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Introduction
Fracture mechanics and crack propagation phenomenon have been 

widely studied by the scientific community in recent decades. Fracture 
mechanics contains a group of theories that allows the accurate 
modelling of the mechanical behaviour of bodies subjected to crack 
propagation. Therefore, this knowledge domain is robust and accurate 
to explain and to represent the failure process of structures. In recent 
years, this subject has been particularly studied with a focus on the 
development of numerical formulations and mathematical techniques 
capable of modelling the crack growth processes in complex systems 
and bodies [1,2].

In spite of linear elastic fracture mechanics be applied successfully 
in several types of structures, the results provided by this approach are 
not consistently when quasi-brittle materials are considered. For such 
materials, the fracture process zone (FPZ) is large enough to introduce 
nonlinear mechanical effects that cannot be neglected. To model 
the crack growth process in quasi-brittle materials, cohesive crack 
approach, by the fictitious crack model, is an interesting alternative. 
This approach was initially applied by [3-5] and extensively used in 
recent numerical applications [6-9]. The crack propagation modelling 
of quasi-brittle materials, based on cohesive approach, requires the 
solution of a nonlinear problem, generally relating the crack opening 
displacements (COD) to tractions on the crack surfaces.

This paper addressees the analysis of crack growth in quasi-brittle 
materials using the boundary element method (BEM). BEM is efficient 
in modelling stress concentration, as only the body’s boundary is 
discretized [10]. Therefore, this numerical technique is well adapted 
to solve fracture mechanics problems. The BEM formulation applied 
in this study involves the sub-region technique. Considering this 
technique, the solid is divided into sub-domains, in which compatibility 
of displacements and equilibrium of forces and enforced along the 
interfaces of all sub-domains. As a result, the cohesive cracks are 
assumed to growth along the body’s interfaces. One advantage of this 
approach concerns the possibility to analyse crack propagation process 

in structures composed by nonhomogeneous materials. 

The proposed formulation is nonlinear because the cohesive 
tractions along the interfaces are determined according to the crack 
opening displacement values. The nonlinear problem is solved using 
classical Newton-Raphson approach, in which the corrections into the 
cohesive crack tractions are performed by applying a non-equilibrated 
traction vector, keeping all relevant matrices constant. The results of the 
proposed formulation are compared with experimental and numerical 
results to validate and prove its robustness and accuracy.

Fracture mechanics aspects: Cohesive crack model

Linear elastic fracture mechanics is an important approach used 
to solve many problems in structural engineering, particularly when 
FPZ surrounding cracks are reduced enough to possibly disregard the 
nonlinear effects. However, for quasi-brittle materials, the damage zone 
ahead of the crack tip is large enough to produce nonlinear effects that 
cannot be ignored. The cohesive crack model accounts for these effects. 
Using this model, the energy dissipation phenomenon is assumed 
to occur along a fictitious crack positioned in front of the crack tip, 
thus reducing the dissipation zone by one dimension. In this study, 
the energy dissipation process is approximated by a simple softening 
law, which is assumed to govern the residual resistance of the material 
along the fictitious crack. This law relates the fictitious crack opening 
displacement, w∆ , to residual tensile stresses, σ , acting at the crack 
surfaces.
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Abstract
The present work deals the development of a nonlinear numerical model for structural analysis of solids 

composed by multi-domains considering cohesive discontinuities along its interfaces. The numerical method 
adopted is the boundary element method (BEM), through its singular and hyper–singular integral equations. Due to 
the mesh dimensionality reduction provided by BEM, this numerical method is robust and accurate for analyzing the 
fracture process in solids, as well as physical nonlinearities that occurs along the body’s boundaries. Multi-domain 
structures are modelled considering the sub-region technique, in which both equilibrium of forces and compatibility 
of displacements are enforced along all interfaces. The crack propagation process is simulated by the fictitious crack 
model, in which the residual resistance of the region ahead the crack tip is represented by cohesive tractions. It leads 
to a nonlinear problem relating the tractions at cohesive interface cracks to its crack opening displacements. The 
implemented formulation is applied to analysis of three examples. The numerical responses achieved are compared 
to numerical and experimental solutions available in literature in order to show the robustness and accuracy of the 
formulation.
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Several cohesive crack laws that relate cohesive tractions to crack 
opening displacements have previously been proposed in the literature. 
Three of these laws are often adopted to perform crack growth analysis 
in quasi-brittle materials. The simplest law is given by a linear function 
relating the cohesive tractions to a fictitious crack opening displacement 
smaller than a critical value, cw∆ . For fictitious crack openings larger 
than cw∆ , cohesive tractions are assumed to equal zero (Figure 1a). The 
equations that represent the linear cohesive law are the following:
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in which c
tσ indicates the material tensile resistance.

An alternative model that relates cohesive tractions and fictitious 
crack opening displacement is the bi-linear model (Figure 1b). This 
criterion is mathematically represented by the following equations:
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Using this bi-linear model, the variables '' ' ',t wσ ∆ and cw∆ are 
defined as:
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where fG represents the material fracture energy.

The third cohesive crack model considered in this work is 
represented by an exponential law (Figure 1c). Equation (4) provides 
the analytical expression for this cohesive law:
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BEM integral equations

The boundary element method (BEM) has been widely applied 
in several engineering fields, such as contact problems, fatigue and 
fracture mechanics, due to its high precision and robustness in 
modelling strong stress concentration. Considering a two-dimensional 

homogeneous elastic domain,Ω , with boundary,Γ , the equilibrium 
equation, written in terms of displacements, is given by:

 , ,
1 0

1 2
+ + =

−
i

i jj j ji
bu u

υ µ
 			                   (5)

where µ  is the shear modulus, υ  is the Poisson’s ratio, iu  are 
components of the displacement field, and ib are body forces. Using 
Betti’s theorem, the singular integral representation, written in terms of 
displacements can be obtained, with no body forces, as follows:

 * *( , ) ( ) ( , ) ( ) ( ) ( , )lk k lk k k lkc f c u f P f c u c d P c u f c d
Γ Γ

+ Γ= Γ∫ ∫     (6)
where kP and ku are tractions and displacements on the boundary, 

respectively, the free term lkc  is equal to 
2

lkδ  for smooth boundaries, 

and *
lkP  and *

lku are the fundamental solutions for tractions and 
displacements [11]. 

Equation (6) is sufficient to construct the system of algebraic 
equations to analyse two-dimensional elastic domains. In order to 
analyse solids containing cracks, the use of only this integral equation 
to assemble the system of algebraic equations will lead to a singular 
matrix as both crack surfaces are located along the same geometrical 
path. Although possible using only the singular integral representation, 
Eq. (6) requires the definition of a finite gap between the two crack 
surfaces and a very accurate integral scheme to compute the integral 
along the quasi singular elements. 

The hyper-singular integral, written in terms of traction, is obtained 
from Eq. (6). First, this equation, written for an internal collocation 
point, is differentiated in order to obtain the integral representation 
in terms of strains. Then, using the Hooke’s law, the stress integral 
representation is achieved. Finally, the integral representation of 
stresses for a boundary collocation point is obtained by carrying out 
the relevant limits. Then, the Cauchy formula is applied in order to 
obtain the traction representation as follows:

 * *1 ( ) ( , ) ( ) ( , ) ( )
2 j k kij k k kij kP f S f c u c d D f c P c dη η

Γ Γ

+ Γ = Γ∫ ∫    (7)

where the terms *
kijS and *

kijD contain the new kernels computed from 
*

lkP  and *
lku , respectively, [11]. 

Equations (6) and (7) are, as usual, transformed into algebraic 
relations by dividing the boundary and the interfaces among 
domains into elements along which displacements and tractions are 
approximated. Besides that, one has to select a convenient number 
of collocation points to obtain the algebraic representations. The 
algebraic equations for boundary nodes are calculated using boundary 
collocation points either at the element ends, therefore coincident 
with nodes, or along the element when displacement and traction 
discontinuities are to be enforced. 

Algebraic BEM equations for multi-domain analysis

To simulate the mechanical behaviour of solids composed by 
multi-domains, the sub-region BEM technique has to be applied. This 
technique is well known in literature and it has been successfully applied 
in several researches as [12,13]. In the sub-region BEM approach, the 
body on analysis is divided into a finite amount of homogeneous sub-
regions interconnected by interfaces. Figure 2 illustrates a simple case 
of this condition in which a body was divided into two sub-regions. 

As previously presented, BEM analyses involving singular and 
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Figure 1: Cohesive models: (a) linear model, (b) bi-linear model, (c) exponential 
model.
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hyper-singular integral representations are performed using Eq. (6) 
and Eq. (7). When multi-domains are considered, these equations have 
to be applied at each sub-domain individually. Then, the classical BEM 
system of algebraic equations is obtained for each sub-region i of the 
entire solid as follows:

 [ ]{ } [ ]{ }i i i iH U G P=  				                  (8)

in which matrix H contains the integration kernels *
lkP  and *

kijS  

whereas matrix G contains the integration kernels *
lku  and *

kijD . 
Vectors U and P contain the displacement and traction values on the 
body boundary, respectively.

Once the kernels [ ]iH  and [ ]iG  evaluated, different strategies 
can be performed in solving the non-homogeneous boundary value 
problem. The first step concerns the assembling of matrixes of each 
sub-region i into a global system of equations, as presented in Eq. (9).
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where n represents the number of sub-regions used into the 
discretisation of the entire solid.

The global system of algebraic equations presented in Eq. (9) 
cannot be solved directly just by imposing the boundary conditions 
of the problem because along the interfaces neither tractions nor 
displacements values are known. Therefore it is necessary to enforce 
the compatibility of displacements and equilibrium of forces along all 
interfaces. These conditions can be written as follows: 
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The compatibilities conditions, Eq. (10), coupled to the boundary 
conditions have to be imposed on the global system of equations. By 
performing a convenient change on the columns of matrices H  and 
G, all known variables are placed at the right hand side of this algebraic 
system whereas unknown variables, x, are placed at its left hand side, 
[10]. This system can be presented as follows:

 [ ]{ } [ ]{ }A x B f
−

=  				                    (11)

Once{ }f
−

 is the vector of know boundary values, the system can be 

solved and the unknowns variables determined. In order to consider 
the nonlinear analysis of cohesive crack propagation along interfaces, 
a finite amount of elastic problems must be solved iteratively following 
the Newton-Raphson approach. At each iteration, the boundary and 
compatibility conditions of the problem may change. In order to deal 
these changes, a double storage strategy was adopted. The kernels of 
the global system presented in Eq. (9) are calculated just once and it is 
stored until the end of analysis. Then, the final system presented in Eq. 
(11) is reconstructed at each iteration in order to consider all changes 
on boundary conditions observed. 

Nonlinear solution technique

In the present work, the cohesive crack model is coupled to 
the BEM sub-region approach in order to simulate crack growth 
phenomenon in quasi-brittle materials. Into the domain of elastic 
analyses, compatibility and equilibrium conditions are enforced for 
displacements and tractions, respectively, along all interfaces of the 
body. Therefore, in such cases, the elastic mechanical response is 
achieved independently of the interface solicitation intensity. On the 
other hand, into the developed formulation, the interfaces are assumed 
to have a tensile strength limit. Therefore, until this limit, the interfaces 
mechanical responses follow the Hooke’s law as well as the entire 
domain. When a given point of the solid, positioned at any interface, 
reaches the tensile strength limit, the material starts the mechanical 
degradation process. At this point, the interface finishes its linear elastic 
mechanical behaviour and the cohesive crack approach is assumed. 

The cohesive interfaces parameters c
tσ  and fG are required by 

cohesive laws to model the mechanical behaviour of interfaces. In 
order to perform the mechanical analysis of a body composed by multi-
domains containing cohesive interfaces it is required to apply the load 
into increments. This procedure is necessary due to the nature of the 
problem which is nonlinear. Therefore, singular and/or hyper-singular 
BEM formulations, Eq. (6) and Eq. (7), have to be applied to obtain the 
increments of displacements and tractions along body’s boundaries. 
During the incremental analysis, the displacements and tractions are 
cumulated as follows:

 
U U U
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At the end of each load increment, the cumulated values of normal 
tractions at the interface are compared to the tensile material strength 
at all interface coupled nodes. Since the BEM incremental solution is 
written with respect to the global coordinate system, the cumulated 
interface tractions solution must be rotated with respect to the interface 
normal outward vector before this evaluation. Figure 3 illustrates the 
rotation procedure which requires the determination of the outward 
vector to the boundary.

By proceeding the solution of the incremental procedure, in 
a given load step, the normal traction at a given interface point will 
become superior to the tensile strength limit. As the interface does 
not support such intensity of traction, cohesive model starts and the 
nonlinear procedure has to be applied. The nonlinear problem is solved 
using Newton-Raphson approach, in which prevision and correction 
steps are required. The prevision step is always performed assuming 
the structure in elastic conditions. The corrections are performed 
considering the cohesive crack model, in which the non-equilibrated 
traction vector is calculated by the difference between the actual 
traction value and the traction value given by the adopted cohesive 
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criterion. In order to describe this numerical procedure, the boundary 
value problem described in Figure 4 is presented, which involves a 
body represented by two domains divided by a cohesive interface. For 
the mechanical problem presented in Figure 4, the traction distribution 
presented in Figure 5 is obtained in the load step in which the tensile 
strength limit is exceeded. The traction distribution considers the 
accumulated solution and the traction exceeding are observed on the 
inferior interface. As the interface is not capable to deal such traction 
distribution, the traction field along the interface must be corrected in 
order to achieve a new equilibrated configuration. This configuration 
is obtained during the correction step of Newton-Raphson scheme. 
The first cohesive correction is achieved by reapplying the non-
equilibrated tractions in the structure and by splitting the sub-regions 
that belong to the degraded part of the interface. Therefore, the crack 
opening displacements (COD) at the fictitious crack are obtained and 
the mechanical degradation process of the corresponding interface is 
preceded. In order to achieve the new equilibrated condition it is still 
necessary to consider that, at the fictitious crack or degraded interface 
part, the tensile strength is not the initial c

tσ , as the COD is not null. 

The updated value is obtained as a function of the cohesive law adopted. 
Then, based on the updated tensile resistance value, another non-
equilibrated traction must be reapplied on the structure improving 
the COD at the fictitious crack and, consequently, improving the 
mechanical degradation. The iterative cohesive process continues until 
the non-equilibrated tractions become small enough to be considered 
as negligible according to a stop criterion. It is important to mention 
that the reapplication of exceeding tractions on the correction step 
considers that mechanical degraded interface nodes are disconnected 
and, then, Neumann conditions are prescribed. With respect to the 
interface strength degradation, the three cohesive laws previously 
presented are adopted to govern such decrease of resistance during the 
nonlinear process. After finishing the cohesive corrections, a new load 
increment is preceded. Again, an elastic previsions is performed and 
cohesive corrections are required. This procedure is performed until 
the determination of the structural failure. When the material residual 
strength of an interface portion becomes null fictitious crack becomes 
real crack. Then, considering a given load increment in which a 
portion of the interface is totally degraded, the interface can be divided 
into three parts: Ci, CZi and Cri as illustrated in Figure 6. The three 
interface regions are namely as: Ci, connected interface (Non-degraded 
material); CZi: cohesive zone interface (Fictitious crack) and Cri: 
Cracked interface (real crack). In addition to the previous discussion, 
one geometric interpretation of the cohesive crack model is presented 
in Figure 7 considering linear cohesive law.

According to Figure 7, when the elastic traction is higher than 
the interface tensile strength limit c

tσ (Point A), the exceeding 
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traction, ( )1σ∆ , is reapplied on the structure in the sense of splitting 
the interface. Then, the first fictitious COD is obtained, 1w∆ , and 
the material degradation process is proceed (line BC). Then, the 
next traction exceeding, ( )2σ∆ , is computed and reapplied on the 
structure. As a result, a new COD is obtained, 2w∆ , (line CD). This 
iterative procedure is performed until the traction exceeding along 
all interface nodes become small enough to be neglected according to 
a stop criterion. In order to verify the convergence of the nonlinear 
procedure a stop criterion must be defined. The stop criterion adopted 
in this work evaluates the sum of the exceeding square tractions in the 
amount of dn degraded interface nodes, at a given cohesive iteration, 
as shown the following equation:

 2 2 2 2
1 2 ndP P P P∆ = ∆ + ∆ + ∆  		   	             (13)

The 2P∆ square root is calculated and compared with a given 
tolerance prescribed. The criterion can be, therefore, stated as follows: 

if P Tolerance Reapplyexceeding traction
if P Tolerance Finish the iterative process
∆ >
∆ ≤

         (14)

Applications
In this topic three applications involving cohesive crack 

growth along interfaces cracks are presented. The first application 
deals the mechanical analysis of a tensile structure composed by 
nonhomogeneous materials. The second and third applications 
concern the mechanical analysis of concrete bended beams where the 
numerical responses achieved by the implemented BEM formulation 
are compared with numerical and experimental results available in 
literature. 

For clarity purposes, the term “Singular-BEM” indicates the curves 
achieved by BEM singular integral equation. On the other hand, the 
term “Hyper-singular–BEM” is used to indicate the results achieved by 
BEM hyper-singular integral equation. 

Nonhomogeneous tensile structure

The first application deals the mechanical analysis of the 
nonhomogeneous structure presented in Figure 8. This structure is 
composed by two materials which have different mechanical properties 
being connected along one interface. Displacements are prescribed 
along vertical boundaries, as presented in Figure 8. The cohesive tensile 
strength of the interface is equal to 3.0c

t MPaσ =  and the energy 
required for fracture equal to 45 /fG KN m= . 

The nonlinear analyses were performed using 15 load steps and 
the adopted tolerance for convergence was 410 KPa− . In order to 
solve this problem, each sub-region was discretized into four linear 
discontinuous boundary elements. The exponential cohesive law was 
adopted to represent the interface mechanical degradation and both 

singular and hyper-singular BEM integral equations were applied.

Based on the results presented in Figure 9, the higher stiffness of left 
region is observed as its displacements are smaller than those verified 
for the right region. At the end of the analysis, rigid body movement 
is observed on the right domain whereas the left domain tends to has 
null strain state, i.e., it returns to its initial configuration before loading.

The cohesive interface tractions behaviour is presented in Figure 
10, where its dependency with COD is illustrated. Excellent agreement 
is observed among the numerical BEM analyses considered and the 
analytical response of the studied problem. Therefore, the numerical 
formulation implemented was validated with an analytical approach. 
Figure 10 shows the undeformed and deformed meshes for steps 5th, 
10th and 15th. For clarity purposes, the displacements on this figure were 
magnified 100 times.

Three point bended beam

The second application of this paper concerns the mechanical 
analysis of the structure presented in Figure 11, which is a three point 
bended beam with an initial notch at its middle span. This structure 
was analysed experimentally by Saleh et al., [14] and numerically by 
Oliveira et al., [6,7]. The geometry, boundary conditions and material 
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properties of the problem are presented in Figure 11. The crack starts 
growing at the notch tip and it propagates in pure mode I. Therefore, 
one vertical cohesive interface was considered which starts at the notch 
tip and finishes at the beam top. 

In order to verify the convergence regarding mesh refinement, 
three different meshes, namely 1, 2 and 3, were considered. The less 
refined mesh, mesh 1, considers the interface discretized into 15 
quadratic boundary elements at each side. At the boundaries with 
prescribed displacements 20 quadratic boundary elements were 
used whereas at the complementary boundary 16 linear boundary 
elements were applied. All elements of this mesh are discontinuous 
which results a total of 195 nodes. The mesh 2 represents the interface 
using 15 cubic boundary elements on each side. The boundaries with 
prescribed displacements were modelled with 24 cubic boundary 
elements and the remaining boundary with 26 quadratic boundary 
elements. On this mesh, only discontinuous elements were adopted 
which results on 307 nodes. Finally, the most refined mesh, mesh 3, 
contains 40 boundary elements positioned at each side of the interface. 
The boundaries with prescribed displacements were represented with 
24 cubic boundary elements and the complementary boundaries with 
26 quadratic boundary elements. In this mesh all boundary elements 
are discontinuous resulting into 507 nodes. These three meshes are 
illustrated on Figure 12. In spite of three meshes studied, it was verified 
that mesh 2 is accurate enough to achieve the convergence results. 
Therefore, the results presented in this application were obtained using 
mesh 2. The prescribed displacement at the beam top was applied into 
140 load steps and the tolerance for convergence adopted was equal 
to 510 KPa− . The mechanical behaviour of the interface was modelled 
using the three cohesive laws previously presented. Both singular and 
hyper-singular integral BEM equations were adopted. 

The responses in terms of load versus vertical displacement (at 
the crack mouth) are presented in Figure 13. The numerical results 
obtained by the implemented BEM formulations are compared with 
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Figure 12: Studied meshes.

experimental and numerical responses available in literature. Based on 
the results presented in Figure 13 one observes that the implemented 
BEM formulations were capable to reproduce the nonlinear mechanical 
behaviour introduced by the crack propagation. Both singular and 
hyper-singular approaches were efficient in modelling the structural 
behaviour. Moreover, it is important to mention that the structural 
resistant load was accurately predicted by BEM models. Figure 14 
illustrates the deformed mesh obtained by Singular BEM approach 
and linear cohesive law. For clarity purposes, the displacements in 
this figure were magnified 100 times. The cohesive tractions and its 
dependency with COD are presented in Figure 15. The behaviour of 
tractions for singular and hyper-singular BEM models are compared 
assuming three cohesive laws adopted. According to this figure, good 
agreement is observed for both numerical BEM approaches applied. 
Therefore, the implemented BEM models were validated considering 
an experimental approach.

Mixed mode crack growth in a bended beam 
The last application of this work deals a bended beam containing 

an initial notch subjected to mixed mode crack growth. This structure 
was experimentally analysed by [15] and numerically studied by 
several authors, among them [6,7]. The structural geometry, boundary 
conditions and material properties are presented in Figure 16. In order 
to simulate the cohesive crack growth using the implemented BEM 
models, one interface must be positioned along the crack path observed 
in the experimental analysis. This path is illustrated in red colour in 
Figure 16. Two different sub-region compositions were adopted for the 
mechanical analysis of the structure presented in Figure 16. The first 
composition divides the entire domain into 2 sub-regions, in which the 
interface is positioned along the crack growth path. This composition 
is discretized into 52 cubic boundary elements at the regions in which 
displacements are prescribed, 10 cubic boundary elements for each 
interface side and 20 quadratic elements for the complementary 
structural boundary. The second composition divides the domain 
into 13 sub-regions which leads to 17 interfaces. The interfaces were 
discretized with 194 cubic boundary elements; the regions where 
displacements are prescribed were discretized with 16 cubic boundary 
elements and the remaining boundary with 18 quadratic elements. 
In both composition cases, only discontinuous boundary elements 
were applied. Figure 17 presents both compositions considered in this 
analysis and its meshes, where meshes 1 and 2 contain 361 and 907 
nodes respectively. The prescribed vertical displacement at the beam 
top was applied into 100 load steps and the considered tolerance for 
convergence was equal to `410 KPa− . The analyses were performed 
considering three cohesive laws previously presented and singular and 
hyper-singular BEM formulations. Figure 18 presents the deformed 
configuration for both compositions adopted considering linear 
cohesive law. For clarity purposes, the displacements were magnified 
100 times. As presented in Figure 18, a new crack appears at the beam 
bottom. Therefore, this result indicates that micro cracks appeared 
in this region during the experimental analysis. The load versus 
displacement curves, for the point of load application, considering 
mesh 1 is presented in Figure 19. The results for the same variables 
considering mesh 2 are illustrated in Figure 20.

According to the curves presented in Figures 19 and 20, good 
agreement is observed among the numerical responses achieved 
by sub-region BEM approaches implemented and by references 
[6,7]. The responses achieved by the implemented sub-region BEM 
approaches are more rigid in comparison with experimental results. It 
may be explained due to the snap-back phenomenon observed in this 
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application. In spite of the behaviour of the load x displacement curves, 
the structural resistant load was accurately predicted by BEM model 

using linear and bi-linear cohesive laws. The normal traction behaviour 
and its dependency with COD are presented in Figure 21. According 
to this figure, singular and hyper-singular BEM approaches converge 
to very similar values.

Conclusions
This work addressed the mechanical analysis of crack growth 
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in quasi-brittle materials using BEM. A short review on nonlinear 
fracture mechanics is presented as well as cohesive laws. In addition 
to that, the fictitious crack model, presented in fracture mechanics 
theory, is coupled to algebraic BEM equations. The bodies analysed are 
represented using the sub-region technique. The cracks are assumed 
to growth along the interfaces of the analysed domains. Therefore, 
the implemented formulation allows the analysis of crack growth in 
nonhomogeneous media. 

Three applications were considered in this work and the numerical 
responses achieved by BEM are compared against analytical, 
experimental and numerical solutions available in literature. According 
to the presented applications, the implemented BEM formulations 
were capable to represent the interface nonlinear behaviour introduced 
by the cohesive crack growth. For the second and third applications, 
the implemented formulations have shown its potential in simulating 
real crack propagation in concrete beams. However, the snap-back 
instability was not represented on the numerical results of the last 
application, once the Newton-Raphson algorithm applied was not 
adapted to solve such type of numerical instability. Both BEM integral 
representations provided accurate results for the three cohesive laws 

considered. Therefore, the crack propagation in homogeneous and 
nonhomogeneous quasi-brittle media can be consistently analysed by 
the implemented numerical models.

Acknowledgement

Sponsorship of this research project by the CAPES is greatly appreciated. 
This research is a part of the activities scheduled by the research project IRSES 
PIRSES-GA-2009-246977. 

References

1.	 Ferreira MDC, Venturini WS, Hild F (2011) On the analysis of notched concrete 
beams: From measurement with digital image correlation to identification 
with Boundary Element Method of a cohesive model. Engineering Fracture 
Mechanics 78: 71-84.

2.	 Cisilino AP, Aliabadi MH (1999) Three-dimensional boundary element analysis 
of fatigue crack growth in linear and non-linear fracture problems. Engineering 
Fracture Mechanics 63: 713-733.

3.	 Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle 
fracture. Advances in Applied Mechanics 7: 55-129.

 Linear
Bilinear
Exponential
[14] Experimental

[6,7] Linear
[6,7] Bilinear
[6,7] Exponential

Linear
Bilinear
Exponential
[14] Experimental

[6,7] Linear
[6,7] Bilinear
[6,7] Exponential

Eq
ui

va
le

nt
 fo

rc
e 

(K
N

)

Singular BEM Hypersingular BEM

Displacement (mm)Displacement (mm)

0,00        0,02        0,04         0,06        0,08         0,10        0,12        0,140,00        0,02        0,04        0,06       0,08         0,10        0,12        0,14

Eq
ui

va
le

nt
 fo

rc
e 

(K
N

)

16
14
12
10

8
6
4
2
0

16
14
12
10

8
6
4
2
0

16
14
12
10

8
6
4
2
0

Figure 19: Load x Displacement curves. Mesh 1.

 

2 Regions linear
2 Regions bilinear
2 Regions exponential
[15] Experimental

13 Regions linear
13 Regions bilinear
13 Regions exponential

Eq
ui

va
le

nt
 fo

rc
e 

(K
N

)

Displacement (mm)
0,00          0,02           0,04           0,06          0,08            0,10          0,12           0,14

16
14
12
10

8
6
4
2
0

2 Regions / 13 Regions

Figure 20: Load x Displacement curves. Mesh 2.

 

Singular  BEM : Linear

Singular BEM :  Bilinear

Singular BEM : Exponential

Hypersingular BEM : Linear

Hypersingular BEM :  Bilinear

Hypersingular BEM : Exponential

0,000           0,020            0,040           0,060           0,080          0,100           0,120

COD (mm)

3,5

3

2,5

2

1,5

1

0,5

0N
or

m
al

 tr
ac

tio
n 

at
 th

e 
in

te
rf

ac
e 

(M
Pa

) Singular/Hypersingular

Figure 21: Cohesive tractions.

http://www.sciencedirect.com/science/article/pii/S0013794410004480
http://www.sciencedirect.com/science/article/pii/S0013794410004480
http://www.sciencedirect.com/science/article/pii/S0013794410004480
http://www.sciencedirect.com/science/article/pii/S0013794410004480
http://www.sciencedirect.com/science/article/pii/S0013794499000478
http://www.sciencedirect.com/science/article/pii/S0013794499000478
http://www.sciencedirect.com/science/article/pii/S0013794499000478
http://www.researchgate.net/publication/200092824_The_mathematical_theory_of_equilibrium_cracks_in_brittle_fracture
http://www.researchgate.net/publication/200092824_The_mathematical_theory_of_equilibrium_cracks_in_brittle_fracture


Citation: Leonel ED, Sergio GFC  (2014) Cohesive Discontinuities Growth Analysis using a Nonlinear Boundary Element Formulation. J Appl Computat 
Math 3: 172 doi:10.4172/2168-9679.1000172

Page 9 of 9

Volume 3 • Issue 5 • 1000172
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

4. Dugdale DS (1960) Yelding of steel sheets containing slits. Journal of
Mechanics and Physics of Solids 8: 100-104.

5. Hillerborg A, Modeer M, Peterson PE (1976) Analysis of crack formation and
crack growth in concrete by mean of failure mechanics and finite elements. 
Cement Concrete Research 6: 773-781. 

6.	 Oliveira HL, Leonel ED (2014) An alternative BEM formulation, based on
dipoles of stresses and tangent operator technique, applied to cohesive crack
growth modelling. Engineering Analysis with Boundary Elements 41: 74-82. 

7. Oliveira HL, Leonel ED (2013) Cohesive crack growth modelling based on an
alternative nonlinear BEM formulation. Engineering Fracture Mechanics 111:
86-97. 

8. Chen T, Wang B, Cen Z, Wu Z (1999) A symmetric Galerkin multi-zone
boundary element method for cohesive crack growth. Engineering Fracture
Mechanics 63: 591-609.

9. Péres-Gavilán JJ, Aliabadi MHA (2001) A symmetric Galerkin BEM for multi-
connected bodies: A new approach. Engineering Analysis with Boundary
Elements 25: 633-638.

10.	Brebbia CA, Dominguez J (1996) Boundary Elements: An introductory Course. 
McGraw Hill.

11. Portela A, Aliabadi MH, Rooke DP (1992) Dual boundary element method:
Efficient implementation for crack problems. International Journal for Numerical 
Methods in Engineering 33: 1269-1287.

12.	Gao XW, Guo L, Zhang C (2007) Three steps multi-domain BEM solver for
nonhomogeneous material problems. Engineering Analysis with Boundary
Elements 31: 965-973.

13.	Zito L, Panzeca T, Terravecchia S (2011) Displacement approach with external 
variables only for multi-domain analysis via symmetric BEM. European Journal 
of Mechanics A/Solids 30: 82-94.

14.	Saleh AL Aliabadi MH (1995) Crack-growth analysis in concrete using boundary 
element method. Engineering Fracture Mechanics 51: 533-545.

15.	Galvez JC, Elices M, Guinea GV, Planas J (1998) Mixed mode fracture of
concrete under proportional and nonproportional loading. Int J of Fracture 94:
267-284.

http://www.sciencedirect.com/science/article/pii/0022509660900132
http://www.sciencedirect.com/science/article/pii/0022509660900132
http://www.sciencedirect.com/science/article/pii/0008884676900077
http://www.sciencedirect.com/science/article/pii/0008884676900077
http://www.sciencedirect.com/science/article/pii/0008884676900077
http://www.sciencedirect.com/science/article/pii/S0955799714000046
http://www.sciencedirect.com/science/article/pii/S0955799714000046
http://www.sciencedirect.com/science/article/pii/S0955799714000046
http://www.sciencedirect.com/science/article/pii/S0013794413003044
http://www.sciencedirect.com/science/article/pii/S0013794413003044
http://www.sciencedirect.com/science/article/pii/S0013794413003044
http://www.sciencedirect.com/science/article/pii/S0013794499000363
http://www.sciencedirect.com/science/article/pii/S0013794499000363
http://www.sciencedirect.com/science/article/pii/S0013794499000363
http://www.sciencedirect.com/science/article/pii/S0955799701000522
http://www.sciencedirect.com/science/article/pii/S0955799701000522
http://www.sciencedirect.com/science/article/pii/S0955799701000522
http://books.google.co.in/books/about/Boundary_Elements.html?id=YBElJxdldHYC&redir_esc=y
http://books.google.co.in/books/about/Boundary_Elements.html?id=YBElJxdldHYC&redir_esc=y
http://onlinelibrary.wiley.com/doi/10.1002/nme.1620330611/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.1620330611/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nme.1620330611/abstract
http://www.sciencedirect.com/science/article/pii/S0955799707001038
http://www.sciencedirect.com/science/article/pii/S0955799707001038
http://www.sciencedirect.com/science/article/pii/S0955799707001038
http://www.sciencedirect.com/science/article/pii/S0997753810001361
http://www.sciencedirect.com/science/article/pii/S0997753810001361
http://www.sciencedirect.com/science/article/pii/S0997753810001361
http://www.sciencedirect.com/science/article/pii/001379449400301W
http://www.sciencedirect.com/science/article/pii/001379449400301W
http://link.springer.com/article/10.1023%2FA%3A1007578814070
http://link.springer.com/article/10.1023%2FA%3A1007578814070
http://link.springer.com/article/10.1023%2FA%3A1007578814070

	Title
	Corresponding author
	Abstract 
	Keywords
	Introduction 
	Fracture mechanics aspects: Cohesive crack model 
	BEM integral equations 
	Algebraic BEM equations for multi-domain analysis 
	Nonlinear solution technique 

	Applications 
	Nonhomogeneous tensile structure 
	Three point bended beam 

	Mixed mode crack growth in a bended beam  
	Conclusions 
	Acknowledgement
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	References 



