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Abstract

put to practical usage.

From the very fundamental oscillator, a simple pendulum wherein there is a constant energy switch between
potential and kinetic energy, oscillators have seen groundbreaking changes in setup, operation and their applicability.
There are harmonic oscillators which produce a continuous sine wave output of certain frequencies as per the passive
components involved. Additionally, are known Relaxation oscillator which yield triangular, square and sawtooth waves
as output to name a few. The present paper deals with the details of how a fundamental Colpitts oscillatory circuit
can be designed. Furthermore, we would take a look at optimizing its performance with change in several dependent
characteristics in oscillation. We would conclude with an inference pertaining to the best customization with could be
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Introduction

Back in mid-1912, Edwin Armstrong while carrying out
experiments with triodes wasn’t aware of a spectacular phenomena
due to a component which was going to serve as the basis of coupling
and amplification amongst many other applications. Until then, the
experiments had incorporated these devices as a detector for amplitude
modulated waves. Having utilized them for this functionality, nobody
was aware of the reasons as to why that was happening. By means of
coupling one terminal of the device to another, it was observed that
he could achieve large signal gain. We today term the phenomenon as
positive feedback in circuits. He, with his invention of the radio had
produced a unique oscillator. The uniqueness was justified since the
limitation of other oscillators producing output in the kHz domain had
now been extended to the MHz domain [1].

Ever since then, there has been a plethora of oscillator circuits that
have been invented and employed industrially worldwide. Continuous
Sine Wave oscillators or Square wave oscillators find their application
in a myriad of fields in converting DC input to a variant A.C. output, in
amplification of signals, synchronization purposes to name a few. One
such circuit which utilizes storage and dissipation of magnetic energy,
namely the Colpitts Oscillator has formed the basis of this study. A few
of modifications in the conventional circuit have hereby been inferred.

The Colpitts Oscillator
Classification

The Colpitts Oscillator is known to work on feedback from the
divider setup that is used in the circuit. The voltage divider is either
made by 2 inductors or by using tapping on the single inductor. In
either of the cases, if the desired application is that of a VFO, the usage
is not as much preferred as with the case of Clapp Oscillator. In the
latter, an extra capacitor is used for tuning to the optimum frequency
and hence a better sustained waveform is achievable readily [2,3].

However, Colpitts form the basis of either of these circuitries,
capacitor-tuned Clapp or the conventional circuit. And consequently, is
believed in this experimental study to be encompassing the behavioral
results for the counterpart circuits as well [2].

Frequency tuning and parameters that effect it

Since the Colpitts oscillator is a type of tank circuit (LC

combination) and works on feedback of energy, the mathematical
expression underlying its operation is the same as that of first-order
LC circuit i.e.

f=01/2zL*C) M

And since, the Colpitts must have two capacitors for compensating
purposes, the mathematical expression to obtain the frequency of
operation is depicted as [4,5]:

PN L(C1*C2)
S=12m (C1+C2) @)

It can be noted that the two capacitors in series with each other
result in the expression in the denominator.

From the study of its parasitic elements and the transconductance
(g, ) concept, it is known that a negative value of input resistance only
would be able to sustain oscillations at the output [6,7].

Oscillations are obtained only for a large value of transconductance
(g,,) and for smaller values of capacitor elements used.

Experimental Approach to Colpitts Oscillator Design

A industrially acclaimed simulator, namely Multisim was used to
observe the influence of several parameters on a Colpitts oscillator
design with multiple modifications and optimization aims in mind
[5,7].

A first order Colpitts Oscillator has been drawn as a schematic
over the simulator. This schematic circuit was introduced with several
modifications viz. change in input resistance, changes in capacitors and
the inductor coil’s inductance. The parameters mentioned herewith
are the fundamental governing dependencies in the performance of a
Colpitts Oscillator. Increase in the value of any of these would leave
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an impact on the output sinusoid produced. From a perfect sinusoid
under optimum conditions (mentioned as conclusion) to a distorted
wave output, the tank circuit’s myriad of oscillatory behaviors have
been incorporated [8,9].

The effects were simulated over Multisim and analyzed over time.
Conclusions from the same were drawn (Figures 1-12).

The behavior as per the results obtained from this comparative study

have been incorporated as conclusions to the customization activity.

Schematic Colpitts Oscillator
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Figure 2: Output waveform for the circuit in figure with inductor coil of 320uH.
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Figure 1: Fundamental design of a Colpitts Oscillator (Multisim view).
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Figure 3: Output waveform for the circuit in figure with inductor coil of 640uH.
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Figure 4: Output waveform for the circuit in figure with inductor coil of 3200uH.
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Figure 5: Colpitts Oscillator schematic diagram with unequal capacitors and resistances varied in the simulator design window.
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Figure 6: Output waveform for the circuit in figure.
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Figure 7: Output waveform for the circuit in figure when the capacitance had been decreased to 60nF each.”
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Figure 8: Output waveform for the circuit in figure when the inductance of the coil had been decreased to 2pH.
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Figure 9: Colpitts Oscillator schematic diagram with a new transistor entity in the simulator design window.
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Figure 10: Output waveform for the circuit in figure for tran 0.486ms runtime.
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Figure 11: Output waveform for the circuit in figure for pulse flat-top duration in the same runtime.

=% Oscilloscope-XSC2

V
'
'
'
1
'
'
r
'
T
'
'
1
'
I
]
1
'
'
'
1
= SEl s TR i 2

EEQRCR RS TN R/ P EACR ORIt/ RCA ey

JESQPEN N U | U

[T Add| Bia] AB|

Channel_A
2885V
1.4TV

251.396 mV

= | Scale I 5 WiDiv

ansitionlﬂ

Ac|jooc &

Chann=l B

Scdeiﬁ Wilkiv
Yporsiﬁmlﬂ

acjooc -] ©

—
Edge

Lewel

gl | N =
o v

Type Sing.| Nor. | Auto [[Nene

Figure 12: Output waveform for the circuit in figure for resistance value altered to 68 ohms.
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Conclusion

As is the scenario with any other oscillator design, the amplification
(positive or negative) of the active component must be relatively
higher than the attenuation shown by the capacitive voltage divider
implemented, to obtain a stable functionality or in other words, a
smoother sine-wave output. Consequently, a Colpitts oscillator utilized
as a variable frequency oscillator (VFO) shows at its best operation
when a variant inductance is utilized for tuning the circuit, contrary to
the case of tuning one of the two capacitors. In the case, tuning by means
of a variable capacitor is required, it must be done by means of a third
capacitive entity connected in parallel combination to the inductor coil
(orin series). Theamount of feedback depends on the values of capacitive
entities with the smaller the values of capacitance the more will be the
obtained feedback [3,9]. The same is optimally adjusted to attain un-
damped oscillations. In the same scenario, the relative difference or the
ratio of two capacitive entities is a big determinant since the two are
ganged together. The amplification of the active component must be
marginally larger than the attenuation seen due to the voltage divider
(capacitive combination), to obtain the most stable operation possible.
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