Common Fixed Point Theorem in T_0 Quasi Metric Space

Balaji R Wadkar¹, Ramakant Bhardwaj², Lakshmi Narayan Mishra³* and Basant Singh⁴

¹Department of Mathematics, AISECT University, Bhopal-Chikliod Road, Bhopal, Madhya Pradesh, India
²Department of Mathematics, MIT Group of Institutes, Anand Nagar, Bhopal, Madhya Pradesh, India
³Department of Mathematics, Mody University of Science and Technology, Sikar Road, Sikar, Rajasthan, India

Abstract

In this paper, we prove fixed point theorems for generalized C-contractive and generalized S-contractive mappings in a bi-complete di-metric space. The relationship between q- spherically complete T_0 Ultra-quasi-metric space and bi-complete di-metric space is pointed out in proposition 3.2. This work is motivated by Petals and Fvidalis in a T_0-ultra-quasi-metric space.

Keywords: Fixed Point; Generalized C-Contraction; Generalized S-Contraction; Spherically Complete; Bi-Complete Di-metric

Introduction

In Agyingi [1] proved that every generalized contractive mapping defined in a q- spherically complete T_0-ultra-quasi metric space has a unique fixed point. In Petals and Fvidalis [2] proved that every contractive mapping on a spherically complete non Archimedean normed space has a unique fixed point. Agyingi and Gega proved fixed point theorems in a T_0-ultra-quasi-metric space [3-5]. Later many authors published number of papers in this space [6-10].

In this paper we shall prove a fixed point theorem for generalized c- contractive and generalized s-contractive mappings in a bi-complete di-metric space.

If we delete, in the used definition of the pseudo metric d on the set X, the symmetry condition, $d(x,y)=d(y,x)$, whenever $x,y \in X$ we are led to the concept of quasi-pseudo metric.

Definition 1.1: Let (X,m) be a metric space. Let $T:X \rightarrow X$ be a map is called a C-contraction if there exist, $0 \leq k < \frac{1}{2}$ such that for all $x,y \in X$ the following inequality holds [10],

$$m(Tx,Ty) \leq km(x,Tx)+m(y,Ty)$$

Definition 2.1: Let (X,m) be a metric space. A map $T:X \rightarrow X$ is called a S-contraction if there exist $0 \leq k < \frac{1}{3}$ such that for all $x,y \in X$ the following inequality holds [10],

$$m(Tx,Ty) \leq km(x,Tx)+m(y,Ty)+m(x,y)$$

Abstract

In this paper, we prove fixed point theorems for generalized C-contractive and generalized S-contractive mappings in a bi-complete di-metric space. The relationship between q- spherically complete T_0 Ultra-quasi-metric space and bi-complete di-metric space is pointed out in proposition 3.2. This work is motivated by Petals and Fvidalis in a T_0-ultra-quasi-metric space.

Keywords: Fixed Point; Generalized C-Contraction; Generalized S-Contraction; Spherically Complete; Bi-Complete Di-metric

Introduction

In Agyingi [1] proved that every generalized contractive mapping defined in a q- spherically complete T_0-ultra-quasi metric space has a unique fixed point. In Petals and Fvidalis [2] proved that every contractive mapping on a spherically complete non Archimedean normed space has a unique fixed point. Agyingi and Gega proved fixed point theorems in a T_0-ultra-quasi-metric space [3-5]. Later many authors published number of papers in this space [6-10].

In this paper we shall prove a fixed point theorem for generalized c- contractive and generalized s-contractive mappings in a bi-complete di-metric space.

If we delete, in the used definition of the pseudo metric d on the set X, the symmetry condition, $d(x,y)=d(y,x)$, whenever $x,y \in X$ we are led to the concept of quasi-pseudo metric.

Definition 1.1: Let (X,m) be a metric space. Let $T:X \rightarrow X$ be a map is called a C-contraction if there exist, $0 \leq k < \frac{1}{2}$ such that for all $x,y \in X$ the following inequality holds [10],

$$m(Tx,Ty) \leq km(x,Tx)+m(y,Ty)$$

Definition 2.2: Let (X,m) be a metric space. A map $T:X \rightarrow X$ is called a S-contraction if there exist $0 \leq k < \frac{1}{3}$ such that for all $x,y \in X$ the following inequality holds [10],

$$m(Tx,Ty) \leq km(x,Tx)+m(y,Ty)+m(x,y)$$

Preliminaries

Now we recall some elementary definitions and terminology from the asymmetric topology which are necessary for a good understanding of the work below.

Definition 2.1: Let X be a non empty set. A function $d:X \times X \rightarrow [0,\infty)$ is called quasi pseudo metric on X if

$$d(x,x)=0, \forall x \in X$$
$$d(x,z) \leq d(x,y)+d(y,z), \forall x,y,z \in X$$

Moreover if $d(x,y)=0=d(y,x)$ then d is said to be a T_0 quasi metric or di-metric. The latter condition is referred as the T_0 condition.

Let d be quasi-pseudo metric on X, then the map d^{-1} defined by $d^{-1}(x,y)=d(y,x)$ whenever $x,y \in X$ is also a quasi-pseudo metric on X, called the conjugate of d.

It is also denoted by d' or d^*. It is easy to verify that the function d' defined by $d'^2=d \vee d^{-1}$

i.e. $d'^2(x,y)=\max\{d(x,y),d(y,x)\}$ defines a metric on X whenever d is a T_0 quasi pseudo metric.

In some cases, we need to replace $[0,\infty)$ by $[0,\infty)$ (where for a d attaining the value ∞, the triangle inequality is interpreted in the obvious way). In such case we speak of extended quasi-pseudo metric.

Definition 2.2: The di metric space (X,d) is said to be bi complete if the metric space (R,d') is complete.

Example 2.1: Let $X=\mathbb{R}$, we define the real valued map d given by $d(x,y)=|x-y|$, then (\mathbb{R},d) is a di metric space.

Remark 2.1

Let d be quasi-pseudo metric on X, then the map d'^2 defined by $d'^2(x,y)=d(y,x)$ whenever $x,y \in X$ is also a quasi-pseudo metric on X, called the conjugate of d.

In some cases, we need to replace $[0,\infty)$ by $[0,\infty)$ (where for a d attaining the value ∞, the triangle inequality is interpreted in the obvious way). In such case we speak of extended quasi-pseudo metric.

Definition 2.2: The di metric space (X,d) is said to be bi complete if the metric space (R,d') is complete.

Example 2.2: Let $X=[0,\infty)$ define for each $x,y \in X$, $m(x,y)=x$ if $x>y$ and $n(x,y)=x$ if $x<y$. It is not difficult to check that (X,n) is a T_0 quasi pseudo metric space. Notice that, for $x,y \in [0,\infty)$, we have $n^2(x,y)=\max\{x,y\}$ if $x+y$ and $n^2(x,y)=0$ if $x=y$, the matrix n^2 is complete on (X,d).

Definition 2.3: Let (X,d) be quasi pseudo metric space, for $x,y \in X$ and $x+y \in X$, $B_d(x,\epsilon) = \{y \in X : d(x,y) < \epsilon\}$

denotes the open ball at x. The collection of such balls is a base for a topology $\tau(d)$ induced by d on X. Similarly for $x,y \in X$ and $x+y \in X$, $B_d(x,\epsilon) = \{y \in X : d(x,y) < \epsilon\}$

denotes the open ball at x. The collection of such balls is a base for a topology $\tau(d)$ induced by d on X. Similarly for $x,y \in X$ and $x+y \in X$.

*Corresponding author: Mishra LN, Department of Mathematics, Mody University of Science and Technology, Sikar Road, Sikar, Rajasthan 332 311, India. Tel: +919838375431; E-mail: lakshminarayanmishra04@gmail.com

Received January 02, 2017; Accepted January 30, 2017; Published February 08, 2017

Copyright: © 2017 Wadkar BR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\[C_d(x,e) = \{ y \in X : d(x, y) \leq e \} \]
denotes the closed \(e \)-ball at \(x \).

Definition 2.4: Let \((X, d)\) be quasi pseudo metric space. Let \((x_i), i \in I\) be a family of points in \(X\) and let \((y_i), i \in I\) be a family of non negative real numbers.

We say that \(\{C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i)\}, i \in I \) has the mixed binary intersection property provided that \(\{C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i)\}, i \in I \) is the mixed binary intersection property such that

\[\bigcap_{i=1}^{n} (e_d(x_i, r_i)) \cap (e_{d^{-1}}(x_i, s_i)) = \emptyset \]

Proposition 2.1: If \((X, d)\) is an extended Isbell complete quasi pseudo metric space then \((X, d^2)\) is hyper complete. An interesting class of quasi pseudo metric space, for which, we investing a type of completeness are the ultra quasi pseudo metric.

Definition 2.6: Let \(X \) be a set \& \(d : X \times X \rightarrow [0, \infty) \) be a function a function mapping into the set \([0, \infty)\) of non negative real’s then \(d \) is ultra quasi pseudo metric on \(X \) if

\[d(x, x) = 0 \quad \text{for all } x \in X \quad \text{&} \quad d(x, z) \leq \max\{d(x, y), d(y, z)\} \quad \text{whenever } x, y, z \in X \]

The conjugate \(d^{-1} \) of \(d \) where \(d^{-1}(x, y) = d(y, x) \) whenever \(x, y \in X \) is also an ultra quasi pseudo metric on \(X \).

If \(d \) also satisfies the \(T_0 \) – condition, then \(d \) is called a \(T_0 \)- ultra quasi metric on \(X \). Notice that \(d^2 = \sup\{d, d^2\} \) is an ultra-metric on \(X \) whenever \(d \) is a \(T_0 \)- ultra quasi metric.

In a literature, \(T_0 \)- ultra quasi metric spaces are also known as Archimedean \(T_0 \)- quasi metric.

q-spherically Completeness

In this section we shall recall some results about \(q \)- spherical completeness belonging mainly to [8].

Definition 3.1: Let \((X, d)\) be an ultra – quasi pseudo metric space. Let \((x_i), i \in I\) be a family of points in \(X\) and let \((r_i), i \in I\) & \((s_i), i \in I\) be a family of non negative real numbers we say that \((X, d)\) is \(q \)- spherical completeness provided that each \(\{C_d(x_i, r_i), C_{d^{-1}}(x_i, s_i)\}, i \in I \)

Satisfying \(d(x_i, s_i) \leq \max\{r_i, s_i\} \), whenever \(i, j \in I \) is such that

\[\bigcap_{i=1}^{n} (e_d(x_i, r_i)) \cap (e_{d^{-1}}(x_i, s_i)) = \emptyset \]

Proposition 3.2: Each \(q \)-spherically complete \(T_0 \) ultra quasi metric space \((X, d)\) is bi-complete[8].

Main Results

We recall the following interesting results respectively due to Chatterji [10] and to Shukla [11]

Theorem 4.1a A C- contraction on a complete metric space has a unique fixed point.

Theorem 4.1b A S- contraction on a complete metric space has a unique fixed point.

Following results generalizes the above theorem to setting of a bi-complete di-metric space.

Definition 4.1: Let \((X, d)\) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a \(c \)-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{2} \) such that for all \(x, y \in X \) the following inequality holds.

\[d(Tx, Ty) \leq k[d(x, Ty) + d(y, Ty)] \]

Definition 4.2: Let \((X, d)\) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a \(S \)-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{3} \) such that for all \(x, y \in X \) the following inequality holds.

\[d(Tx, Ty) \leq k[d(x, Ty) + d(x, Ty) + d(x, y)] \]

Now we define following definitions

Definition 4.3: Let \((X, d)\) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a generalized \(c \)-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{4} \) such that for all \(x, y \in X \) the following inequality holds.

\[d(Tx, Ty) \leq k[d(x, Ty) + d(x, Ty) + d(x, Ty)] \]

Definition 4.4: Let \((X, d)\) be a quasi pseudo metric space. A map \(T : X \rightarrow X \) is called a generalized \(S \)-pseudo contraction if there exist \(k, 0 \leq k < \frac{1}{8} \) such that for all \(x, y \in X \) the following inequality holds.

\[d(Tx, Ty) \leq k[d(x, Ty) + d(x, Ty) + d(x, Ty)] \]

Theorem 4.1: Let \((X, d)\) be a bi complete di metric space and let \(T : X \rightarrow X \) be a generalized \(c \)-pseudo contraction then \(T \) has a unique fixed point.

Proof: Since \(T : X \rightarrow X \) is a generalized \(c \)-pseudo contraction then there exist \(k, 0 \leq k < \frac{1}{4} \) such that for all \(x, y \in X \) the following inequality holds:

\[d(Tx, Ty) \leq k[d(x, Ty) + d(y, Ty) + d(x, Ty)] \]

We shall first show that \(T : (X, d') \rightarrow (X, d') \) is a generalized \(c \)-contraction.

Since for any \(x, y \in X \) we have

\[d^{-1}(Tx, Ty) = d(Ty, Tx) \]

\[\leq k[d(Ty, y) + d(x, Tx) + d(Ty, x) + d(y, Tx)] \]

\[\leq k[d^{-1}(y, Ty) + d^{-1}(Tx, x) + d^{-1}(Ty, y) + d^{-1}(Ty, x)] \]

\[d^{-1}(Tx, Ty) \leq k[d^{-1}(y, Ty) + d^{-1}(x, Ty) + d^{-1}(Ty, x) + d^{-1}(Ty, y)] \]

We see that \(T : (X, d^{-1}) \rightarrow (X, d^{-1}) \) is a generalized \(C \)-pseudo contraction therefore

\[d(Tx, Ty) \leq k[d(Ty, Ty) + d(x, Ty) + d(Ty, x) + d(x, Ty)] \]

\[\leq k[d(x, Ty) + d'(x, Ty) + d'(Ty, y) + d'(y, Ty)] \]

and

\[d^{-1}(Tx, Ty) \leq k[d^{-1}(y, Ty) + d^{-1}(x, Ty) + d^{-1}(Ty, x) + d^{-1}(Ty, y)] \]
\[\leq k \left[d^{a}(y, Ty) + d^{a}(x, Tx) + d^{a}(x, Ty) + d^{a}(Tx, y) \right] \] for all \(x, y \in X \)

Hence \(d^{a}(Tx, Ty) \leq k \left[d^{a}(x, Tx) + d^{a}(y, Ty) + d^{a}(y, Ty) + d^{a}(x, Ty) \right] \) for all \(x, y \in X \)

and so \(T: \{X, d^{a}\} \rightarrow \{X, d^{a}\} \) is a generalized \(C\)-contraction.

By assumption \((X, d) \) is a bi-complete. Hence \((X, d^{a}) \) is complete. There fore by theorem (4a) \(T \) has a unique fixed point. This completes the proof.

Corollary 4.1: Let \((X, d) \) be a \(T_{0}\)-Isbell-Complete quasi pseudo metric spaces and \(T: X \rightarrow X \) be a generalized \(C\) – contraction then \(T \) has a unique fixed point.

The proof follows from the proposition 2.1

Corollary 4.2: Any generalized \(C\)- pseudo contraction on a q-spherically complete \(T_{0}\) ultra quasi metric space has a unique fixed point.

The proof follows from the proposition 3.1

Theorem 4.2:

Let \((X, d) \) be a bi complete di metric space and let \(T: X \rightarrow X \) be an generalized \(S\) pseudo contraction then \(T \) has a unique fixed point.

Proof: As in the previous proof it is enough to prove that \(T: \{X, d^{a}\} \rightarrow \{X, d^{a}\} \) is an generalized \(S\) –contraction.

Since \(T: X \rightarrow X \) be a \(S\) –pseudo contraction then there exist \(k \), \(0 \leq k < \frac{1}{8} \) such that for all \(x, y \in X \) the following inequality holds:

\[d^{a}(Tx, Ty) \leq k \left[d^{a}(x, Tx) + d^{a}(y, Ty) + d^{a}(y, Ty) + d^{a}(x, Ty) + d^{a}(x, Ty) + d^{a}(y, Ty) + d^{a}(x, Ty) + d^{a}(y, Ty) \right] \]

We shall first show that \(T: \{X, d^{a}\} \rightarrow \{X, d^{a}\} \) is a generalized \(C\)-contraction.

Since for any \(x, y \in X \) we have

\[
\begin{align*}
&d^{-1}(Tx, Ty) = d(Ty, Tx) \\
&d(Ty, Tx) \leq k \left[d^{-1}(Ty, y) + d^{-1}(Ty, x) + d^{-1}(Tx, x) + d^{-1}(Tx, x) + d^{-1}(Ty, y) + d^{-1}(Ty, y) \right] \\
&\leq k \left[d^{-1}(Ty, y) + d^{-1}(Ty, x) + d^{-1}(Tx, x) + d^{-1}(x, Ty) + d^{-1}(x, Ty) \right] \\
&d^{-1}(Tx, Ty) \leq k \left[d^{-1}(x, Tx) + d^{-1}(x, Ty) + d^{-1}(Tx, x) + d^{-1}(x, Ty) + d^{-1}(x, Ty) \right]
\end{align*}
\]

We see that \(T: \{X, d^{a}\} \rightarrow \{X, d^{a}\} \) is a pseudo contraction.

Therefore

\[
\begin{align*}
d(Tx, Ty) &\leq k \left[d(x, Tx) + d(y, Ty) + d(y, Ty) + d(x, Ty) + d(x, Ty) + d(x, Ty) \right] \\
d(Tx, Ty) &\leq k \left[d^{a}(x, x) + d^{a}(x, y) + d^{a}(x, y) + d^{a}(y, y) + d^{a}(y, y) + d^{a}(y, y) \right]
\end{align*}
\]

and

\[
\begin{align*}
d^{-1}(Tx, Ty) &\leq k \left[d^{-1}(x, x) + d^{-1}(x, y) + d^{-1}(y, y) + d^{-1}(y, y) + d^{-1}(y, y) \right] \\
&\leq k \left[d^{a}(x, x) + d^{a}(x, y) + d^{a}(x, y) + d^{a}(y, y) + d^{a}(y, y) \right]
\end{align*}
\]

For all \(x, y \in X \)

Hence

\[
d^{a}(Tx, Ty) \leq k \left[d^{a}(x, x) + d^{a}(y, y) + d^{a}(x, y) + d^{a}(y, x) \right]
\]

for all \(x, y \in X \) and so \(T: \{X, d^{a}\} \rightarrow \{X, d^{a}\} \) is a generalized \(s\)-contraction.

By assumption \((X, d) \) is a bi complete. Hence \((X, d^{a}) \) is complete. There fore by theorem (4a) \(T \) has a unique fixed point. This completes the proof.

Corollary 4.3: Let \((X, d) \) be a \(T_{0}\)-Isbell-Complete quasi pseudo metric spaces and \(T: X \rightarrow X \) be a pseudo contraction then \(T \) has a unique fixed point.

The proof follows from the proposition 2.1

Corollary 4.4: Any \(s\)-pseudo contraction on a q-spherically complete \(T_{0}\) ultra quasi metric space has a unique fixed point.

References

3. Agyingi CA, Gaba YU (2014) A fixed point like theorem in a \(T_{0}\)-ultra-quasi-metric space. Advances in Inequalities and Applications Article-ID.
5. Gaba YE (2014) Unique fixed point theorems for contractive maps type in \(T_{0}\) quasi metric spaces. AdvFixed Point theory 4: 117-125.