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Abstract

We investigate properties of commutative subrings and ideals in non-commutative alge-
braic crossed products for actions by arbitrary groups. A description of the commutant of
the coefficient subring in the crossed product ring is given. Conditions for commutativity and
maximal commutativity of the commutant of the coefficient subring are provided in terms of
the action as well as in terms of the intersection of ideals in the crossed product ring with the
coefficient subring, specially taking into account both the case of coefficient rings without
non-trivial zero-divisors and the case of coefficient rings with non-trivial zero-divisors.
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1 Introduction

The description of commutative subrings and commutative subalgebras and of the ideals in
non-commutative rings and algebras are important directions of investigation for any class of
non-commutative algebras or rings, because it allows one to relate representation theory, non-
commutative properties, graded structures, ideals and subalgebras, homological and other prop-
erties of non-commutative algebras to spectral theory, duality, algebraic geometry and topology
naturally associated with the commutative subalgebras. In representation theory, for example,
one of the keys to the construction and classification of representations is the method of induced
representations. The underlying structures behind this method are the semi-direct products or
crossed products of rings and algebras by various actions. When a non-commutative ring or
algebra is given, one looks for a subring or a subalgebra such that its representations can be
studied and classified more easily, and such that the whole ring or algebra can be decomposed as
a crossed product of this subring or subalgebra by a suitable action. Then the representations
for the subring or subalgebra are extended to representations of the whole ring or algebra using
the action and its properties. A description of representations is most tractable for commuta-
tive subrings or subalgebras as being, via the spectral theory and duality, directly connected to
algebraic geometry, topology or measure theory.

If one has found a way to present a non-commutative ring or algebra as a crossed product
of a commutative subring or subalgebra by some action on it of the elements from outside
the subring or subalgebra, then it is important to know whether this subring or subalgebra is
maximal abelian or, if not, to find a maximal abelian subring or subalgebra containing the given
subalgebra, since if the selected subring or subalgebra is not maximal abelian, then the action
will not be entirely responsible for the non-commutative part as one would hope, but will also
have the commutative trivial part taking care of the elements commuting with everything in
the selected commutative subring or subalgebra. This maximality of a commutative subring or
subalgebra and associated properties of the action are intimately related to the description and
classifications of representations of the non-commutative ring or algebra.

Little is known in general about connections between properties of the commutative subal-
gebras of crossed product rings and algebras and properties of the action. A remarkable result
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in this direction is known, however, in the context of crossed product C∗-algebras. In the case
of the crossed product C∗-algebra C(X) oα Z of the C∗-algebra of complex-valued continuous
functions on a compact Hausdorff space X by an action of Z via the composition automorphism
associated with a homeomorphism σ : X → X, it is known that C(X) sits inside the C∗-crossed
product as a maximal abelian C∗-subalgebra if and only if for every positive integer n, the set of
points in X having period n under iterations of σ has no interior points [26, Theorem 5.4], [25,
Corollary 3.3.3], [27, Proposition 4.14], [10, Lemma 7.3.11]. This condition is equivalent to the
action of Z on X being topologically free in the sense that the non-periodic points of σ are dense
in X. In [24], a purely algebraic variant of the crossed product allowing for more general classes
of algebras than merely continuous functions on compact Hausdorff spaces serving as coefficient
algebras in the crossed products was considered. In the general set theoretical framework of a
crossed product algebra A oα Z of an arbitrary subalgebra A of the algebra CX of complex-
valued functions on a set X (under the usual pointwise operations) by Z acting on A via a
composition automorphism defined by a bijection of X, the essence of the matter is revealed.
Topological notions are not available here and thus the condition of freeness of the dynamics as
described above is not applicable, so that it has to be generalized in a proper way in order to be
equivalent to the maximal commutativity of A. In [24] such a generalization was provided by
involving separation properties of A with respect to the space X and the action for significantly
more arbitrary classes of coefficient algebras and associated spaces and actions. The (unique)
maximal abelian subalgebra containing A was described as well as general results and examples
and counterexamples on equivalence of maximal commutativity of A in the crossed product and
the generalization of topological freeness of the action.

In this article, we bring these results and interplay into a more general algebraic context
of crossed product rings (or algebras) for crossed systems with arbitrary group actions and
twisting cocycle maps [17]. We investigate the connections with the ideal structure of a general
crossed product ring, describe the center of crossed product rings, describe the commutant of the
coefficient subring in a crossed product ring of a general crossed system, and obtain conditions
for maximal commutativity of the commutant of the coefficient subring in terms of the action as
well as in terms of intersection of ideals in the crossed product ring with the coefficient subring,
specially taking into account both the case of coefficient rings without non-trivial zero-divisors
and the case of coefficient rings with non-trivial zero-divisors.

2 Preliminaries

In this section we recall the notation from [17], which is necessary for the understanding of the
rest of this article. Throughout this article all rings are assumed to be associative rings.

Definition 1. Let G be a group with unit element e. The ring R is G-graded if there is a family
{Rσ}σ∈G of additive subgroups Rσ of R such that R =

⊕
σ∈GRσ and RσRτ ⊆ Rστ (strongly

G-graded if, in addition, ⊇ also holds) for every σ, τ ∈ G.

Definition 2. A unital and G-graded ring R is called a G-crossed product if U(R) ∩ Rσ 6= ∅
for every σ ∈ G, where U(R) denotes the group of multiplication invertible elements of R. Note
that every G-crossed product is strongly G-graded, as explained in [17, p.2].

Definition 3. A G-crossed system is a quadruple {A, G, σ, α}, consisting of a unital ring A, a
group G (with unit element e), a map σ : G→ Aut(A) and a σ-cocycle map α : G×G→ U(A)
such that for any x, y, z ∈ G and a ∈ A the following conditions hold:

(i) σx(σy(a)) = α(x, y)σxy(a)α(x, y)−1

(ii) α(x, y)α(xy, z) = σx(α(y, z))α(x, yz)
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(iii) α(x, e) = α(e, x) = 1A

Remark 1. Note that, by combining conditions (i) and (iii), we get σe(σe(a)) = σe(a) for all
a ∈ A. Furthermore, σe : A → A is an automorphism and hence σe = idA. Also note that, from
the definition of Aut(A), we have σg(0A) = 0A and σg(1A) = 1A for any g ∈ G. From condition
(i) it immediately follows that σ is a group homomorphism if A is commutative or if α is trivial.

Definition 4. Let G be a copy (as a set) of G. Given a G-crossed system {A, G, σ, α}, we
denote by A oσ

α G the free left A-module having G as its basis and we define a multiplication
on this set by

(a1 x)(a2 y) = a1σx(a2)α(x, y)xy (2.1)

for all a1, a2 ∈ A and x, y ∈ G. Each element of Aoσ
α G may be expressed as a sum

∑
g∈G ag g

where ag ∈ A and ag = 0A for all but a finite number of g ∈ G. Explicitly, the addition and
multiplication of two arbitrary elements

∑
s∈G as s,

∑
t∈G bt t ∈ Aoσ

α G is given by∑
s∈G

as s+
∑
t∈G

bt t =
∑
g∈G

(ag + bg) g(∑
s∈G

as s

)(∑
t∈G

bt t

)
=

∑
(s,t)∈G×G

(as s)(bt t) =
∑

(s,t)∈G×G

as σs(bt)α(s, t) st

=
∑
g∈G

 ∑
{(s,t)∈G×G|st=g}

as σs(bt)α(s, t)

 g (2.2)

Remark 2. The ring A is unital, with unit element 1A, and it is easy to see that (1A e) is the
multiplicative identity in Aoσ

α G.

By abuse of notation, we shall sometimes let 0 denote the zero element in Aoσ
αG and some-

times the unit element in the abelian group (Z,+). The proofs of the two following propositions
can be found in [17, Proposition 1.4.1, p.11] and [17, Proposition 1.4.2, pp. 12-13] respectively
(see also [18], [19]).

Proposition 1. Let {A, G, σ, α} be a G-crossed system. Then A oσ
α G is an associative ring

(with the multiplication defined in (2.1)). Moreover, this ring is G-graded, Aoσ
αG =

⊕
g∈G A g,

and it is a G-crossed product.

Proposition 2. Every G-crossed product R is of the form Aoσ
α G for some ring A and some

maps σ, α.

Remark 3. If k is a field and A is a k-algebra, then so is Aoσ
α G.

The coefficient ring A is naturally embedded as a subring into A oσ
α G via the canonical iso-

morphism ι : A ↪→ A oσ
α G defined by a 7→ a e. We denote by Ã the image of A under ι and

by AG = {a ∈ A | σs(a) = a, ∀s ∈ G} the fixed ring of A. If A is commutative we define
Ann(r) = {c ∈ A | r · c = 0A} for r ∈ A.

Remark 4. Obviously, A is commutative if and only if Ã is commutative.

Example. Let A be commutative and B = Aoσ
α G a crossed product. For x ∈ G and c, d ∈ A

we may write

(c x)(d e) = c σx(d)x = (σx(d) e)(c x)

Let b = c x, a = d e and f : B → B be a map defined by f = ι◦σx ◦ ι−1. Then the above relation
may be written as b a = f(a) b, which is a re-ordering formula frequently appearing in physical
applications.
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3 Commutativity in Aoσ
α G

From the definition of the product in Aoσ
αG, given by (2.2), we see that two elements

∑
s∈G as s

and
∑

t∈G bt t commute if and only if∑
{(s,t)∈G×G|st=g}

as σs(bt)α(s, t) =
∑

{(s,t)∈G×G|st=g}

bs σs(at)α(s, t) (3.1)

for each g ∈ G. The crossed product Aoσ
αG is in general non-commutative and in the following

proposition we give a description of its center.

Proposition 3. The center of Aoσ
α G is

Z(Aoσ
α G) =

{∑
g∈G

rg g
∣∣∣ rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t),

rs σs(a) = a rs, ∀a ∈ A, (s, t) ∈ G×G
}

Proof. Let
∑

g∈G rgg ∈ A oσ
α G be an element which commutes with every element of

A oσ
α G. Then, in particular

∑
g∈G rg g must commute with a e for every a ∈ A. From (3.1)

we immediately see that this implies rs σs(a) = a rs for every a ∈ A and s ∈ G. Furthermore,∑
g∈G rg g must commute with 1A s for any s ∈ G. This yields∑

t∈G
rts−1 α(ts−1, s) t =

∑
g∈G

rg α(g, s) gs =
∑
g∈G

rg σg(1A)α(g, s) gs

=

∑
g∈G

rg g

 (1A s) = (1A s)

∑
g∈G

rg g

 =
∑
g∈G

1A σs(rg)α(s, g) sg

=
∑
g∈G

σs(rg)α(s, g) sg =
∑
t∈G

σs(rs−1t)α(s, s−1t) t

and hence, for each (s, t) ∈ G×G, we have rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t).
Conversely, suppose that

∑
g∈G rg g ∈ A oσ

α G is an element satisfying rs σs(a) = a rs and
rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t) for every a ∈ A and (s, t) ∈ G×G. Let

∑
s∈G as s ∈ Aoσ

αG
be arbitrary. Then∑

g∈G
rg g

(∑
s∈G

as s

)
=

∑
(g,s)∈G×G

rg σg(as)α(g, s) gs =
∑

(g,s)∈G×G

as rg α(g, s) gs

=
∑

(t,s)∈G×G

as (rts−1 α(ts−1, s)) t =
∑

(t,s)∈G×G

as σs(rs−1t)α(s, s−1t) t

=
∑

(g,s)∈G×G

as σs(rg)α(s, g) sg =

(∑
s∈G

as s

)∑
g∈G

rg g


and hence

∑
g∈G rg g commutes with every element of Aoσ

α G.

A few corollaries follow from Proposition 3, showing how a successive addition of restrictions
on the corresponding G-crossed system, leads to a simplified description of Z(Aoσ

α G).

Corollary 1 (Center of a twisted group ring). If σ ≡ idA, then the center of Aoσ
α G is

Z(Aoσ
α G) =

{∑
g∈G

rg g
∣∣∣ rs ∈ Z(A), rts−1 α(ts−1, s) = rs−1t α(s, s−1t),

∀a ∈ A, (s, t) ∈ G×G
}
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Corollary 2. If G is abelian and α is symmetric1, then the center of Aoσ
α G is

Z(Aoσ
α G) =

{∑
g∈G

rg g
∣∣∣ rs σs(a) = a rs, rs ∈ AG, ∀a ∈ A, s ∈ G

}
Corollary 3. If A is commutative, G is abelian and α ≡ 1A, then the center of Aoσ

α G is

Z(Aoσ
α G) =

{∑
g∈G

rg g
∣∣∣ rs ∈ AG, σs(a)− a ∈ Ann(rs), ∀a ∈ A, s ∈ G

}
Remark 5. Note that in the proof of Theorem 3, the property that the image of α is contained
in U(A) is not used and therefore the theorem is true in greater generality. Consider the case
when A is an integral domain and let α take its values in A \ {0A}. In this case it is clear
that rs σs(a) = a rs for all a ∈ A ⇐⇒ rs(σs(a) − a) = 0 for all a ∈ A ⇐⇒ rs = 0 for
s 6∈ σ−1(idA) = {g ∈ G | σg = idA}. After a change of variable via x = s−1t the first condition
in the description of the center may be written as σs(rx)α(s, x) = rsxs−1 α(sxs−1, s) for all
(s, x) ∈ G×G. From this relation we conclude that rx = 0 if and only if rsxs−1 = 0, and hence
it is trivially satisfied if we put rx = 0 whenever x 6∈ σ−1(idA). This case has been presented in
[19, Proposition 2.2] with a more elaborate proof.

The final corollary describes the exceptional situation when Z(Aoσ
αG) coincides with Aoσ

αG,
that is when Aoσ

α G is commutative.

Corollary 4. Aoσ
α G is commutative if and only if all of the following hold:

(i) A is commutative
(ii) σs = idA for each s ∈ G
(iii) G is abelian
(iv) α is symmetric

Proof. Suppose that Z(A oσ
α G) = A oσ

α G. Then, Ã ⊆ A oσ
α G = Z(A oσ

α G) and hence (i)
follows by Remark 4. By assumption, 1A s ∈ Z(Aoσ

αG) for any s ∈ G and by Proposition 3 we
see that σs = idA for every s ∈ G, and hence (ii). For any (x, y) ∈ G×G we have α(x, y)xy =
(1A x)(1A y) = (1A y)(1A x) = α(y, x) yx, but α(x, y) 6= 0A which implies xy = yx and also
α(x, y) = α(y, x), which shows (iii) and (iv). The converse implication is easily verified.

4 The commutant of Ã in Aoσ
α G

From now on we shall assume that G 6= {e}. As we have seen, Ã is a subring of Aoσ
αG and we

define its commutant by Comm(Ã) = {b ∈ A oσ
α G | ab = ba, ∀a ∈ Ã}. Theorem 1 tells us

exactly when an element of Aoσ
α G lies in Comm(Ã).

Theorem 1. The commutant of Ã in Aoσ
α G is

Comm(Ã) =

{∑
s∈G

rs s ∈ Aoσ
α G

∣∣∣ rs σs(a) = a rs, ∀a ∈ A, s ∈ G

}

Proof. The proof is established through the following sequence of equivalences:

∑
s∈G

rs s ∈ Comm(Ã)⇐⇒

(∑
s∈G

rs s

)
(a e) = (a e)

(∑
s∈G

rs s

)
, ∀a ∈ A

1Symmetric in the sense that α(x, y) = α(y, x) for every (x, y) ∈ G×G.
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⇐⇒
∑
s∈G

rs σs(a)α(s, e) se =
∑
s∈G

a σe(rs)α(e, s) es, ∀a ∈ A

⇐⇒
∑
s∈G

rs σs(a) s =
∑
s∈G

a rs s, ∀a ∈ A

⇐⇒ For each s ∈ G : rs σs(a) = a rs, ∀a ∈ A

Here we have used the fact that α(s, e) = α(e, s) = 1A for all s ∈ G. The above equivalence can
also be deduced directly from (3.1).

When A is commutative we get the following description of the commutant by Theorem 1.

Corollary 5. If A is commutative, then the commutant of Ã in Aoσ
α G is

Comm(Ã) =

{∑
s∈G

rs s ∈ Aoσ
α G

∣∣∣ σs(a)− a ∈ Ann(rs), ∀a ∈ A, s ∈ G

}

When A is commutative it is clear that Ã ⊆ Comm(Ã). Using the explicit description of
Comm(Ã) in Corollary 5, we are now able to state exactly when Ã is maximal commutative,
i.e. Comm(Ã) = Ã.

Corollary 6. Let A be commutative. Ã is maximal commutative in Aoσ
α G if and only if, for

each pair (s, rs) ∈ (G \ {e})× (A \ {0A}), there exists a ∈ A such that σs(a)− a 6∈ Ann(rs).

Example (The crossed product associated to a dynamical system). In this example we follow
the notation of [24]. Let σ : X → X be a bijection on a non-empty set X, and A ⊆ CX an
algebra of functions, such that if h ∈ A then h ◦ σ ∈ A and h ◦ σ−1 ∈ A. Let σ̃ : Z → Aut(A)
be defined by σ̃n : f 7→ f ◦ σ◦(−n) for f ∈ A. We now have a Z-crossed system (with trivial σ̃-
cocycle) and we may form the crossed product Aoσ̃Z. Recall the definition of the set SepnA(X) =
{x ∈ X | ∃h ∈ A, s.t. h(x) 6= (σ̃n(h))(x)}. Corollary 6 is a generalization of [24, Theorem 3.5]
and the easiest way to see this is by negating the statements. Suppose that A is not maximal
commutative in Aoσ̃ Z. Then, by Corollary 6, there exists a pair (n, fn) ∈ (Z \ {0})× (A \ {0})
such that σ̃n(g) − g ∈ Ann(fn) for every g ∈ A, i.e. supp(σ̃n(g) − g) ∩ supp(fn) = ∅ for every
g ∈ A. In particular, this means that fn is identically zero on SepnA(X). However, fn ∈ A \ {0}
is not identically zero on X and hence SepnA(X) is not a domain of uniqueness (as defined in
[24, Definition 3.2]). The converse can be proved similarly.

Corollary 7. Let A be commutative. If for each s ∈ G \ {e} it is always possible to find some
a ∈ A such that σs(a)−a is not a zero-divisor in A, then Ã is maximal commutative in Aoσ

αG.

The next corollary is a consequence of Corollary 6 and shows how maximal commutativity
of the coefficient ring in the crossed product has an impact on the non-triviality of the action σ.

Corollary 8. If Ã is maximal commutative in Aoσ
α G, then σg 6= idA for every g ∈ G \ {e}.

The description of the commutant Comm(Ã) from Corollary 5 can be further refined in the
case when A is an integral domain.

Corollary 9. If A is an integral domain2, then the commutant of Ã in Aoσ
α G is

Comm(Ã) =
{ ∑
s∈σ−1(idA)

rs s ∈ Aoσ
α G

∣∣∣ rs ∈ A}
where σ−1(idA) = {g ∈ G | σg = idA}.

2By an integral domain we shall mean a commutative ring with an additive identity 0A and a multiplicative
identity 1A such that 0A 6= 1A, in which the product of any two non-zero elements is always non-zero.
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Corollary 10. Let A be an integral domain. Ã is maximal commutative in Aoσ
αG if and only

if σg 6= idA for every g ∈ G \ {e}.

Corollary 10 can be derived directly from Corollary 8 together with either Corollary 7 or 9.

Remark 6. Recall that when A is commutative, σ is a group homomorphism. Thus, to say
that σg 6= idA for all g ∈ G \ {e} is another way of saying that ker(σ) = {e}, i.e. σ is injective.

Example. Let A = C[x1, . . . , xn] be the polynomial ring in n commuting variables x1, . . . , xn
andG = Sn the symmetric group on n elements. An element τ ∈ Sn is a permutation which maps
the sequence (1, . . . , n) into (τ(1), . . . , τ(n)). The group Sn acts on C[x1, . . . , xn] in a natural way.
To each τ ∈ Sn we may associate a map A → A, which sends any polynomial f(x1, ..., xn) ∈
C[x1, . . . , xn] into a new polynomial g, defined by g(x1, . . . , xn) = f(xτ(1), . . . , xτ(n)). It is
clear that each such mapping is a ring automorphism on A. Let σ be the embedding Sn ↪→
Aut(A) and α ≡ 1A. Note that C[x1, . . . , xn] is an integral domain and that σ is injective.
Hence, by Corollary 10 and Remark 6 it is clear that the embedding of C[x1, . . . , xn] is maximal
commutative in C[x1, . . . , xn] oσ Sn.

One might want to describe properties of the σ-cocycle in the case when Ã is maximal
commutative, but unfortunately this will lead to a dead end. The explaination for this is revealed
by condition (iii) in the definition of a G-crossed system, where we see that α(e, g) = α(g, e) = 1A
for all g ∈ G and hence we are not able to extract any interesting information about α by
assuming that Ã is maximal commutative. Also note that in a twisted group ring A oα G, i.e.
with σ ≡ idA, Ã can never be maximal commutative (when G 6= {e}), since for each g ∈ G, g
centralizes Ã. If A is commutative, then this follows immediately from Corollary 8. We shall
now give a sufficient condition for Comm(Ã) to be commutative.

Proposition 4. If A is a commutive ring, G is an abelian group and α is symmetric, then
Comm(Ã) is commutative.

Proof. Let
∑

s∈G rs s and
∑

t∈G pt t be arbitrary elements of Comm(Ã). By our assumptions
and Corollary 5 we get(∑

s∈G
rs s

)(∑
t∈G

pt t

)
=

∑
(s,t)∈G×G

rs σs(pt)α(s, t) st =
∑

(s,t)∈G×G

rs pt α(s, t) st

=
∑

(s,t)∈G×G

pt σt(rs)α(t, s) ts =

(∑
t∈G

pt t

)(∑
s∈G

rs s

)

This shows that Comm(Ã) is commutative.

This proposition is a generalization of [24, Proposition 2.1] from a function algebra to an
arbitrary unital associative commutative ring A, from Z to an arbitrary abelian group G and
from a trivial to a possibly non-trivial symmetric σ-cocycle α.

Remark 7. By using Proposition 4 and the arguments made in the previous example on the
crossed product associated to a dymical system it is clear that Corollary 5 is a generalization of
[24, Theorem 3.3]. Furthermore, we see that Corollary 3 is a generalization of [24, Theorem 3.6].

5 Ideals in Aoσ
α G

In this section we describe properties of the ideals in A oσ
α G in connection with maximal

commutativity and properties of the action σ.
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Theorem 2. If A is commutative, then

I ∩ Comm(Ã) 6= {0}

for every non-zero two-sided ideal I in Aoσ
α G.

Proof. Let A be commutative. Then Ã is also commutative. Let I ⊆ Aoσ
α G be an arbitrary

non-zero two-sided ideal in Aoσ
α G.

Part 1:
For each g ∈ G we define a map Tg : A oσ

α G → A oσ
α G by

∑
s∈G as s 7→

(∑
s∈G as s

)
(1A g).

Note that, for any g ∈ G, I is invariant3 under Tg. We have

Tg

(∑
s∈G

as s

)
=

(∑
s∈G

as s

)
(1A g) =

∑
s∈G

as σs(1A)α(s, g) sg =
∑
s∈G

as α(s, g) sg

for every g ∈ G. It is important to note that if as 6= 0A, then as α(s, g) 6= 0A and hence this
operation does not kill coefficients, it only translates and deformes them. If we have a non-zero
element

∑
s∈G as s for which ae = 0A, then we may pick some non-zero coefficient, say ap and

apply the map Tp−1 to end up with

Tp−1

(∑
s∈G

as s

)
=
∑
s∈G

as α(s, p−1) sp−1 =
∑
t∈G

dt t

This resulting element will then have the following properties:

• de = ap α(p, p−1) 6= 0A
• #{s ∈ G | as 6= 0A} = #{t ∈ G | dt 6= 0A}

Part 2:
For each a ∈ A we define a map Da : Aoσ

α G→ Aoσ
α G by

∑
s∈G

as s 7→ (a e)

(∑
s∈G

as s

)
−

(∑
s∈G

as s

)
(a e)

Note that, for each a ∈ A, I is invariant under Da. By assumption A is commutative and hence
the above expression can be simplified.

Da

(∑
s∈G

as s

)
= (a e)

(∑
s∈G

as s

)
−

(∑
s∈G

as s

)
(a e)

=

(∑
s∈G

a σe(as)α(e, s) es

)
−

(∑
s∈G

as σs(a)α(s, e) se

)
=

∑
s∈G

a as︸︷︷︸
=as a

s−
∑
s∈G

as σs(a) s =
∑
s∈G

as (a− σs(a)) s

=
∑
s 6=e

as (a− σs(a)) s =
∑
s6=e

ds s

The maps {Da}a∈A all share the property that they kill the coefficient in front e. Hence, if ae 6=
0A, then the number of non-zero coefficients of the resulting element will always be reduced by at

3By invariant we mean that the set is closed under this operation.
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least one. Note that Comm(Ã) =
⋂
a∈A ker(Da). This means that for each non-zero

∑
s∈G as s

in A oσ
α G \ Comm(Ã) we may always choose some a ∈ A such that

∑
s∈G as s 6∈ ker(Da). By

choosing such an a we note that, using the same notation as above, we get

#{s ∈ G | as 6= 0A} ≥ #{s ∈ G | ds 6= 0A} ≥ 1

for each non-zero
∑

s∈G as s ∈ Aoσ
α G \ Comm(Ã).

Part 3:
The ideal I is assumed to be non-zero, which means that we can pick some non-zero element∑

s∈G rs s ∈ I. If
∑

s∈G rs s ∈ Comm(Ã), then we are finished, so assume that this is not the
case. Note that rs 6= 0A for finitely many s ∈ G. Recall that the ideal I is invariant under Tg
and Da for all g ∈ G and a ∈ A. We may now use the maps {Tg}g∈G and {Da}a∈A to generate
new elements of I. More specifically, we may use the Tg:s to translate our element

∑
s∈G rs s

into a new element which has a non-zero coefficient in front of e (if needed) after which we
use the map Da to kill this coefficient and end up with yet another new element of I which is
non-zero but has a smaller number of non-zero coefficients. We may repeat this procedure and
in a finite number of iterations arrive at an element of I which lies in Comm(Ã) \ Ã and if not
we continue the above procedure until we reach an element which is of the form b e with some
non-zero b ∈ A. In particular Ã ⊆ Comm(Ã) and hence I ∩ Comm(Ã) 6= {0}.

The embedded coefficient ring Ã is maximal commutative if and only if Ã = Comm(Ã) and
hence we have the following corollary.

Corollary 11. If the subring Ã is maximal commutative in Aoσ
α G, then

I ∩ Ã 6= {0}

for every non-zero two-sided ideal I in Aoσ
α G.

Proposition 5. Let I be a subset of A and define

J =

{∑
s∈G

as s ∈ Aoσ
α G | as ∈ I

}

The following assertions hold:

(i) If I is a right ideal in A, then J is a right ideal in Aoσ
α G

(ii) If I is a two-sided ideal in A such that I ⊆ AG, then J is a two-sided ideal in Aoσ
α G

Proof. If I is a (possibly one-sided) ideal in A, then J is an additive subgroup of Aoσ
α G.

(i). Let I be a right ideal in A. Then(∑
s∈G

as s

)(∑
t∈G

bt t

)
=

∑
(s,t)∈G×G

as σs(bt)α(s, t)︸ ︷︷ ︸
∈I

st ∈ J

for arbitrary
∑

s∈G as s ∈ J and
∑

t∈G bt t ∈ Aoσ
α G and hence J is a right ideal.

(ii). Let I be a two-sided ideal in A such that I ⊆ AG. By (i) it is clear that J is a right ideal.
Let

∑
s∈G as s ∈ J and

∑
t∈G bt t ∈ Aoσ

α G be arbitrary. Then(∑
t∈G

bt t

)(∑
s∈G

as s

)
=

∑
(t,s)∈G×G

bt σt(as)α(t, s) ts =
∑

(t,s)∈G×G

bt as α(t, s)︸ ︷︷ ︸
∈I

ts ∈ J

which shows that J is also a left ideal.
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Theorem 3. Let σ : G → Aut(A) be a group homomorphism and N be a normal subgroup
of G, contained in σ−1(idA) = {g ∈ G | σg = idA}. Let ϕ : G → G/N be the quotient
group homomorphism and suppose that α is such that α(s, t) = 1A whenever s ∈ N or t ∈ N .
Furthermore, suppose that there exists a map β : G/N×G/N → U(A) such that β(ϕ(s), ϕ(t)) =
α(s, t) for each (s, t) ∈ G × G. If I is an ideal in A oσ

α G generated by an element
∑

s∈N as s
for which the coefficients (of which all but finitely many are zero) satisfy

∑
s∈N as = 0A, then

I ∩ Ã = {0}

Proof. Let I ⊆ A oσ
α G be the ideal generated by an element

∑
s∈N as s, which satisfies∑

s∈N as = 0A. The quotient homomorphism ϕ : G → G/N, s 7→ sN satisfies ker(ϕ) = N .
By assumption, the map σ is a group homomorphism and σ(N) = idA. Hence by the universal
property, see for example [7, p.16], there exists a unique group homomorphism ρ making the
following diagram commute:

G
σ //

ϕ

��

Aut(A)

G/N

ρ

::u
u

u
u

u

By assumption there exists β such that β(ϕ(s), ϕ(t)) = α(s, t) for each (s, t) ∈ G×G. One may
verify that β is a ρ-cocycle and hence we can define a new crossed product A oρ

β G/N . Let T
be a transversal to N in G and define Γ to be the map

Γ : Aoσ
α G→ Aoρ

β G/N,
∑
s∈G

as s 7→
∑
t∈T

(∑
s∈tN

as

)
tN

which is a ring homomorphism. Indeed, Γ is clearly additive and due to the assumptions, for
any two elements

∑
g∈G ag g and

∑
h∈G bh h in Aoσ

α G, the multiplicativity of Γ follows by

Γ

∑
g∈G

ag g

 Γ

(∑
h∈G

bh h

)
=

∑
s∈T

∑
g∈sN

ag

 sN

(∑
t∈T

(∑
h∈tN

bh

)
tN

)

=
∑
q∈T

 ∑
{(s,t)∈T×T |
sNtN=qN}

∑
g∈sN

ag

 ρsN

(∑
h∈tN

bh

)
β(sN, tN)


 qN

=
∑
q∈T

 ∑
{(s,t)∈T×T |
sNtN=qN}

 ∑
(g,h)∈sN×tN

ag ρsN (bh)β(sN, tN)


 qN

=
∑
q∈T

 ∑
{(s,t)∈T×T |
sNtN=qN}

 ∑
(g,h)∈sN×tN

ag ρsN (bh)β(gN, hN)


 qN

=
∑
q∈T

 ∑
{(g,h)∈G×G|
gNhN=qN}

ag ρgN (bh)β(gN, hN)

 qN =
∑
q∈T

 ∑
{(g,h)∈G×G|
ghN=qN}

ag σg(bh)α(g, h)

 qN
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=
∑
q∈T

∑
p∈qN

 ∑
{(g,h)∈G×G|

gh=p}

ag σg(bh)α(g, h)


 qN

= Γ

∑
p∈G

 ∑
{(g,h)∈G×G|

gh=p}

agσg(bh)α(g, h)

 p

 = Γ

∑
g∈G

ag g

(∑
h∈G

bh h

)
and hence Γ defines a ring homomorphism. We shall note that the generator of I is mapped
onto zero, i.e.

Γ

(∑
s∈N

as s

)
=

(∑
s∈N

as

)
N = 0AN = 0

and hence Γ|I≡ 0. Furthermore, we see that

Γ (b e) = 0 =⇒ bN = 0 ⇔ b = 0A ⇔ b e = 0

and hence Γ|Ã is injective. We may now conclude that if c ∈ I ∩ Ã, then Γ(c) = 0 and so
necessarily c = 0. This shows that I ∩ Ã = {0}.

If A is commutaive, then σ is automatically a group homomorphism and we get the following.

Corollary 12. Let A be commutative and N ⊆ σ−1(idA) = {g ∈ G | σg = idA} a normal
subgroup of G. Let ϕ : G → G/N be the quotient group homomorphism and suppose that α is
such that α(s, t) = 1A whenever s ∈ N or t ∈ N . Furthermore, suppose that there exists a map
β : G/N × G/N → U(A) such that β(ϕ(s), ϕ(t)) = α(s, t) for each (s, t) ∈ G × G. If I is an
ideal in A oσ

α G generated by an element
∑

s∈N as s for which the coefficients (of which all but
finitely many are zero) satisfy

∑
s∈N as = 0A, then I ∩ Ã = {0}.

When α ≡ 1A we need not assume that A is commutative, in order to make σ a group
homomorphism. In this case we may choose β ≡ 1A and by Theorem 3 we have the following
corollaries.

Corollary 13. Let α ≡ 1A and N ⊆ σ−1(idA) = {g ∈ G | σg = idA} be a normal subgroup of
G. If I is an ideal in Aoσ

α G generated by an element
∑

s∈N as s for which the coefficients (of
which all but finitely many are zero) satisfy

∑
s∈N as = 0A, then I ∩ Ã = {0}.

Corollary 14. If α ≡ 1A, then the following implication holds:

(i) Z(G) ∩ σ−1(idA) 6= {e}
⇓

(ii) For each g ∈ Z(G) ∩ σ−1(idA), the ideal Ig generated by the element
∑

n∈Z an g
n for which∑

n∈Z an = 0A has the property Ig ∩ Ã = {0}

Proof. Suppose that there exists a g ∈ (Z(G) ∩ σ−1(idA)) \ {e}. Let Ig ⊆ Aoσ
α G be the ideal

generated by
∑

n∈Z an g
n, where

∑
n∈Z an = 0A. The element g commutes with each element of

G and hence the cyclic subgroup N = 〈g〉 generated by g is normal in G and since σ is a group
homomorphism N ⊆ σ−1(idA). Hence Ig ∩ Ã = {0} by Corollary 13.

Corollary 15. If α ≡ 1A and G is abelian, then the following implication holds:
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(i): I ∩ Ã 6= {0}, for every non-zero two-sided ideal I in Aoσ
α G

⇓
(ii): σg 6= idA for all g ∈ G \ {e}

Proof by contrapositivity. Since G is abelian, G = Z(G). Suppose that (ii) is false, i.e. there
exists g ∈ G \ {e} such that σg = idA. Pick such a g and let Ig ⊆ Aoσ

αG be the ideal generated
by 1A e− 1A g. Then obviously Ig 6= {0} and by Corollary 14 we get Ig ∩ Ã = {0} and hence (i)
is false. This concludes the proof.

Example. We should note that in the proof of Corollary 15 one could have chosen the ideal in
many different ways. The ideal generated by 1A e−1A g+1A g2−1A g3+. . .+1A g2n−1A g2n+1 =
(1A e− 1A g)

∑n
k=0 1A g2k is contained in the ideal Ig, generated by 1A e− 1A g, and therefore it

has zero intersection with Ã if Ig ∩ Ã = {0}. Also note that for α ≡ 1A we may always write

1A e− 1A gn = (1A e− 1A g)

(
n−1∑
k=0

1A gk
)

and hence 1A e− 1A g is a zero-divisor in Aoσ
α G whenever g is a torsion element.

Example. We now give an example of how one may choose β as in Theorem 3. Let N ⊆
σ−1(idA) be a normal subgroup of G such that for g ∈ N , α(s, g) = 1A for all s ∈ G and let α
be symmetric. Since α is the σ-cocycle map of a G-system, we get

α(g, s)α(gs, t) = σg(α(s, t))α(g, st)⇐⇒ α(g, s)α(gs, t) = α(s, t)α(g, st)
⇐⇒ α(gs, t) = α(s, t)

for all (s, t) ∈ G×G. Using the last equality and the symmetry of α we immediately see that

α(gs, ht) = α(s, t) ∀s, t ∈ G

for all g, h ∈ N . The last equality means that α is constant on the pairs of right cosets which
coincide with the left cosets by normality of N . It is therefore clear that we can define
β : G/N ×G/N → Aut(A) by β(ϕ(s), ϕ(t)) = α(s, t) for s, t ∈ G.

Theorem 4. If A is an integral domain, G is an abelian group and α ≡ 1A, then the following
implication holds:

(i): I ∩ Ã 6= {0}, for every non-zero two-sided ideal I in Aoσ
α G

⇓
(ii): Ã is a maximal commutative subring in Aoσ

α G

Proof. This follows from Corollary 10 and Corollary 15.

Example (The quantum torus). Let q ∈ C \ {0, 1} and denote by Cq[x, x−1, y, y−1] the twisted
Laurent polynomial ring in two non-commuting variables under the twisting

y x = q x y (5.1)

The ring Cq[x, x−1, y, y−1] is known as the quantum torus. Now let A = C[x, x−1], G = (Z,+),
σn : P (x) 7→ P (qnx) for n ∈ G and P (x) ∈ A, and let α(s, t) = 1A for all s, t ∈ G. It is easily
verified that σ and α together satisfy conditions (i)-(iii) of a G-system and it is not hard to see
that Aoσ

αG
∼= Cq[x, x−1, y, y−1]. In the current example, A is an integral domain, G is abelian,

α ≡ 1A and hence all the conditions of Theorem 4 are satisfied. Note that the commutation
relation (5.1) implies

yn xm = qmn xm yn, ∀n,m ∈ Z (5.2)

It is important to distinguish between two different cases:
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Case 1 (q is a root of unity). Suppose that qn = 1 for some n 6= 0. From equality (5.2)
we note that yn ∈ Z(Cq[x, x−1, y, y−1]) and hence C[x, x−1] is not maximal commutative in
Cq[x, x−1, y, y−1]. Thus, according to Theorem 4, there must exist some non-zero ideal I which
has zero intersection with C[x, x−1].

Case 2 (q is not a root of unity). Suppose that qn 6= 1 for all n ∈ Z \ {0}. One can show
that this implies that Cq[x, x−1, y, y−1] is simple. This means that the only non-zero ideal is
Cq[x, x−1, y, y−1] itself and this ideal obviously intersects C[x, x−1] non-trivially. Hence, by
Theorem 4, we conclude that C[x, x−1] is maximal commutative in Cq[x, x−1, y, y−1].

6 Ideals, intersections and zero-divisors

Let D denote the subset of zero-divisors in A and note that D is always non-empty since 0A ∈ D.
By D̃ we denote the image of D under the embedding ι.

Theorem 5. If A is commutative, then the following implication holds:

(i): I ∩
(
Ã \ D̃

)
6= ∅, for every non-zero two-sided ideal I in Aoσ

α G

⇓
(ii): D ∩ AG = {0A}, i.e. the only zero-divisor that is fixed under all automorphisms is 0A

Proof by contrapositivity. LetA be commutative. Suppose that D∩AG 6= {0A}. Then there
exist some c ∈ D \ {0A} such that σs(c) = c for all s ∈ G. There is also some d ∈ D \ {0A}, such
that c · d = 0A. Consider the ideal Ann(c) = {a ∈ A | a · c = 0A} in A. It is clearly non-empty
since we always have 0A ∈ Ann(c) and d ∈ Ann(c). Let θ : A → A/Ann(c) be the quotient
homomorphism defined by a 7→ a + Ann(c). Let us define a map ρ : G → Aut(A/Ann(c)) by
ρs(a + Ann(c)) = σs(a) + Ann(c) for a + Ann(c) ∈ A/Ann(c) and s ∈ G. Note that Ann(c)
is invariant under σs for every s ∈ G and thus it is easily verified that ρs is a well-defined
automorphism on A/Ann(c) for each s ∈ G. Define a map β : G × G → U(A/Ann(c)) by
(s, t) 7→ (θ ◦α)(s, t). It is not hard to see that {A/Ann(c), G, ρ, β} is in fact a G-crossed system.
Consider the map Γ : A oσ

α G → A/Ann(c) oρ
β G defined by

∑
s∈G as s 7→

∑
s∈G θ(as) s. For

any two elements
∑

s∈G as s,
∑

t∈G bt t ∈ Aoσ
α G the additivity of Γ follows by

Γ

(∑
s∈G

as s+
∑
t∈G

bt t

)
= Γ

(∑
s∈G

(as + bs) s

)
=
∑
s∈G

θ(as + bs) s

=
∑
s∈G

θ(as) s+
∑
t∈G

θ(bt) t = Γ

(∑
s∈G

as s

)
+ Γ

(∑
t∈G

bt t

)

and due to the assumptions, the multiplicativity follows by

Γ

(∑
s∈G

as s
∑
t∈G

bt t

)
= Γ

 ∑
(s,t)∈G×G

as σs(bt)α(s, t) st


=

∑
(s,t)∈G×G

θ(as σs(bt)α(s, t)) st

=
∑

(s,t)∈G×G

θ(as) θ(σs(bt)) θ(α(s, t)) st

=
∑

(s,t)∈G×G

θ(as) ρs(θ(bt))β(s, t) st
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=

(∑
s∈G

θ(as) s

)(∑
t∈G

θ(bt) t

)
= Γ

(∑
s∈G

as s

)
Γ

(∑
t∈G

bt t

)
where we have used that β = θ◦α and θ(σs(bt)) = ρs(θ(bt)) for all bt ∈ A and s ∈ G. This shows
that Γ is a ring homomorphism. Now, pick some g 6= e and let I be the ideal generated by d g.
Clearly I 6= {0} and Γ|I≡ 0. Note that ker(θ) = Ann(c) and in particular Γ(a e) = 0 implies
a ∈ Ann(c). Take me ∈ I ∩

(
Ã \ D̃

)
. Then Γ(me) = 0 and hence m ∈ Ann(c) ⊆ D, which is a

contradiction. Thus, I ∩
(
Ã \ D̃

)
= ∅ and by contrapositivity this concludes the proof.

Example (The truncated quantum torus). Let q ∈ C \ {0, 1}, m ∈ N and consider the ring
C[x,y,y−1]

(y x−q x y , xm) which is commonly referred to as the truncated quantum torus. It is easily verified
that this ring is isomorphic to A oσ

α G with A = C[x]/(xm), G = (Z,+), σn : P (x) 7→ P (qnx)
for n ∈ G and P (x) ∈ A, and α(s, t) = 1A for all s, t ∈ G. One should note that in this case A is
commutative, but not an integral domain. In fact, the zero-divisors in C[x]/(xm) are precisely
those polynomials where the constant term is zero, i.e. p(x) =

∑m−1
i=0 ai x

i, with ai ∈ C, such
that a0 = 0. It is also important to remark that, unlike the quantum torus, A oσ

α G is never
simple (for m > 1). In fact we always have a chain of two-sided ideals

C[x, y, y−1]
(y x− q x y , xm)

⊃ 〈x〉 ⊃ 〈x2〉 ⊃ . . . ⊃ 〈xm−1〉 ⊃ {0}

independent of the value of q. Moreover, the two-sided ideal J = 〈xm−1〉 is contained in
Comm(C[x]/(xm)) and contains elements outside of C[x]/(xm). Hence we conclude that C[x]/(xm)
is not maximal commutative in C[x,y,y−1]

(y x−q x y , xm) . When q is a root of unity, with qn = 1 for some
n < m, we are able to say more. Consider the polynomial p(x) = xn, which is a non-trival
zero-divisor in C[x]/(xm). For every s ∈ Z we see that p(x) = xn is fixed under the automor-
phism σs and therefore, by Theorem 5, we conclude that there exists a non-zero two-sided ideal
in C[x,y,y−1]

(y x−q x y , xm) such that its intersection with Ã \ D̃ is empty.

7 Comments to the literature

The literature contains several different types of intersection theorems for group rings, Ore
extensions and crossed products. Typically these theorems rely on heavy restrictions on the
coefficient rings and the groups involved. We shall now give references to some interesting
results in the literature.

It was proven in [23, Theorem 1, Theorem 2] that the center of a semiprimitive (semisimple
in the sense of Jacobson [6]) P.I. ring respectively semiprime P.I. ring has a non-zero intersection
with every non-zero ideal in such a ring. For crossed products satisfying the conditions in [23,
Theorem 2], it offers a more precise result than Theorem 2 since Z(A oσ

α G) ⊆ Comm(Ã).
However, every crossed product need not be semiprime nor a P.I. ring and this justifies the need
for Theorem 2.

In [12, Lemma 2.6] it was proven that if the coefficient ring A of a crossed product Aoσ
α G

is prime, P is a prime ideal in A oσ
α G such that P ∩ Ã = 0 and I is an ideal in A oσ

α G
properly containing P , then I ∩ Ã 6= 0. Furthermore, in [12, Proposition 5.4] it was proven
that the crossed product A oσ

α G with G abelian and A a G-prime ring has the property that,
if Ginn = {e}, then every non-zero ideal in A oσ

α G has a non-zero intersection with Ã. It was
shown in [2, Corollary 3] that if A is semiprime and Ginn = {e}, then every non-zero ideal in
A oσ

α G has a non-zero intersection with Ã. In [13, Lemma 3.8] it was shown that if A is a
G-prime ring, P a prime ideal in Aoσ

αG with P ∩ Ã = 0 and if I is an ideal in Aoσ
αG properly
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containing P , then I ∩Ã 6= 0. In [16, Proposition 2.6] it was shown that if A is a prime ring and
I is a non-zero ideal in Aoσ

αG, then I ∩ (Aoσ
αGinn) 6= 0. In [16, Proposition 2.11] it was shown

that for a crossed product A oσ
α G with prime ring A, every non-zero ideal in A oσ

α G has a
non-zero intersection with Ã if and only if Ct[Ginn] is G-simple and in particular if |Ginn| <∞,
then every non-zero ideal in Aoσ

αG has a non-zero intersection with Ã if and only if Aoσ
αG is

prime.
Corollary 11 shows that if Ã is maximal commutative in A oσ

α G, without any further con-
ditions on the coefficient ring or the group, we are able to conclude that every non-zero ideal in
Aoσ

α G has a non-zero intersection with Ã.
In the theory of group rings (crossed products with no action or twisting) the intersection

properties of ideals with certain subrings have played an important role and are studied in
depth in for example [3], [11] and [22]. Some further properties of intersections of ideals and
homogeneous components in graded rings have been studied in for example [1], [14].

For ideals in Ore extensions there are interesting results in [4, Theorem 4.1] and [8, Lemma
2.2, Theorem 2.3, Corollary 2.4], explaining a correspondence between certain ideals in the Ore
extension and certain ideals in its coefficient ring. Given a domain A of characteristic 0 and
a non-zero derivation δ it is shown in [5, Proposition 2.6] that every non-zero ideal in the Ore
extension R = A[x; δ] intersects A in a non-zero δ-invariant ideal. Similar types of intersection
results for ideals in Ore extension rings can be found in for example [9] and [15].

The results in this article appeared initially in the preprint [20].
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