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Introduction
One of the most extensively studied problems in Celestial 

Mechanics is the restricted three-body problem (R3BP), where one 
of the bodies is considered massless; so, that it does not affect the 
motion of the other two that move in a Keplerian orbits. Restricted 
four-body problem (R4BP) is a modification of the R3BP and a natural 
generalization of it. It deals with the motion of an infinitesimal particle 
under the Newtonian gravitational attraction of three bodies, called 
primaries, whose trajectories are the solution of the three Newtonian 
body problems.

 In the same direction as several restricted three-body problems 
have given much insight about real three-body problems, the study 
of special type of four-body problem may be useful to understand the 
dynamical behavior of stellar systems through analytical or numerical 
studies. It is worth to note that, the four-body problem is increasingly 
being used for explaining many complex dynamical phenomena that 
appear in the solar system and exoplanetary systems. The restricted 
four-body problem has many possible uses in the dynamical system. 
For example, the fourth body is very useful for saving fuel and time in 
the trajectory transfers [1]. An application of the restricted four-body 
problem is also illustrated in the general behavior of the synchronous 
orbits in presence of the Moon as well as the Sun.

 In recent time, many researchers have taken into account the 
effects of radiation and oblateness in their study of restricted three-
body problem [2-9].

 Similarly, the classical restricted four-body problems may be 
generalized to include different types of effects such as radiation 
pressure force, Poynting-Robertson drag, oblateness of the bodies, 
Coriolis and centrifugal forces, variation of the masses of the primaries, 
etc. It is known that in the general problem of three bodies there is 
a particular solution in which the bodies are placed at the vertices of 
an equilateral triangle, each moving in a Keplerian orbit. This is well 
known, and was first studied by Lagrange in 1772. He found a solution 
where the three bodies remain at constant distances from each other 
while they revolved around their common center of mass. There has 

been recently an increased interest for this model because of some 
observational evidence; as it is known the Sun, Jupiter and the Trojan 
asteroids formed such a configuration in our Solar system.

 In this paper, we study the R4BP in which the primaries are in 
the Lagrange equilateral triangle configuration. In the framework of 
this model many works have been done in the last years. For example, 
Alvarez-Ramirez and Vidal [10] studied the equilateral R4BP in the 
case where the three primaries have equal masses. Baltagiannis and 
Papadakis [11] investigated the number of the equilibrium points of 
the problem for any value of the masses, and studied numerically their 
linear stability varying the values of the masses. Besides, they showed 
the regions of the basins of attraction for the equilibrium points for 
some values of the mass parameters. In Burgos-Garcia and Delgado 
[12], the authors studied the periodic orbits of the problem for the case 
of two equal masses approximately at Routh’s critical value. Recently, 
Papadouris and Papadakis [13] studied the equilibrium points in the 
photogravitational R4BP for the case of two equal masses. Also, the 
linear stability of each equilibrium point was examined. Kumari and 
Kushvah [14] studied the stability regions of the equilibrium points 
in the problem by taking into account the oblateness of the two small 
primaries. They established eight equilibrium points, two collinear and 
six non-collinear points and further observed that the stability regions 
of the equilibrium points expanded due to the presence of oblateness 
coefficients and various values of Jacobi constant, C. The allowed 
regions of motion of the infinitesimal body as well as the regions of 
the basins of attraction for the equilibrium points were given. More 
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Abstract

 We study numerically the perturbed problem of four bodies, where an infinitesimal body is moving under the 
Newtonian gravitational attraction of three much bigger bodies (called the primaries). The three bodies are moving in 
circles around their centre of mass fixed at the origin of the coordinate system, according to the solution of Lagrange 
where they are always at the apices of an equilateral triangle. The fourth body does not affect the motion of the 
primaries. The problem is perturbed in the sense that the dominant primary body m1 is a radiation source while the 
second smaller primary m2 is an oblate spheroid, with masses of the two small primaries m2 and m3 taken to be 
equal. The aim of this study is to investigate the effects of radiation and oblateness parameters on the existence and 
location of equilibrium points and their linear stability. It is observed that under the perturbative effect of oblateness, 
collinear equilibrium points do not exist (numerically and of course analytically) whereas the positions of the non-
collinear equilibrium points are affected by the radiation and oblateness parameters. The stability of each equilibrium 
points ( 6,,1, =iLi ) is examined and we found that points 6,,1, =iLi  are unstable while L7 and L8 are stable.
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recently, Singh and Vincent [15] studied the out-of-plane equilibrium 
points in the photogravitational R4BP; however, they considered all the 
primary bodies as radiation sources with two of the bodies having the 
same radiation and mass value.

 This model has been used for practical applications by some 
researchers in the last years. For example, Ceccaroni and Biggs [16] 
investigated the stability of the problem and tested the results in a 
real Sun-Jupiter- (624) Hektor-spacecraft system, Baltagiannis and 
Papadakis [17] studied periodic solutions of the problem in the Sun-
Jupiter-Trojan Asteroid-spacecraft system. 

In this paper, we extend the basic model of the restricted four-body 
problem by considering the dominant primary body m1 as a radiation 
source, while the second primary body m2 is modeled as oblate 
spheroid with the aim to investigate the changes which may result in 
these dynamical features due to the parameters of this model-problem. 
In particular, we study the existence and location of the equilibrium 
points as well as their linear stability under the effects of radiation and 
oblateness parameters.

The paper is organized as follows: Section 2 present the equations of 
motion and the Jacobi integral of the system. Section 3 determines the 
equilibrium points, while Section 4 investigates their linear stability. 
Section 5 discusses the obtained results and conclusion of the paper.

Equations of Motion
We consider that three bodies of masses m1, m2 and m3 (m1 >> m2 

= m3) always lie at the vertices of an equilateral triangle and one of 
them, say m1, is on the positive x-axis at the origin of time (Figure 1). 
A fourth infinitesimal body, moving in the same plane, is acted upon 
the attraction of the three primary bodies. The motion of the system is 
referred to axes rotating with uniform angular velocity. The equilateral 
configuration is possible for all distributions of the masses, whilst the 
fourth body of negligible mass moves in the same plane. We suppose 
that the origin is taken as the center of gravity of the system and that 
the motion of the infinitesimal mass m is governed by the gravitational 
force of the primaries. We adopt the sum of the masses of the primaries 
and the distance between them as the units of mass and length. We 
choose the unit of time such as to make the gravitation constant equal 
to unity. Let the coordinates of the infinitesimal mass be (x, y) and 
those of masses m1, m2 and m3 are:

3 1 3 1( 3 ,0), ( (1-2 ),  ),  and  ( (1-2 ),  - )  
2 2 2 2

µ µ µ− − , respectively, 

relative to a rotating frame of reference Oxy, where O is the origin, 
2 3

1 2 3 1 2 3

m m
m m m m m m

µ = =
+ + + +

 is the mass parameter, where μ∈

(0,1/2). The perturbed mean motion n is given by n2 = 1+3A2/2 where
2 2

2 25
e pR R

A
R
−

=  is the oblateness coefficient of m2 with Re and Rp, as the 

equatorial and polar radii, respectively, and R is the separation between 
the primaries. In general, we have 0 < A2 << 1. The factor characterizing 
the radiation pressure of the dominant primary body m1 is expressed 
by means of the radiation factor q1 = 1-δ, where δ is the ratio of the 
force Fr which is caused by radiation to the force Fg which results from 
gravitation due to the primary body m1.

The equations of motion of the infinitesimal mass in the rotating 
coordinate system are written as (see, for example, Papadouris and 
Papadakis, [17]

2 ,xx ny− = Ω   					                    (1)

2 ,yy nx+ = Ω  	  				                  (2)

where,
2 2 2

1 2
3

1 2 3 2

( y ) (1 2 )( , )
2 2

n x q Ax y
r r r r
µ µ µ µ+ −

Ω = + + + +  , 	                (3)

with
2 2

1 ( 3 ) y ,r x µ= − +

2 2
2

3 1( (1 2 )) (y ) ,
2 2

r x µ= + − + −

2 2
3

3 1( (1 2 )) (y ) ,
2 2

r x µ= + − + +

Here r1, r2 and r3 are the distances of the infinitesimal body from the 
primaries, Ω is the gravitational potential, dots denote time derivatives, 
the suffixes x and y indicate the  partial derivatives of Ω with respect to 
x and y, respectively. 

It is well known that these equations have the so, called Jacobi first 
integral 

2 2 2x y C+ = Ω −  	  			                  (4)

where C is the Jacobian constant.

Linear stability of the Lagrange configuration

It is known, that in the Lagrange central configuration the necessary 
condition for the stability of the configuration is the inequality, 

1 2 2 3 1 3
2

1 2 3

1 ,
( ) 27

m m m m m m
m m m
+ +

<
+ +

 			                   (5)

where m1, m2 and m3 are the three primary bodies [18]. Later, Routh 
[19] studied the linear stability of the same solutions in the case of 
homogeneous potentials. Recently, Papadouris and Papadakis [17] 
produced the necessary condition for the stability of the Lagrange 
central configuration in the photogravitational R4BP based on the 
ideas of Santroprete [20] and Moeckel [21]. Based on these ideas, if 
someone replaces the masses mi=qi(1-Ai) mi , i=1,2,3, then we believe 
that it will be produced the necessary condition for the stability of the 
Lagrange central configuration, in the present problem, i.e.,Figure 1: Geometry of the restricted four-body problem. 
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where m1, m2 and m3 are the three primary bodies, A1, A2and A3 are 
the oblateness factors of the primaries, respectively, and q1, q2and q3are 
the corresponding radiation pressure forces of the primaries. Now, if 
we put q1 =q2 =q3 =1and A1 =A2 =A3 = 0, we obtain inequality (5) of the 
linear stability of the Lagrange configuration (Gascheau 1843). For q1 
≠1 and q2 =q3=1; A1 =A2 =A3 = 0,we obtain the photogravitational case 
of Papadouris and Papadakis.

In our present case where the dominant primary body m1 is a 
radiation source while the second smaller primary body m2 is an oblate 
spheroid, the problem admits inequality of the form,

( )
1 1 2 2 2 2 3 1 1 3

2
1 1 2 2 3

(1 ) (1 ) 1
27(1 )

q m A m A m m q m m
q m A m m

− + − +
<

+ − +
               (7)

In the gravitational case Baltagiannis and Papadakis, [11] where 
the two small primary bodies have the same mass, we know that only 
for a large value of m1and small masses m2 and m3 , the Gascheau’s 
inequality is fulfilled. In the case where the dominant primary body 
m1 is a radiation source while the other two small primaries have equal 
masses (m2 = m3), then a detailed study of the equilibrium points of the 
problem has been done by Papadouris and Papadakis [13]. In present 
work, we will consider sets of (mi, A2, q1) which satisfy the condition 
(7). So, we assume that we have a dominant primary body with mass 
mi=0.98 and two small equal primaries with masses m2= m3=µ=0.01.

Location and Existence of the Equilibrium Points 
The equilibrium points are those points at which the velocity and 

acceleration of the fourth body are zero. Therefore, the location of these 
points are given by the solutions of the equations,

0, .i e
x y

∂Ω ∂Ω
= =

∂ ∂

2
2 1
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1 2 2

3 3( (1 2 )) 3 ( (1 2 ))(1 2 )( 3 ) 2 2
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                    (8)

and 

2
2 1

3 3 5 3
1 2 2 3

1 1 1( ) 3 ( ) ( )(1 2 ) 2 2 2 0,
2

y y A yq yn y
r r r r

µ µ µµ − − +−
− − − − =

     (9)

Collinear equilibrium points

The collinear points are the solutions of Equations (8), (9) when y = 
0. If, y = 0,  Equation (9) is not fulfilled (since A2 ≠ 0). Thus, the solutions 
of Equation.(8) will not correspond to equilibrium points on the x-axis, 
called collinear equilibrium points. Hence, collinear equilibrium points 
do not exist (numerically and of course neither analytically) under the 
combine effects of radiation and oblateness of the dominant and small 
primaries, respectively. This is not strange because we can find in the 
literature that in the four-body problem and for example, when m1 ≠ 
m2 ≠ m3 (three different masses), then collinear equilibrium points do 
not exist (see for details Baltagiannis and Papadakis [11]. So, in this 
problem there are cases where collinear equilibria do not exist. 

Non-collinear equilibrium points

The non-collinear points can be found by solving Equations (8) 
and (9) simultaneously when y ≠ 0, that is,

2
2 1

1 3 3 5
1 2 2

3 3( (1 2 )) 3 ( (1 2 ))(1 2 )( 3 ) 2 2( , )
2

x x Ax qf x y n x
r r r

µ µ µ µµ µ + − + −− −
= − − − −

3
3

3( (1 2 ))
2 0,

x

r

µ µ+ −
=

                     (10)

2
2 1

2 3 3 5 3
1 2 2 3

1 1 1( ) 3 ( ) ( )(1 2 ) 2 2 2( , ) 0,
2

y y A yq yf x y n y
r r r r

µ µ µµ − − +−
= − − − − =  (11) 

and the problem, for µ=0.01, q1=0.99 and A2 = 0.01, admits eight non-
collinear equilibrium points Li, i =1-8 (Figure 2). We opted to name 
them in the same way as in the work of Kumari and Kushvah [14]. 
One can easily see eight points of intersection of the curves, which 
corresponds to eight equilibrium positions of the infinitesimal body m. 
The three large black points are the positions of the primary bodies and 
the small black dots are the positions of the eight equilibrium points of 
the problem. 

Therefore, the coordinates of these positions (xLi, yLi) are the 
solutions of Equations (10), (11) for μ=0.01 and different values of 
the oblateness and radiation coefficients. The effects of the involved 
parameters (radiation factor q1 and oblateness coefficient A2) on 
the positions of the equilibrium points are presented in tabular and 
graphical form. Tables 1-3 present the coordinates of the equilibrium 
as the radiation parameter q1varies for fixed values of oblateness factor 
A2. Figures 3 and 4 show the evolution of the equilibrium points in 
(x, q1) and (y, q1) plane, respectively, as q1varies for fixed values of 
oblateness coefficient A2. Solid lines, solid-dashed lines and dashed 
lines correspond to A2=0.01, A2=0.02 and A2=0.03, respectively, of the 
equilibrium points as radiation factor varies. It is obvious that as the 
radiation parameter varies for fixed values of oblateness coefficient, the 
positions of the equilibrium points are significantly affected.

Similarly, the positions of the equilibrium points as A2 varies 
for fixed values of radiation factor q1are shown in Tables 4-6. Their 
graphical representations in (x, A2) and (y, A2) plane is illustrated in 
Figures 5 and 6 respectively. Note here that the Solid lines, solid-dashed 
lines and dashed lines correspond to q1=0.99 q1=0.63 and q1=0.52, 
respectively, of the equilibrium points as the oblateness coefficient 
varies. It is seen that as the oblateness parameter varies for fixed values 

Figure 2: The eight equilibrium points and the positions of the primary bodies for 
μ = 0.01, q1 = 0.99 and A2 = 0.01. Large black points are the primary bodies and 
the small dots are the equilibrium points of the problem.
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A2=0.01
q1 L1 L2 L3 L4

1.00 (-0.983507, -0.006483) (1.001660, 0.000196) (-0.724723, -0.427849) (-0.982395, -0.578156)
0.95 (-0.966034, -0.006489) (0.984937, 0.000202) (-0.719180, -0.424543) (-0.978403, -0.575737)
0.90 (-0.947873, -0.006501) (0.967613, 0.000209) (-0.713026, -0.420858) (-0.974607, -0.573447)
0.85 (-0.928964, -0.006520) (0.949636, 0.000216) (-0.706172, -0.416732) (-0.971004, -0.571282)
0.80 (-0.909243, -0.006546) (0.930941, 0.000224) (-0.698517, -0.412094) (-0.967585, -0.569234)
0.75 (-0.888632, -0.006583) (0.911450, 0.000232) (-0.689946, -0.406861) (-0.964343, -0.567298)
0.70 (-0.867049, -0.006633) (0.891073, 0.000241) (-0.680334, -0.400937) (-0.961270, -0.565468)
0.65 (-0.844396, -0.006699) (0.869703, 0.000251) (-0.669541, -0.394208) (-0.958358, -0.563738)
0.60 (-0.820557, -0.006785) (0.847208, 0.000263) (-0.657416, -0.386538) (-0.955598, -0.562102)

L5 L6 L7 L8

(-0.706543, 0.417360) (-1.001950, 0.589664) (-0.203494, 0.967908) (-0.210704, -0.966255)
(-0.701952, 0.414621) (-0.998759, 0.587707) (-0.190666, 0.953473) (-0.197815, -0.951906)
(-0.696830, 0.411553) (-0.995730, 0.585859) (-0.177855, 0.938327) (-0.184941, -0.936845)
(-0.691087, 0.408099) (-0.992858, 0.584113) (-0.165059, 0.922412) (-0.172083, -0.921015)
(-0.684619, 0.404186) (-0.990133, 0.582463) (-0.152281, 0.905660) (-0.159243, -0.904349)
(-0.677301, 0.399731) (-0.987549, 0.580902) (-0.139522, 0.887993) (-0.146421, -0.886767)
(-0.668989, 0.394630) (-0.985096, 0.579425) (-0.126786, 0.869317) (-0.133620, -0.868176)
(-0.659519, 0.388760) (-0.982768, 0.578027) (-0.114075, 0.849520) (-0.120845, -0.848465)
(-0.648708, 0.381975) (-0.980556, 0.576702) (-0.101397, 0.828468) (-0.108100, -0.827499)

Table 1: Numerical computations of non-collinear points for μ = 0.01, A2 = 0.01 and 0 ≤ q1 ≤ 1.

A2=0.02
q1 L1 L2 L3 L4

1 (-0.978498, -0.012387) (0.996829, 0.000389) (-0.723735, -0.427245) (-0.980521, -0.577040)
0.95 (-0.961086, -0.012393) (0.980184, 0.000401) (-0.718111, -0.423886) (-0.976642, -0.574692)
0.9 (-0.942988, -0.012411) (0.962944, 0.000414) (-0.711869, -0.420140) (-0.972954, -0.572469)

0.85 (-0.924146, -0.012442) (0.945055, 0.000428) (-0.704920, -0.415948) (-0.969452, -0.570366)
0.8 (-0.904495, -0.012490) (0.926450, 0.000443) (-0.697164, -0.411237) (-0.966128, -0.568376)

0.75 (-0.883961, -0.012559) (0.907054, 0.000452) (-0.688489, -0.405925) (-0.962976, -0.566495)
0.7 (-0.862461, -0.012655) (0.886777, 0.000478) (-0.678770, -0.399914) (-0.959986, -0.564716)

0.65 (-0.839899, -0.012783) (0.865511, 0.000498) (-0.667873, -0.393091) (-0.957152, -0.563032)
0.6 (-0.816161, -0.012952) (0.843126, 0.000520) (-0.655653, -0.385322) (-0.954465, -0.561440)

L5 L6 L7 L8

(-0.695309, 0.410874) (-1.01217, 0.595678) (-0.197922, 0.964171) (-0.212053, -0.960947)
(-0.690927, 0.408261) (-1.00931, 0.593917) (-0.185335, 0.949723) (-0.199347, -0.946664)
(-0.686057, 0.405346) (-1.00659, 0.592247) (-0.172763, 0.934572) (-0.186658, -0.931677)
(-0.680615, 0.402076) (-1.00399, 0.590662) (-0.160209, 0.918658) (-0.173985, -0.915927)
(-0.674501, 0.398383) (-1.00152, 0.589156) (-0.147674, 0.901914) (-0.161330, -0.899347)
(-0.667596, 0.394187) (-0.99916, 0.587726) (-0.135160, 0.884262) (-0.148695, -0.881859)
(-0.659759, 0.389389) (-0.99692, 0.586366) (-0.122670, 0.865608) (-0.136084, -0.863370)
(-0.650825, 0.383869) (-0.99477, 0.585072) (-0.110210, 0.845842) (-0.123499, -0.843769)
(-0.640602, 0.377481) (-0.99273, 0.583839) (-0.097785, 0.824829) (-0.110947, -0.822923)

Table 2: Numerical computations of non-collinear points for μ = 0.01, A2 = 0.02 and 0 ≤ q1 ≤ 1.

A2=0.03
Q1 L1 L2 L3 L4

1 (-0.973541, -0.017810) (0.992087, 0.000759) (-0.722737, -0.426634) (-0.978710, -0.575963)
0.95 (-0.956188, -0.017813) (0.975522, 0.000597) (-0.717032, -0.423220) (-0.974939, -0.573683)
0.9 (-0.938153, -0.017834) (0.958365, 0.000616) (-0.710701, -0.419414) (-0.971355, -0.571524)

0.85 (-0.919377, -0.017875) (0.940562, 0.000636) (-0.703658, -0.415155) (-0.967950, -0.569480)
0.8 (-0.899796, -0.017942) (0.922046, 0.000659) (-0.695803, -0.410371) (-0.964718, -0.567547)

0.75 (-0.879337, -0.018042) (0.902743, 0.000683) (-0.687024, -0.404979) (-0.961651, -0.565717)
0.7 (-0.857919, -0.018181) (0.882564, 0.000710) (-0.677203, -0.398882) (-0.958742, -0.563986)

0.65 (-0.835447, -0.018370) (0.861400, 0.000739) (-0.666206, -0.391966) (-0.955983, -0.562348)
0.6 (-0.811809, -0.018621) (0.839122, 0.000772) (-0.653894, -0.384098) (-0.953365, -0.560797)
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L5 L6 L7 L8

(-0.686933, 0.406046) (-1.01953, 0.600180) (-0.192601, 0.960452) (-0.213386, -0.955731)
(-0.682637, 0.403487) (-1.01688, 0.598377) (-0.180243, 0.945997) (-0.200859, -0.941515)
(-0.677876, 0.400641) (-1.01434, 0.596815) (-0.167902, 0.930844) (-0.188348, -0.926599)
(-0.672572, 0.397458) (-1.01191, 0.595327) (-0.155580, 0.914934) (-0.175856, -0.910926)
(-0.666631, 0.393876) (-1.00959, 0.593910) (-0.143278, 0.898202) (-0.163382, -0.894430)
(-0.659937, 0.389817) (-1.00737, 0.592558) (-0.130998, 0.880567) (-0.150930, -0.877034)
(-0.652355, 0.385187) (-1.00525, 0.591268) (-0.118746, 0.861939) (-0.138503, -0.858643)
(-0.643722, 0.379871) (-1.00321, 0.590036) (-0.106525, 0.842206) (-0.126104, -0.839150)
(-0.633849, 0.373726) (-1.00127, 0.588859) (-0.094343, 0.821235) (-0.113720, -0.818420)

Table 3: Numerical computations of non-collinear points for μ = 0.01, A2 = 0.03 and 0 ≤ q1 ≤1.

 

Figure 3: Frames (a) to (h). The positions of the equilibrium points Li,i = 1,...,8 in the (x,q1) plane as the radiation factor varies for fixed values of oblateness factor: A2 = 
0.01 (solid lines), A2 = 0.01 (solid-dashed lines) and A2 = 0.03 (dashed lines).The mass distribution is m1 = 0.98 and m2 = m3 = µ = 0.01.

Figure 4: Frames (a) to (h). The positions of the equilibrium points Li ,I =1,…,8  in the (y ,q1) plane as the radiation factor varies for fixed values of oblateness factor: 
A2 =0.01 (solid lines), A2 =0.02 (solid-dashed lines) and A2 =0.03 (dashed lines). The mass distribution is M1=0.98 and m2 = m3 = µ = 0.01.
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q1=0.63
A2 L1 L2 L3 L4

0.01 (-0.835010, -0.006731) (0.860848, 0.000256) (-0.664859, -0.391261) (-0.957236,-0.563073)
0.02 (-0.830552, -0.012845) (0.856699, 0.000506) (-0.663152, -0.390105) (-0.956060,-0.562385)
0.03 (-0.826139, -0.018462) (0.852630, 0.000752) (-0.661447, -0.388942) (-0.954919,-0.561718)
0.04 (-0.821777, -0.023670) (0.848638, 0.000993) (-0.659744, -0.387771) (-0.953811,-0.561070)
0.05 (-0.817469, -0.028536) (0.844721, 0.001230) (-0.658044, -0.386592) (-0.952735,-0.560440)
0.06 (-0.813216, -0.033111) (0.840876, 0.001462) (-0.656347, -0.385407) (-0.951689,-0.559829)
0.07 (-0.809022, -0.037436) (0.837101, 0.001690) (-0.654656, -0.384214) (-0.950672,-0.559235)
0.08 (-0.804884, -0.041544) (0.833394, 0.001914) (-0.652970, -0.383015) (-0.949683,-0.558657)
0.09 (-0.800804, -0.045463) (0.829752, 0.002134) (-0.651290, -0.381809) (-0.948720,-0.558094)

L5 L6 L7 L8

(-0.655367, 0.386165) (-0.98187, 0.577488) (-0.10900, 0.8412580) (-0.115743,-0.840238)
(-0.646902, 0.381427) (-0.99394, 0.584572) (-0.105235, 0.837595) (-0.118474,-0.835588)
(-0.639933, 0.377521) (-1.00242, 0.589558) (-0.101647, 0.833975) (-0.121154,-0.831015)
(-0.633931, 0.374156) (-1.00902, 0.593443) (-0.098223, 0.830399) (-0.123784,-0.826514)
(-0.628613, 0.371176) (-1.01443, 0.596634) (-0.094951, 0.826870) (-0.126366,-0.822084)
(-0.623809, 0.368486) (-1.01902, 0.599341) (-0.091819, 0.823385) (-0.128902,-0.817722)
(-0.619409, 0.366025) (-1.02300, 0.601691) (-0.088818, 0.819947) (-0.131393,-0.813427)
(-0.615335, 0.363748) (-1.02650, 0.603765) (-0.085939, 0.816554) (-0.133841,-0.809197)
(-0.611532, 0.361625) (-1.02963, 0.605618) (-0.083174, 0.813207) (-0.136248,-0.805028)

Table 5: Numerical computations of non-collinear points for μ = 0.01, q1 = 0.63 and 0 ≤ A2 << 1.

q1=0.52
A2 L1 L2 L3 L4

0.01 (-0.779591, -0.006981) (0.808462, 0.000284) (-0.634843, -0.371899) (-0.951478, -0.559666)
0.02 (-0.775380, -0.013339) (0.804568, 0.000561) (-0.632958, -0.370509) (-0.950450, -0.559066)
0.03 (-0.771209, -0.019199) (0.800749, 0.000833) (-0.631086, -0.369113) (-0.949451, -0.558484)
0.04 (-0.767085, -0.024650) (0.797002, 0.001099) (-0.629229, -0.367710) (-0.948479, -0.557917)
0.05 (-0.763011, -0.029760) (0.793326, 0.001361) (-0.627387, -0.366301) (-0.947534, -0.557366)
0.06 (-0.758988, -0.034584) (0.789717, 0.001617) (-0.625562, -0.364885) (-0.946614, -0.556830)
0.07 (-0.755018, -0.039162) (0.786174, 0.001868) (-0.623753, -0.363463) (-0.945718, -0.556308)
0.08 (-0.751100, -0.043527) (0.782695, 0.002114) (-0.621961, -0.362034) (-0.944846, -0.555799)
0.09 (-0.747234, -0.047708) (0.779277, 0.002356) (-0.620188, -0.360598) (-0.943995, -0.555303)

L5 L6 L7 L8

(-0.705664, 0.416836) (-1.00130, 0.589263) (-0.200927, 0.965075) (-0.208125,-0.963440)
(-0.694468, 0.410373) (-1.01159, 0.595319) (-0.195403, 0.961335) (-0.209511,-0.958144)
(-0.686107, 0.405555) (-1.01899, 0.599684) (-0.190128, 0.957615) (-0.210879,-0.952941)
(-0.679294, 0.401635) (-1.02480, 0.603112) (-0.185082, 0.953919) (-0.212230,-0.947829)
(-0.673475, 0.398291) (-1.02958, 0.605934) (-0.180248, 0.950250) (-0.213564,-0.942803)
(-0.668357, 0.395354) (-1.03363, 0.608330) (-0.175611, 0.946611) (-0.214883,-0.937861)
(-0.663763, 0.392722) (-1.03714, 0.610406) (-0.171157, 0.943003) (-0.216185,-0.933002)
(-0.659577, 0.390326) (-1.04023, 0.612235) (-0.166875, 0.939429) (-0.217472,-0.928221)
(-0.655721, 0.388121) (-1.04298, 0.613866) (-0.162753, 0.935889) (-0.218744,-0.923516)

Table 4: Numerical computations of non-collinear points for μ = 0.01 q1 = 0.99, and 0 ≤ A2 << 1.

q1=0.99
A2 L1 L2 L3 L4

0.01 (-0.980065, -0.006483) (0.998364, 0.000197) (-0.723660, -0.427216) (-0.981581,-0.577662)
0.02 (-0.975068, -0.012388) (0.993545, 0.000391) (-0.722656, -0.426602) (-0.979729,-0.576560)
0.03 (-0.970122, -0.017809) (0.988819, 0.000582) (-0.721642, -0.425980) (-0.977940,-0.575497)
0.04 (-0.965233, -0.022825) (0.984183, 0.000770) (-0.720619, -0.425351) (-0.976211,-0.574469)
0.05 (-0.960403, -0.027492) (0.979633, 0.000955) (-0.719585, -0.424714) (-0.974538,-0.573476)
0.06 (-0.955635, -0.031857) (0.975167, 0.001136) (-0.718541, -0.424069) (-0.972920,-0.572515)
0.07 (-0.950929, -0.035958) (0.970782, 0.001315) (-0.717488, -0.423417) (-0.971353,-0.571586)
0.08 (-0.946286, -0.039826) (0.966477, 0.001491) (-0.716425, -0.422758) (-0.969835,-0.570686)
0.09 (-0.941706, -0.043488) (0.962247, 0.001665) (-0.715352, -0.422090) (-0.968364,-0.569814)
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Figure 5: Frames (a) to (h). The positions of the equilibrium points Li ,I =1,…,8    in the (x,A2) plane as the oblateness factor varies for fixed values of radiation factor: 
q1=0.99 (solid lines), q1=0.63 (solid-dashed lines) and q1=0.52 (dashed lines). The mass distribution is M1=0.98 and m2 = m3 = µ = 0.01. 

 

Figure 6: Frames (a) to (h). The positions of the equilibrium points Li ,I =1,…,8   in the (y,A2) plane as the oblateness factor varies for fixed values of radiation factor: 
q1=0.99 (solid lines), q1=0.63 (solid-dashed lines) and q1=0.52 (dashed lines). The mass distribution is m1=0.98 and m2 = m3 = µ = 0.01 .

L5 L6 L7 L8

(-0.628112, 0.368771) (-0.97724, 0.574722) (-0.081201, 0.791742) (-0.087794,-0.790914)
(-0.621021, 0.365000) (-0.98964, 0.581986) (-0.078004, 0.788187) (-0.090955,-0.786551)
(-0.614913, 0.361722) (-0.99832, 0.587080) (-0.074960, 0.784681) (-0.094054,-0.782256)
(-0.609497, 0.358800) (-1.00506, 0.591045) (-0.072060, 0.781222) (-0.097093,-0.778025)
(-0.604599, 0.356150) (-1.01059, 0.594302) (-0.069292, 0.777813) (-0.100075,-0.773857)
(-0.600107, 0.353716) (-1.01528, 0.597067) (-0.066646, 0.774451) (-0.103001,-0.769750)
(-0.595944, 0.351457) (-1.01934, 0.599468) (-0.064114, 0.771138) (-0.105873,-0.765702)
(-0.592052, 0.349345) (-1.02293, 0.601589) (-0.061689, 0.767872) (-0.108693,-0.761712)
(-0.588390, 0.347358) (-1.02614, 0.603487) (-0.059363, 0.764652) (-0.111463,-0.757777)

Table 6: Numerical computations of non-collinear points for μ = 0.01, q1 = 0.52 and 0 ≤ A2 << 1.
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of radiation factor, the positions of the equilibrium point changes 
significantly. of radiation factor, the positions of the equilibrium point 
changes significantly.

So, from the above results, we can conclude that for fixed values 
of A2 and decreasing values of q1 as well as for fixed values of q1 and 
increasing values of A2, positions of non-collinear equilibrium points 
Li, i=1,2,...8 increase or decrease. The effects of both parameters q1and 
A2 of the problem on the positions of equilibrium points is clear from 
the results in the figures.

Linear stability of non-collinear equilibrium points 
We now examine the stability of an equilibrium configuration, that 

is, its ability to restrain the body motion in its vicinity.  To  do  so,   we 
displace the infinitesimal body a little from an equilibrium point and 
with a small velocity. Let the location of an equilibrium point be 
denoted by (x0, y0), and consider a small displacement (ξ, η) from the 
point such that x = x0 + ξ and y = y0 + η Substituting these values into 
Equations. (1), (2) we obtain the variational equations: 

0 02 ( ) ( )xx xynξ η ξ η− = Ω + Ω                   (12) 

0 02 ( ) ( )yx yynη ξ ξ η+ = Ω + Ω                 (13)

Here, only linear terms in ξ and η have been taken. The second 
partial derivatives of Ω are denoted by subscripts x and y. The 
superscript 0 indicates that the derivatives are to be evaluated at the 
equilibrium point (x0, y0).

The characteristic equation corresponding to Equations (12) and (13):
4 2 0a bλ λ+ + =                      (14)

where
2 0 04 xx yya n= −Ω −Ω

0 0 0 2( )xx yy xyb = Ω Ω − Ω

Evaluating the second partial derivatives at the equilibrium points, 
we obtain:

2
2 0
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3 5 3 5 5
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with

2 2
10 0( 3 ) y ,r x µ= − +

2 2
20 0 0

3 1( (1 2 )) (y ) ,
2 2

r x µ= + − + −

2 2
30 0 0
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2 2

r x µ= + − + +

The most fundamental questions about motion near the equilibrium 
points are those about the stability of these points. The stability of the 
non-collinear equilibrium points under the joint effects of radiation of 
the first primary and oblateness of the second primary are determined 
by the roots of the characteristic Equation (14). An equilibrium point 
will be stable if the Equation (14) evaluated at the equilibrium, has 
four pure imaginary roots or complex roots with negative real parts, 
otherwise it is unstable.

One can easily see that the given condition is equivalent to the 
following in equalities: being satisfied simultaneously.

(4n2 – Ωo
xx - Ωo

yy)
2 – 4 (Ωo

xxΩ
o

yy – (Ωo
xy)

2) > 0                 (18)

(4n2 – Ωo
xx – Ωo

yy) > 0                    (19)

(Ωo
xxΩ

o
yy – (Ωo

xy)
2) > 0                  (20)

We have computed the eigenvalues of the characteristic equation as 
the radiation and oblateness parameters varies with an arbitrary small 
steps and found that the equilibrium point L1 is unstable since for L1, 
the characteristic equation has eigenvalues of the form, λ1, 2,3,4 = ± a ± 
ib; L2, L3, L4, L5 and L6 are also unstable, since the eigenvalues are of the 
form, λ1,2= ± a, λ3,4= ± ib where a and b are real numbers, whereas, L7 
and L8 are stable since the eigenvalues are of the form λ1,2= ±ia, λ3,4=±ib.

Discussion
We have studied the perturbed restricted four-body problem 

when the primary bodies m1, m2 and m3 are always at the vertices of 
an equilateral triangle (Lagrangian configuration). The fourth particle 
in this system has negligible mass m with respect to the primaries, 
and its motion is perturbed by radiation pressure q1 and oblateness 
coefficient A2 from the primaries m1 and m2, respectively. We studied 
the existence, location and stability of the equilibrium points as the 
radiation and oblateness parameters varies. The effects of the involved 
parameters on the positions of the equilibrium points are presented 
in Tables 1-3 and 4-6. These are shown graphically in Figures 3-6. It is 
found that for fixed values of oblateness coefficient A2 and decreasing 
values of radiation pressure q1 as well as for fixed values of radiation 
pressure q1 and increasing values of oblateness coefficient A2, positions 
of the equilibrium points are significantly affected. 

Conclusion
Finally, the stability investigation has been achieved by determining 

the roots of the characteristic equation. The numerical investigation of 
these roots reveal that Li, i=1,...,6  are unstable due to the appearance 
of at least a positive root and/or a positive real part while L7 and L8 are 
stable due to the appearance of pure imaginary roots. It is remarkable to 
note that, equations of motion are unlike those obtained by Papadouris 
and Papadakis [13] due to the appearance of oblateness coefficient of 
the second small primary. We observe that the perturbation given in the 
oblateness coefficient which is considered permits the disappearance 
of collinear equilibrium points contrary to Kumari and Kushvah [14] 
results which has two collinear points. The positions of these points are 
different from those of Kumari and Kushvah [14].
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