was 
programmed to generate discrete sine waveform vibrations at 100, 200, 300, 
400, 500, and 600 Hz. Figure 3 compares the acceleration samples of PCB 
impedance head and the WSN end node for the 100, 200, and 300 Hz shaker 
tests. The plots show the magnitude of acceleration in g vs. time in seconds 
(Figure 3) (Tables 5 and 6).

The magnitudes of both the max acceleration and RMS results for the end 
node are significantly less than those measured on the PCB impedance head. 
This discrepancy may be the result of several factors including less secure 
packaging of the accelerometer, greater damping from additional components, 
and lower sensitivity of the MEMS accelerometer.

Figure 4 shows the frequency spectrum of the WSN end node 
measurements plotted for each of the 100, 200, 300, 400, 500, and 600 Hz 
shaker tests. The plots show the magnitude of acceleration in g vs. frequency 
in hertz. In each case the characteristic frequency is accurately measured and 
clearly shown (Figure 4).

Table 7 compares the peak frequency of the FFT results for the PCB 
impedance head and the WSN end node (Table 7).

While the WSN end node can accurately measure and clearly show the 
characteristic frequency of the vibration, the magnitude of the acceleration is 
significantly less than what was measured on the PCB impedance head. This 
discrepancy in magnitude is reflected in the FFT results and is highlighted by 
the difference in peak frequency magnitude.

To evaluate the selective data processing method, the shaker was 
programmed to generate a multi-sine-on-random waveform. The signal was a 

Table 3. Memory, compute time, and results for different data selection methods.

Algorithm Type and Operation Compute Time 
(Seconds)

Recursive radix-2 FFT with 
precomputed twiddle factors

Standard compiler complex type and 
standard operations 0.727

Recursive radix-2 FFT with 
precomputed twiddle factors

Standard compiler complex type and 
operation macros 0.804

Recursive radix-2 FFT with 
precomputed twiddle factors

Simple complex type structure and 
operation macros 0.635

Table 4. Compute time and memory needed for selective data processing method.

Number of 
Peaks

Program 
Memory 
(Bytes)

Temporary Data 
Memory (Bytes)

Result Data 
Memory 
(Bytes)

Compute Time 
(Seconds)

64 1504 8498 384 0.1591
32 1504 8370 192 0.1554
16 1504 8306 96 0.1526
8 1504 8219 48 0.151

Table 5. Max acceleration compared for the PCB impedance head and the WSN end 
node.

Test Frequency (Hz) 100 200 300 400 500 600
PCB accelerometer 

result (g) 1.5127 1.2472 1.2152 1.1753 1.181 1.0965

WSN end node result (g) 1.4063 0.8588 0.6408 0.4358 0.2905 0.1818

Table 6. RMS results compared for the PCB impedance head and the WSN end node.

Test Frequency (Hz) 100 200 300 400 500 600
PCB accelerometer 

result (g) 1.079 0.917 0.8554 0.8347 0.8302 0.8278

WSN end node result (g) 0.9866 0.5985 0.4464 0.2985 0.1956 0.1172

Figure 2. WSN end node mounted to the PCB impedance head and shaker.

Figure 3. Acceleration measured by the PCB impedance head for tests at: a) 100 Hz, b) 
200 Hz and c) 300 Hz and the WSN end node at: d) 100 Hz, e) 200 Hz and f) 300 Hz.
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sum of sine waves at 30, 60, 100, 120, 200, 240, 300, and 400 Hz of different 
amplitudes and some randomly generated number.

The vibration shaker was programmed to generate the signal with the 
Agilent 33220A arbitrary waveform generator. Both the PCB impedance head 
and the WSN end node collected and processed the vibration data separately. 
Table 8 compares the max acceleration and RMS result for the PCB impedance 
head and the WSN end node (Table 8).

Figures 5 and 6 compare the frequency spectra for the data collected by 
the PCB impedance head and the WSN end node for the multi-sine-on-random 
waveform. The memory needed to store the frequency spectrum data is 3072 
bytes (Figures 5 and 6).

The results for the WSN end node show the same decrease in magnitude 
with increase in frequency as seen in the peak acceleration and RMS results. 
While both spectrums show the same characteristic frequency responses, 
the end node results are significantly lower. For example, the peak frequency 
magnitude at 400 Hz in the WSN end node results is 68.8 percent less than in 
the PCB impedance head results.

The end node then performed the selective data processing method. 
Figure 7 shows the frequency spectrum collected and processed by the WSN 
end node after the spectrum correction process was performed. Most notably 
the lower magnitude peaks at 200, 300, and 400 Hz are enhanced relative to 
the rest of the spectrum (Figure 7).

The program then performed the peak selection process. To demonstrate 
the data reduction method for different numbers of peaks, the peak selection 
process was performed for 64, 32, 16, and 8 selected peaks. The memory 
needed to store the reduced data was 384, 192, 96, and 48 bytes respectively. 
Figure 8 compares these results. It can be seen that all 8 characteristic sine 
waves are preserved in the data reduced to 8 peaks. Depending on the 
machinery or system being monitored, and the complexity of the vibration 
signal, the number of selected peaks can be configured (Figure 8).

To assess the performance of the data reduction method, it was tested and 
compared to a basic data reduction method. Both methods were tested using 
the same dataset of 1024 samples and configured to select 8 representative 
peaks for analysis. The basic method selected the 8 largest numbers by 
magnitude. The results, presented in Table 9, show the trade-off between 
memory, compute time, and effectiveness. While the corrective data selection 
method needed more memory and compute time, it successfully selected all 8 
characteristic sine waves (Table 9).

Energy consumption results

The energy consumption of the end node was then measured and 
compared for different operating modes. The results are shown in Table 

Figure 4. The frequency spectra of the WSN end node results for tests at: a) 100 Hz, b) 
200 Hz, c) 300 Hz, d) 400 Hz, e) 500 Hz and f) 600 Hz.

Table 7. Peak frequency results compared for the PCB impedance head and the WSN 
end node.

Test Frequency (Hz) 100 200 300 400 500 600
PCB accelerometer 

result (g) 1.5259 1.2968 1.2097 1.1797 1.1741 1.1707

WSN end node result (g) 1.3841 0.8082 0.5782 0.3299 0.1885 0.1345

Table 8. The RMS result for the PCB impedance head and the WSN end node.

Device Max Acceleration (g) RMS Result (g)
PCB impedance head 1.4404 0.5222

WSN end node 1.0534 0.373

Figure 5. The frequency spectrum of the PCB impedance head results.

Figure 6. The frequency spectrum of the WSN end node results.

Figure 7. Frequency spectrum of the WSN end node results after magnitude correction.

Figure 8. The corrected frequency spectrum reduced to 64, 32, 16 and 8 peaks.

Table 9. Memory, compute time, and results for different data selection methods.

Data Reduction Method
Program 
Memory 
(Bytes)

Temporary 
Data 

Memory 
(Bytes)

Compute 
Time 

(Seconds)

Number 
of Peaks 
Selected 
Correctly

Basic data reduction 862 73 0.0065 6
Corrective data reduction 1506 8274 0.151 8
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Table 10. Energy consumption compared for the different operating modes.

Operating Mode Description Data Size (Bytes) Time Active (Seconds) Energy Consumption (mWh)
(a) Collecting and transmitting raw data 4096 0.919 0.0099
(b) Processing and sending processed data 2056 1.4805 0.01297
(c) Processing, correcting, and sending reduced data 56 1.533 0.01203
(d) Processing and sending reduced data 56 1.365 0.01077
(e) Processing, checking, and not sending data 0 1.352 0.01064

10 below. Operating mode (a) involved collecting and transmitting the raw 
acceleration data. Vibration data was collected, converted to acceleration (in 
g) that was stored as decimals, at 4 bytes per sample or 4096 bytes total, and 
transmitted to the gateway. Operating mode (b) involved collecting, processing 
the data, and transmitting the processed data packet. After collection, the 
vibration data was processed locally to determine the max acceleration, RMS 
parameter, and frequency spectrum, 2056 bytes total, and transmitted to the 
gateway. Operating mode (c) involved collecting, processing, correcting and 
selectively reducing the data and transmitting the reduced data. After time 
and frequency analysis was processed locally, the frequency spectrum was 
corrected and selectively reduced to 8 peaks, resulting in a reduced data 
packet of 56 bytes total. Operating mode (d) involved collecting, processing, 
and selectively reducing the data and transmitting the reduced data. The last 
operating mode (e) involved collecting and processing the vibration data, 
checking thresholds, and not sending any data if the thresholds were not met. 
This method, presented in [11], is intended to save energy by not transmitting 
any data unless a predetermined threshold is met. For testing purposes, no 
data was sent (Table 10).

Every strategy that involved processing data locally to reduce the size 
of the data packet, consumed more energy than transmitting the raw data. 
Processing and transmitting the data packet reduced by 49.8 percent 
consumed 31.0 percent more energy. Processing and selectively reducing 
the data packet by 98.6 percent consumed 8.8 to 21.4 percent more energy, 
depending on the data reduction method. And processing the data, comparing 
it to thresholds, and not sending any data consumed 7.4 percent more energy. 
These results likely differ from other reports because of the specific hardware 
and software that was implemented. Specifically, the low-power MCU that was 
used. Transmitting data was relatively low-power, and data processing was 
relatively slow, consuming more energy than expected.

Conclusion

In this work, a novel WSN end node was presented for machine 
condition monitoring. The necessary software to perform vibration analysis 
was developed, and a data reduction method was proposed to reduce the 
frequency spectrum and the size of the data packet. The performance of the 
WSN end node was tested experimentally, and its energy consumption was 
compared for different operating modes.

Tests showed that the WSN end node was capable of collecting and 
processing vibration data successfully. While the results were not as accurate 
as the reference accelerometer, the capacitive MEMS accelerometer was 
not expected to have the same level of sensitivity. These results can still 
be effectively monitored for trends and use hardware-specific thresholds for 
machine condition monitoring.

The proposed data reduction method was shown to reduce the frequency 
spectrum more effectively than past methods. The magnitude correction step 
successfully emphasized peaks in the frequency spectrum based on local 
prominence, resulting in less of the characteristic responses being accidentally 
discarded. As well, the peak selection step allowed for more configurability in 
how the characteristic responses were selected. However, the improvement 
in effectiveness came at the cost of additional compute time and power 
consumption.

Results for the comparison of energy consumption for different operating 
modes did not match expectations or other reports. Every mode that processed 
the vibration data locally to reduce the packet size consumed more energy than 

transmitting the raw data. While the data packet was reduced by 98.6 percent, 
results showed that processing and reducing the data locally consumed 8.8 to 
21.4 percent more energy than transmitting the raw data. It can be concluded 
that, for the WSN end node presented, transmitting raw vibration data is a 
better strategy for low-power operations than processing the data locally.
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