Journal of

# Common Fixed Points of Generalized $\alpha-\psi$-contractive Type Selfmappings and Multivalued Mappings 

Mohammadi B*<br>Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iraq


#### Abstract

In this paper, mutivated by the recent work of samet et al. (Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. we give some new results on existence of common fixed points for a pair of generalized $\alpha-\psi$-contractive self-mappings and multivalued mappings. This results extend and improve many existing results in the literature. Some examples are given to illustrate the results.


Keywords: Common fixed point; Generalized $\alpha-\psi$-contractive; Selfmappings; Multivalued mappings

## Introduction

Recently, some results on existing of common fixed point for a pair of mappings or multifunctions have been given. In 2007, Zhang [1] defined a new generalized contractive type condition for a pair of mappings in metric spaces. Let $\mathrm{A} \in(0,+\infty]$ and $F: \mathbb{R}_{A}^{+} \rightarrow \mathbb{R}$. Denote by $\mathrm{I}[0, \mathrm{~A})$ the collection of all functions $F: \mathbb{R}_{A}^{+} \rightarrow \mathbb{R}$ satisfing the following conditions:
(i) $\mathrm{F}(0)=0$ and $\mathrm{F}(\mathrm{t})>0$ for each $\mathrm{t} \in(0, \mathrm{~A})$,
(ii) F is nondecreasing on $\mathbb{R}_{A}^{+}$,
(iii) F is continuous.

From Zhang [1] we know that for any $\mathrm{F} \in \mathrm{I}[0, \mathrm{~A}), \lim _{\mathrm{n} \rightarrow \infty} \mathrm{F}\left(\varepsilon_{\mathrm{n}}\right)=0$, $\left(\varepsilon_{n} \in \mathbb{R}_{A}^{+}\right)$implies $\lim _{\mathrm{n} \rightarrow \infty} \varepsilon_{\mathrm{n}}=0$. Denote by $\Psi[0, \mathrm{~A})$ the family of all functions $\psi: \mathbb{R}_{A}^{+} \rightarrow \mathbb{R}^{+}$which is nondecreasing and right upper semicontinuous such that $\lim _{n \rightarrow \infty} \Psi^{n}(t)=0$ for each $t \in(0, A)$. It is easy to see that for any $\psi \in \Psi[0, A)$ we have $\psi(0)=0$ and $\psi(t)<t$ for each $t \in(0, A)$.

Regarding the above notations, Zhang [1] proved the following theorem on existing of common fixed point for a pair of mappings.

Theorem 1: Let (X,d) be a complete metric space and let $D=\sup \{d(x, y) \mid x, y \in X\}$. Set $\mathrm{A}>\mathrm{D}$ if $\mathrm{D}<\infty$ and $\mathrm{A}=\mathrm{D}$ if $\mathrm{D}=\infty$. Suppose that $\mathrm{T}, \mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ are two mappings, $\mathrm{F} \in \mathrm{I}[0, \mathrm{~A})$ and $\psi \in \Psi\left[0, \mathrm{~F}\left(\mathrm{~A}^{-}\right)\right)$satisfing

$$
F(d(T x, S y)) \leq \psi(F(M(x, y))) \text { for each } x, y \in X
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{1}{2}(d(T x, y)+d(x, S y))\right\} .
$$

Then T and S have a unique common fixed point in X . Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=\operatorname{Tx}_{2 n}$ and $x_{2 n+2}=$ $S x_{2 n+1}$ converges to the common fixed point of $T$ and $S$.

Denote by $\Psi$ the family of all nondecreasing functions $\psi:[0,+\infty) \rightarrow[0,+$ $\infty$ ) such that $\sum_{n=1}^{+\infty} \psi^{n}(t)<+\infty$ for all $t>0$. Let (X,d) be a metric space and $\alpha$ : $\mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ be a mapping. A mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ is called $\alpha$-admissible whenever $\alpha(x, y) \geq 1$ implies $\alpha\left(T_{x}, T_{y}\right) \geq 1$. In 2011, Samet and Vetro [2] introduced a new type of contraction to a mapping $T: X \rightarrow X$, called $\alpha-\psi-$ contractive mappings, that is, $\alpha(x, y) d\left(T_{x}, T_{y}\right) \leq \psi(d(x, y))$ for all $x, y \in X$ and proved the following theorem.

Theorem 2: Let (X,d) be a complete metric space, $\alpha: X \times X \rightarrow[0,+\infty)$ a function, $\psi \in \Psi$ and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an $\alpha-\psi$-contractive mapping such that the following assertions hold [2]:
(i) T is $\alpha$-admissible,
(ii) There exists $\mathrm{x}_{0} \in \mathrm{X}$ such that $\alpha\left(\mathrm{x}_{0}, \mathrm{Tx}_{0}\right) \geq 1$,
(iii) $T$ is continuous or for any sequence $\left\{x_{n}\right\}$ in $X$ that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n$.

Then, T has a fixed point in X .
This result generalized and improved many existing fixed point results for a mapping defined on a complete metric space ( $X, d$ ), in particular the famuous Banach contraction principle. Also, the authors proved that adding the following condition to the conditions of above theorem, the fixed point is unique.
(H):For any $x, y \in X$ there exists $z \in X$ such that $\alpha(x, z) \geq 1$ and $\alpha(y, z)$ $\geq 1$.

Let ( $\mathrm{X}, \mathrm{d}$ ) be a metric space and let $\mathrm{CB}(\mathrm{X})$ denote the set of all nonempty closed bounded subsets of $X$. Let $H$ be the Hausdorff metric on $\mathrm{CB}(\mathrm{X})$ with respect to the metric d , that is, $H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}$ for all $\mathrm{A}, \mathrm{B} \in \mathrm{CB}(\mathrm{X})$ where $d(y, A)=\inf f_{x \in A} d(y, x)$. Let T,S:X $\rightarrow 2^{x}$ be a pair of multi-valued mappings. It is called that $x$ is a common fixed point of $T$ and $S$ if $x \in T x$ and $x \in S x$. In 2010, Rouhani and Moradi [3] proved the following common fixed point result for multi-valued mappings.

Theorem 3: Let ( $\mathrm{X}, \mathrm{d}$ ) be a complete metric space and let $\mathrm{T}, \mathrm{S}: \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ be two multivalued mappings such that
$H(T x, S y) \leq \alpha M(x, y)$
for all $x, y \in X$ where $0 \leq \alpha<1$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{1}{2}(d(T x, y)+d(x, S y))\right\} .
$$

Then, T and S have a common fixed point in X .
On the other hand in 2013, Beg et al. introduced common fixed

[^0]point results for multivalued mappings defined on a metric space endowed with a graph [4]. In this paper combining ideas of the above mentioned literature we give some new results on common fixed points of $\alpha-\psi$-contractive self-mappings and multivalued mappings [5-8].

## Results

Now we give the main results of this study. Firstly we give some definitions.

Definition 1: Let ( $X, d$ ) be a metric space and $\alpha: X \times X \rightarrow[0, \infty$ ) be a mapping. We say that $\alpha$ is symmetric if $\alpha(x, y) \geq 1$ implies $\alpha(y, x) \geq 1$. Also, it is called that $\alpha$ is transitive if $\alpha(\mathrm{x}, \mathrm{y}) \geq 1$ and $\alpha(\mathrm{y}, \mathrm{z}) \geq 1$ implies $\alpha(x, z) \geq 1$.

Definition 2: Let ( $\mathrm{X}, \mathrm{d}$ ) be a metric space and $\mathrm{T}, \mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings. We say that the ordered pair (T,S) is $\alpha$-admissible whenever $\alpha(x, y) \geq 1$ implies $\alpha(T x, S y) \geq 1$.

Theorem 4: Let ( $\mathrm{X}, \mathrm{d}$ ) be a complete metric space and let $D=\sup \{d(x, y) \mid x, y \in X\}$. Set $\mathrm{A}>\mathrm{D}$ if $\mathrm{D}<\infty$ and $\mathrm{A}=\mathrm{D}$ if $\mathrm{D}=\infty$. Suppose $\alpha: X \times X \rightarrow[0,+\infty)$ be a symmetric and transitive function, $F \in I[0, A)$, $\psi \in \Psi[0, F(A))$ and $T, \mathrm{~S}: \mathrm{X} \rightarrow \mathrm{X}$ are two mappings satisfing
$M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y),-\frac{1}{2}(d(T x, y)+d(x, S y))\right\}$.
where
$M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{1}{2}(d(T x, y)+d(x, S y))\right\}$.
Moreover, let the following assertions hold:
(i) $(T, S)$ is $\alpha$-admissible,
(ii) There exists $\mathrm{x}_{0} \in \mathrm{X}$ such that $\alpha\left(\mathrm{x}_{0}, \mathrm{Tx}_{0}\right) \geq 1$,
(iii) For any sequence $\left\{x_{n}\right\}$ in $X$ that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n$.

Then, T and S have a common fixed point in X .
Proof: Define an iterated sequence $\left\{x_{n}\right\}$ in $X$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$. Now $\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, T x_{0}\right) \geq 1$. Since (T,S) is $\alpha$-admissible, then $\left(x_{1}, x_{2}\right)=\alpha\left(T x_{0}, x_{1}\right) \geq 1$. Since $\alpha$ is symmetric, then $\left(x_{2}, x_{1}\right) \geq 1$. So, $\alpha\left(x_{3}, x_{2}\right)=\alpha\left(\mathrm{Tx}_{2}, S x_{1}\right) \geq 1$. Continuing this process, we see that $\alpha\left(x_{n}, x_{n+1}\right)$ $\geq 1$ for all n . Now

$$
\begin{equation*}
F\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq \alpha\left(x_{2 n}, x_{2 n+1}\right) F\left(d\left(T x_{2 n}, S x_{2 n+1}\right)\right) \tag{1}
\end{equation*}
$$

$\left(\mathrm{F}\left(\mathrm{M}\left(\mathrm{x} \_2 \mathrm{n}, \mathrm{x} \_2 \mathrm{n}+1\right)\right)\right)$.
But we have

$$
\begin{aligned}
& M\left(x_{2 n}, x_{2 n+1}\right)=\max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, T x_{2 n}\right) d\left(x_{2 n+1}, S x_{2 n+1}, \frac{1}{2}\left(d\left(T x_{2 n}, x_{2 n+1}\right)+d\left(x_{2 n}, S x_{2 n+1}\right)\right\}\right.\right. \\
& =\max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n+2}\right), \frac{1}{2}\left(d\left(x_{2 n+1}, x_{2 n+1}\right)+d\left(x_{2 n}, x_{2 n+2}\right)\right)\right\} \\
& d\left(x_{2 n+1}, x_{2 n+2}\right)>d\left(x_{2 n}, x_{2 n+1}\right)
\end{aligned}
$$

If we have $d\left(x_{2 n+1}, x_{2 n+2}\right)>d\left(x_{2 n}, x_{2 n+1}\right)$, then from (1) we will have

$$
F\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq \psi\left(F\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right)\right)<F\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right)
$$

which is a contradiction. So, we can only have the case

$$
\begin{equation*}
F\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq \psi\left(F\left(d\left(x_{2 n}, x_{2 n+1}\right)\right)\right) \tag{2}
\end{equation*}
$$

Also

$$
\begin{equation*}
F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \alpha\left(x_{2 n}, x_{2 n-1}\right) F\left(d\left(T x_{2 n}, S x_{2 n-1}\right)\right) \tag{3}
\end{equation*}
$$

$\left(\mathrm{F}\left(\mathrm{M}\left(\mathrm{x} \_2 \mathrm{n}, \mathrm{x} \_2 \mathrm{n}-1\right)\right)\right)$.

But we have
$=\max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{1}{2}\left(d\left(x_{2 n+1}, x_{2 n-1}\right)+d\left(x_{2 n}, x_{2 n}\right)\right)\right\}$
$=\max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{1}{2}\left(d\left(x_{2 n+1}, x_{2 n-1}\right)+d\left(x_{2 n}, x_{2 n}\right)\right)\right\}$
$\leq \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\}$.
If we have $\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)>\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)$, then from (3) we will have
$F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \psi\left(F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right)<F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)$
which is a contradiction. So, we can only have the case
$F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \psi\left(F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)\right)$.
From (2) and (4) we see that
$F\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(F\left(d\left(x_{n-1}, x_{n}\right)\right)\right)$, for all $n \in \mathbb{N}$.
From (5) we get

$$
F\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi^{n}\left(F\left(d\left(x_{0}, x_{1}\right)\right)\right), \quad \text { for all } n \in \mathbb{N} .
$$

Tending n to $\infty$, we obtain $\mathrm{F}\left(\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right) \rightarrow 0$. Hence, $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. Since $\alpha$ is symmetric and transitive, hence we have $\alpha\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \geq 1$ and $\alpha\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right) \geq 1$ for all $\mathrm{n}, \mathrm{m} \in \mathbb{N}$ which $\mathrm{n}<\mathrm{m}$. Now showing that $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a cauchy sequence is comletely similar to theorem 1 in Zhang's [1]. From completeness of $(X, d)$, there exists $\mathrm{x} \in \mathrm{X}$ such that $\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{x}$.

Next, we shall show that $T x=x$ and $S x=x$. At first, we have

$$
\begin{equation*}
F\left(d\left(x_{2 n+1}, S x\right)\right)=F\left(d\left(T x_{2 n}, S x\right)\right) \leq \alpha\left(x_{2 n}, x\right) F\left(d\left(T x_{2 n}, S x\right)\right) \leq \psi\left(F\left(M\left(x_{2 n}, x\right)\right)\right) \tag{6}
\end{equation*}
$$

## But

$M\left(x_{2 n}, x\right)=\max \left\{d\left(x_{2 n}, x\right), d\left(x_{2 n}, x_{2 n+1}\right), d(x, S x), \frac{1}{2}\left(d\left(x_{2 n+1}, x\right)+d\left(x_{2 n}, S x\right)\right)\right\}$
Tending n to $\infty$, we obtain $M\left(x_{2 n}, x\right) \searrow d(x, S x)$. Now tending n to $\infty$ in (6) and using continuity of F and right upper semi-continuoty of $\psi$, we get $F(d(x, S x)) \leq \psi(F(d(x, S x)))$ which implies $\mathrm{F}(\mathrm{d}(\mathrm{x}, \mathrm{Sx}))=0$ and so $\mathrm{d}(\mathrm{x}, \mathrm{Sx})=0$. Hence, $\mathrm{Sx}=\mathrm{x}$. On the other hand,

$$
\begin{equation*}
F\left(d\left(T x, x_{2 n+2}\right)\right) \leq \alpha\left(x, x_{2 n+1}\right) F\left(d\left(T x, S x_{2 n+1}\right)\right) \leq \psi\left(F\left(M\left(x, x_{2 n+1}\right)\right)\right) . \tag{7}
\end{equation*}
$$

But

$$
M\left(x, x_{2 n+1}\right)=\max \left\{d\left(x, x_{2 n+1}\right), d(T x, x), d\left(x_{2 n+1}, x_{2 n+2}\right), \frac{1}{2}\left(d\left(T x, x_{2 n+1}\right)+d\left(x, x_{2 n+2}\right)\right)\right\} .
$$

Tending n to $\infty$, we obtain $M\left(x, x_{2 n+1}\right) \searrow d(T x, x)$. Tending n to $\infty$ in (7), we obtain $F(d(T x, x)) \leq \psi(F(d(T x, x)))$ which implies $\mathrm{F}(\mathrm{d}(T \mathrm{x}, \mathrm{x}))=0$ and so $d(T x, x)=0$. Hence, $T x=x$.

Example 1: Let $X=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\} \quad$ with the usual metric $d(x, y)=|x-y|$. Obviously ( $\mathrm{X}, \mathrm{d}$ ) is complete and $\mathrm{D}=1$. Let $F(t)=t^{\frac{1}{t}}$ on $[0, \mathrm{e})$ and $\mathrm{F}(0)=0$, then $\mathrm{F} \in \mathfrak{I}[0, \mathrm{~A})$ where $\mathrm{A}=\mathrm{e}>\mathrm{D}$. Let $\psi(t)=\frac{t}{2}$. Then, $\psi \in \Psi\left[0, e^{\frac{1}{e}}\right)$. Suppose T,S:X $\rightarrow \mathrm{X}$ be defined by

$$
T x=\left\{\begin{array}{cl}
0 & x=0, \\
1 & x=\frac{1}{n}, 1 \leq n \leq 100, \\
\frac{1}{n+1} & x=\frac{1}{n}, n>100
\end{array}\right.
$$

and

$$
S y= \begin{cases}0 & y=0 \\ 0 & y=\frac{1}{n}, 1 \leq n \leq 200, \\ \frac{1}{n+1} & y=\frac{1}{n}, n>200\end{cases}
$$

Also, define
$\alpha(x, y)=\left\{\begin{array}{l}1 \quad x, y \in\left\{\left.\frac{1}{n} \right\rvert\, n>200\right\} \cup\{0\}, ~\end{array}\right.$
0 otherwise.
Now let $x, y \in\left\{\left.\frac{1}{n} \right\rvert\, n>200\right\} \cup\{0\}$. If $\mathrm{x}=0$
$y=\frac{1}{n} \quad$ where $\quad \mathrm{n}>200, \quad$ then $\quad F(d(T x, S y))=\left(\frac{1}{n+1}\right)^{n+1}$
$M(x, y)=\max \left\{\frac{1}{n}, 0,\left|\frac{1}{n}-\frac{1}{n+1}\right|, \frac{1}{2}\left(\frac{1}{n}+\frac{1}{n+1}\right)\right\}=\frac{1}{n}$ Hence
$F(d(T x, S y))=\left(\frac{1}{n+1}\right)^{n+1}=\frac{1}{n+1}\left(\frac{1}{n+1}\right)^{n} \leq \frac{1}{2}\left(\frac{1}{n}\right)^{n}=\psi(F(M(x, y))$.
Similarly, if $\mathrm{y}=0$ and $x=\frac{1}{n}$ where $\mathrm{n}>200$, then $F(d(T x, S y))=\left(\frac{1}{n+1}\right)^{n+1}$ and $\quad M(x, y)=\frac{1}{n}$ and hence $F(d(T x, S y)) \leq \frac{1}{2}\left(\frac{1}{n}\right)^{n}=\psi(F(M(x, y))$. If $x, y \in\left\{\left.\frac{1}{n} \right\rvert\, n>200\right\}$, then put $y=\frac{1}{m}$ and $y=\frac{1}{m}$ where $\mathrm{n}, \mathrm{m}>200$, then

$$
F(d(T x, S y))=F\left(\left|\frac{1}{n+1}-\frac{1}{m+1}\right|\right)=\left(\frac{|m-n|}{(n+1)(m+1)}\right)^{\frac{(n+1)(m+1)}{|m-n|}}
$$

$$
=\left(\frac{|m-n|}{(n+1)(m+1)}\right)^{\frac{n+m+1}{|m-n|}}\left(\frac{|m-n|}{n m}\right)^{\frac{n m}{m-n \mid}}\left(\frac{m n}{(n+1)(m+1)}\right)^{\frac{n m}{|m-n|}}
$$

$$
\leq \frac{1}{2}(1)\left(\frac{|m-n|}{n m}\right)^{\frac{n m}{m-n \mid}}=\psi(F(d(x, y)) \leq \psi(F(M(x, y)) .
$$

By definition of $\alpha$, we see that
$\alpha(x, y) F(d(T x, S y)) \leq \psi(F(M(x, y)))$ for each $x, y \in X$.
Also, if we put $x_{0}=0$, then $\alpha\left(x_{0}, T x_{0}\right)=\alpha(0,0)=1$. Obviously, $\alpha$ is symmetric and transitive, ( $\mathrm{T}, \mathrm{S}$ ) is $\alpha$-admissible and the condition (iii) of theorem 4 holds. Hence, by the theorem we can say that $T$ and $S$ have a common fixed point in X. Here $T_{0}=S_{0}=0$.

Note that in the above example we can not apply theorem 1 . To see this, put $y=\frac{1}{101}$ and $y=\frac{1}{101}$. Then, $\mathrm{F}(\mathrm{d}(\mathrm{Tx}, \mathrm{Sy}))=(1)^{1}=1$ and

$$
\begin{aligned}
& M(x, y)=\max \left\{\left|\frac{1}{100}-\frac{1}{101}\right|,\left|\frac{1}{100}-1\right|,\left|\frac{1}{101}-0\right|, \frac{1}{2}\left(\left|1-\frac{1}{101}\right|+\left|\frac{1}{100}-0\right|\right)\right\} \\
& =\max \left\{\frac{1}{10100}, \frac{99}{100}, \frac{1}{101}, \frac{1}{2}\left(\frac{100}{101}+\frac{1}{100}\right)\right\}=\frac{99}{100}
\end{aligned}
$$

We see that $F(d(T x, S y))=1>\left(\frac{99}{100}\right)^{\frac{100}{99}}=F(M(x, y)>\psi(F(M(x, y))$. Hence we can not use theorem 1 . Note that theorem 4 is a generalization of theorem 1, because having the contraction condition of theorem 1 it is sufficient to put $\alpha(x, y)=1$ for each $x, y \in X$. Then, all of the conditions of theorem 4 are holded. So by the theorem, T and S have a common fixed point in X. Also, the above example shows that this generalization is real [9-11].

Also, we can not apply the contraction $\alpha(x, y) d(T x, S y)) \leq c M(x, y)$ for some $\mathrm{c} \in[0,1)$. To see this, put $x=\frac{1}{n}$ and $y=\frac{1}{n+1}$ where $\mathrm{n}>200$. Then,

$$
\sup _{x, y \in X} \frac{\alpha(x, y) d(T x, S y))}{M(x, y)} \geq \sup _{n>200} \frac{\frac{1}{(n+1)(n+2)}}{\frac{1}{n(n+1)}}=1
$$

Let $\varphi:[0, A) \rightarrow[0, \infty)$ be a Lebesgue integrable function which is summable on each compact subset of $[0, \mathrm{~A})$ such that $\int_{0}^{\varepsilon} \phi(t) d t>0$ for ach $\varepsilon \in(0, A)$. Then, we have also the following result to integral type version of $\alpha-\psi$-contraction for a pair of mappings $T$ and $S$.

Corollary 1: Let (X,d) be a complete metric space and let
$D=\sup \{d(x, y) \mid x, y \in X\}$. Set $\mathrm{A}>\mathrm{D}$ if $\mathrm{D}<\infty$ and $\mathrm{A}=\mathrm{D}$ if $\mathrm{D}=\infty$. Suppose $\alpha: X \times X \rightarrow[0,+\infty)$ be a symmetric and transitive function, $\psi \in \Psi\left[0, \int_{0}^{A} \phi(t) d t\right)$ and $\mathrm{T}, \mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ are two mappings satisfing

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{1}{2}(d(T x, y)+d(x, S y))\right\}
$$

where
$M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{1}{2}(d(T x, y)+d(x, S y))\right\}$.
Moreover, let the following assertions hold:
(i) $(T, S)$ is $\alpha$-admissible,
(ii) There exists $\mathrm{x}_{0} \in \mathrm{X}$ such that $\alpha\left(\mathrm{x}_{0}, \mathrm{Tx}_{0}\right) \geq 1$,
(iii) For any sequence $\left\{x_{n}\right\}$ in $X$ that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n$.

Then, T and S have a common fixed point in X .
In what follows, we introduce the common fixed point results for a pair of multivalued mappings.

Definition 3: Let ( $X, d$ ) be a metric space, $\alpha: X \times X \rightarrow[0,+\infty$ ) be a function and $\mathrm{T}, \mathrm{S}: \mathrm{XCB}(\mathrm{X})$ are two multivalued mappings. We say that the ordered pair (T,S) is $\alpha$-admissible whenever $\alpha(x, y) \geq 1$ implies $\alpha(u, v) \geq 1$ for each $u \in T x, v \in S y$.

Theorem 5: Let (X,d) be a complete metric space and $\psi \in \Psi$ be a strictly increasing and right upper semi-continuous function. Suppose $\alpha: X \times X \rightarrow[0,+\infty)$ be a symmetric function and $T, S: X \rightarrow C B(X)$ are two multivalued mappings satisfing

$$
\alpha(x, y) H(T x, S y) \leq \psi(M(x, y)), \text { for each } x, y \in X
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, S y), \frac{1}{2}(d(T x, y)+d(x, S y))\right\}
$$

Moreover, let the following assertions hold:
(i) $(T, S)$ is $\alpha$-admissible,
(ii) There exists $x_{0} \in x$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geq 1$,
(iii) For any sequence $\left\{x_{n}\right\}$ in $X$ that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n$ and $x_{n} \rightarrow x$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n$.

Then, $T$ and $S$ have a common fixed point in $X$.
Proof. Obviously, $\mathrm{M}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$ is a common fixed point of $T$ and $S$. Hence, we may assume that $M\left(x_{0}, x_{1}\right)>0$. Now $\alpha\left(x_{0}, x_{1}\right) \geq 1$ implies

$$
\begin{equation*}
d\left(x_{1}, S x_{1}\right) \leq \alpha\left(x_{0}, x_{1}\right) H\left(T x_{0}, S x_{1}\right) \leq \psi\left(M\left(x_{0}, x_{1}\right)\right)<M\left(x_{0}, x_{1}\right) . \tag{8}
\end{equation*}
$$

But
$M\left(x_{0}, x_{1}\right)=\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{0}, T x_{0}\right), d\left(x_{1}, S x_{1}\right), \frac{1}{2}\left(d\left(T x_{0}, x_{1}\right)+d\left(x_{0}, S x_{1}\right)\right)\right\}$
$\leq \max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, S x_{1}\right)\right\}$.
If $d\left(x_{1}, S x_{1}\right)>d\left(x_{0}, x_{1}\right)$, then from (8), we get $d\left(x_{1}, S x_{1}\right)<d\left(x_{1}, S x_{1}\right)$ which is a contradiction. Hence, we have only $d\left(x_{0}, x_{1}\right) \geq d\left(x_{1}, S x_{1}\right)$ and so from (8), we have $d\left(x_{1}, S x_{1}\right)<d\left(x_{0}, x_{1}\right)$. Hence, there exists $x_{2} S x_{1}$ such that $d\left(x_{1}, x_{2}\right)<d\left(x_{0}, x_{1}\right)$. Since (T,S) is $\alpha$-admissible, hence $\left(x_{1}, x_{2}\right) \geq 1$ and since $\alpha$ is symmetric, then $\alpha\left(x_{2}, x_{1}\right) \geq 1$. Now

$$
\begin{equation*}
d\left(T x_{2}, x_{2}\right) \leq \alpha\left(x_{2}, x_{1}\right) H\left(T x_{2}, S x_{1}\right) \leq \psi\left(M\left(x_{2}, x_{1}\right)\right) \tag{9}
\end{equation*}
$$

But
$M\left(x_{2}, x_{1}\right)=\max \left\{d\left(x_{2}, x_{1}\right), d\left(T x_{2}, x_{2}\right), d\left(x_{1}, S x_{1}\right), \frac{1}{2}\left(d\left(T x_{2}, x_{1}\right)+d\left(x_{2}, S x_{1}\right)\right)\right\}$

$$
\leq \max \left\{d\left(x_{2}, x_{1}\right), d\left(T x_{2}, x_{2}\right)\right\}
$$

If $d\left(\operatorname{Tx}_{2}, x_{2}\right)>d\left(x_{2}, x_{1}\right)$, then from (9), we obtain $d\left(\operatorname{Tx}_{2}, x_{2}\right) \leq \psi\left(d\left(\operatorname{Tx}_{2}, x_{2}\right)\right)$ which is a contradiction (note that $\left.\mathrm{d}\left(\mathrm{Tx}_{2}, \mathrm{x}_{2}\right)>\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) \geq 0\right)$. Hence, we have only $d\left(x_{2}, x_{1}\right) \geq d\left(\operatorname{Tx}_{2}, x_{2}\right)$ and so from (9), $d\left(\mathrm{Tx}_{2}, x_{2}\right) \leq \psi\left(d\left(x_{2}, x_{1}\right)\right)<\psi\left(d\left(x_{0}, x_{1}\right)\right)$. Hence, there exists $x_{3} \in T x_{2}$ such that $d\left(x_{3}, x_{2}\right)<\psi\left(d\left(x_{0}, x_{1}\right)\right)$. Since $(T, S)$ is $\alpha$-admissible, so $\left(x_{3}, x_{2}\right) \geq 1$ and since $\alpha$ is symmetric, hence $\alpha\left(x_{2}, x_{3}\right) \geq 1$. Continuing this process, we obtain a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X such that

$$
x_{2 n+1} \in T x_{2 n}, x_{2 n+2} \in S x_{2 n+1}, \alpha\left(x_{n}, x_{n+1}\right) \geq 1, d\left(x_{n}, x_{n+1}\right)<\psi^{n-1}\left(d\left(x_{0}, x_{1}\right)\right)
$$

for all $\mathrm{n} \in \mathbb{N}$. From triangle inequality, we conclude that $d\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{i=m-1} \psi^{i-1}\left(d\left(x_{0}, x_{1}\right)\right) \rightarrow 0$ as $\mathrm{m}>\mathrm{n} \rightarrow \infty$. Hence, $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a cauchy sequence. From completeness of $(X, d)$, there exists $x \in X$ such that $X_{n} \rightarrow x$.

Now we shall show that $x \in T x$ and $x \in S x$. At first, we have

$$
\begin{equation*}
M\left(x_{2 n}, x\right) \leq \max \left\{d\left(x_{2 n}, x\right), d\left(x_{2 n}, x_{2 n+1}\right), d(x, S x), \frac{1}{2}\left(d\left(x_{2 n+1}, x\right)+d\left(x_{2 n}, S x\right)\right)\right\} \tag{10}
\end{equation*}
$$

But

$$
M\left(x_{2 n}, x\right) \leq \max \left\{d\left(x_{2 n}, x\right), d\left(x_{2 n}, x_{2 n+1}\right), d(x, S x), \frac{1}{2}\left(d\left(x_{2 n+1}, x\right)+d\left(x_{2 n}, S x\right)\right)\right\}
$$

Tending n to $\infty$, we obtain $M\left(x_{2 n}, x\right) \searrow d(x, S x)$. Now tending n to $\infty$ in (10) and using right upper semi-continuoty of $\psi$, we get $d(x, S x) \leq \psi(d(x, S x))$ which implies $d(x, S x)=0$. Hence, $x \in S x$. On the other hand,

$$
\begin{equation*}
d\left(T x, x_{2 n+2}\right) \leq \alpha\left(x, x_{2 n+1}\right) H\left(T x, S x_{2 n+1}\right) \leq \psi\left(M\left(x, x_{2 n+1}\right)\right) . \tag{11}
\end{equation*}
$$

But

$$
M\left(x, x_{2 n+1}\right) \leq \max \left\{d\left(x, x_{2 n+1}\right), d(T x, x), d\left(x_{2 n+1}, x_{2 n+2}\right), \frac{1}{2}\left(d\left(T x, x_{2 n+1}\right)+d\left(x, x_{2 n+2}\right)\right)\right\}
$$

Tending n to $\infty$, we obtain $d(x, y)=|x-y|$. Also tending n to $\infty$ in (11), we obtain $d(T x, x) \leq \psi(d(T x, x))$ which implies $d(T x, x)=0$ and so $d(T x, x)=0$. Hence, $x \in T x$.

Example 2: Let $\mathrm{X}=[0, \infty)$ with the usual metric $d(x, y)=|x-y|$. Obviously, (X,d) is complete. Let $\psi(t)=\frac{t}{2}$ and suppose $\mathrm{T}, \mathrm{S}: \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ be defined by

$$
\begin{aligned}
& \qquad T x= \begin{cases}{\left[0, \frac{x}{4}\right]} & x \in[0,1], \\
\text { and } & \{2\} \\
& x>1\end{cases} \\
& S y= \begin{cases}\left\{\frac{y}{4}\right\} & y \in[0,1], \\
& \{3\} \\
& y>1 .\end{cases}
\end{aligned}
$$

Also define

$$
\alpha(x, y)= \begin{cases}1 & x, y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Obviously, $\alpha$ is symmetric. If $\mathrm{x}, \mathrm{y} \in[0,1]$, then

$$
H(T x, S y)=H\left(\left[0, \frac{x}{4}\right],\left\{\frac{y}{4}\right\}\right)=\max \left\{\frac{|x-y|}{4}, \frac{y}{4}\right\} \leq \frac{1}{2} \max \left\{|x-y|,\left|y-\frac{y}{4}\right|\right\} \leq \psi(M(x, y)) .
$$

Hence by definition of $\alpha$, we have $(x, y) H(T x, S y) \leq \psi(M(x, y))$ for all $x, y \in X$. It is easy to check that all of other conditions of theorem 5 hold. Hence by the theorem, T and S have a common fixed point in X. In fact, $0 \in \mathrm{~T}_{0}$ and $0 \mathrm{~S}_{0}$. Note that in the above example we can not apply theorem in Rouhani's [3]. To see this, put $x=2$ and $y=1$. Then,

$$
\begin{aligned}
& H(T x, S y))=H\left(\{2\},\left\{\frac{1}{4}\right\}\right)=\left|2-\frac{1}{4}\right|=\frac{7}{4} \text { and } \\
& \quad M(x, y)=\max \left\{|2-1|, 0,\left|1-\frac{1}{4}\right|, \frac{1}{2}\left(|2-1|+\left|2-\frac{1}{4}\right|\right)\right\}=\frac{11}{8} .
\end{aligned}
$$

We see that $H(T x, S y))=\frac{7}{4}>\frac{11}{8}=M(x, y)>\quad(M(x, y)$.
Note that theorem 5 is a generalization in Rouhani's [3] because having the contraction condition in Rouhani's [8] it is sufficient to put
$\alpha(x, y)=1$ for each $x, y \in X$. Then, we will have all of the conditions of theorem 5 holded. So, by the theorem the multivalued mappings $T$ and $S$ have a common fixed point in X. Also, example 2 shows that this generalization is real.

Also, note that we can not use theorem 4 in Beg and Butt [4] for example 2. Since if we get $E(G)=\{(x, y) \mid x, y \in[0,1]\}$ and choose $x=\frac{3}{4}$ and $y=1$, then

$$
H(T x, S y))=H\left(\left[0, \frac{3}{16}\right],\left\{\frac{1}{4}\right\}\right)=\max \left\{\frac{1}{4},\left|\frac{1}{4}-\frac{3}{16}\right|\right\}=\frac{1}{4}
$$

and

$$
d(x, y)=\left|1-\frac{3}{4}\right|=\frac{1}{4} .
$$

We see that $H(T x, S y))=\frac{1}{4}=d(x, y)>c d(x, y)$ for any $0 \leq \mathrm{c}<1$. On the other hand, theorem 2.3 Is a generalization of theorem 4 in Beg and Butt [1] because having the contraction condition of theorem 4 in Beg and Butt [1] it is sufficient to define $\alpha(x, y)=1$ if $(x, y) \in E(G)$ and 0 otherwise. Example 2 shows that this generalization is real.

## Acknowledgement

This study was supported by Marand Branch, Islamic Azad University, Iraq.

## References

1. Zhang $X$ (2007) Common fixed point theorems for some new generalized contractive type mappings. J Math Anal Appl 333: 780-786.
2. Samet B, Vetro C, Vetro $P$ (2012) Fixed point theorems for $\alpha-\Psi$-contractive type mappings. Nonlinear Analysis 75: 2154-2165.
3. Rouhani BD, Moradi $S$ (2010) Common fixed point of multivalued generalized $\varphi$-weak contractive mappings. Fixed Point Theory Appl p: 13.
4. Beg I, Butt AR (2013) Fixed point of set-valued graph contractive mappings. Journal of Inequalities and Applications p: 252.
5. Branciari A (2002) A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int J Math Sci 29: 531-536.
6. Ciric LB (1974) A generalization of Banach's contraction principle. Proc Amer Math Soc 45: 267-273.
7. Mohammadi B, Rezapour S, Shahzad N (2013) Some results on fixed points of $\alpha-\psi$-Ciric generalized multifunctions. Fixed Point Theory Appl p: 24.
8. Mohammadi B, Dinu S, Rezapour S (2013) Fixed points of Suzuki type quasicontractions. UPB Sci Bull Series A 75: 3-12.
9. Nadler SB (1969) Multi-valued contraction mappings. Pacific J Math 30: 475-488.
10. Rashwan RA, Saleh SM (2016) Some common fixed point theorems for four $(\Psi, \varphi)$-weakly contractive mappings satisfying rational expressions in ordered partial metric spaces. Int J Nonlinear Anal Appl 7: 111-130.
11. Zhang Q, Song $Y$ (2009) Fixed point theory for generalized $\varphi$-weak contractions. Applied Mathematics Letters 22: 75-78.

[^0]:    *Corresponding author: Mohammadi B, Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iraq, Tel: +98214486 5179; E-mail: bmohammadi@marandiau.ac.ir

    Received January 19, 2016; Accepted February 05, 2016; Published February 10, 2016

    Citation: Mohammadi B (2016) Common Fixed Points of Generalized $\alpha-\psi$ contractive Type Self-mappings and Multivalued Mappings. J Appl Computat Math 5: 287. doi:10.4172/2168-9679.1000287

    Copyright: © 2016 Mohammadi B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

