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Abstract

In this paper we obtain some coefficient inequalities for subclasses of uniformly p-valent starlike and convex
functions in the open unit disk denoted by SD, (B, a) and KD, (B, a). Growth bounds and distortion bounds are
discussed for functions in these classes. For dlf')ferent values of the parameters p, a and 3 our results of this paper
generalize those obtained by several authors in the literature.
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Introduction
Let U ={z e C:|7|<1} denotetheopenunitdiskandlet A, betheclass
of functions f(z) of the form f(z)=z"+ z az',peN={12,.}
n=p+1

which are analytic in the open unit disk U. A function f €A is said to
be p—valent starlike of order a (0 < a<p), if

YR(MJ >a, zeU.
f(z)

The class of all such functions is denoted by S’(a). A function f

€A, is said to be p—valent convex of order a (0 < a<p), if

ER[I+ Z;:'((Z))j >a, zeU
z

Let K (a) denote the class of all such functions. For p=1 we write
Al=A. Note that for p=1the classes S;'(«) and K, (a) are the usual classes
of starlike and convex functions of order a(0 < a<1) respectively, and
will be denoted by S* (a) and K(a) respectively. For p=1 and a=0, the
classes ) (a) and Kp(a) reduces to $*(0)=S*and K(0)=K respectively,
which are the classes of starlike (with respect to the origin) and convex
functions.

The Subclasses SDP (B>a) and KDP (B>a)

We begin this Section by remark that this article is motivated by the
work of Owa et al. [1]. We now recall the definitions of the subclasses
SDP (B, &) and KDp (B, ) of uniformly p—valent function introduced
and studied by Agnihotri and Singh [2].

A function fe Ap is said to be in the class SD_ (P, a) if
m(zf (z)] EAE)
J(z)

-pl+a, zeU,

J(z)

for some p = 0 and a (0 < a<p).

A function f € Ap is said to be in the class KDp (,a) if
m[l N "(z)] EAEY
S(z) S(z)

for some 3 > 0 and o (0 < a<p). Note that {(z) € KDP (B, o) if and only if

2f'(z) € SDp (B, o). Agnihotri and Singh [2] have shown some sufficient
conditions for f to be in the classes SDp (B, o) and KDp B ).

-(p-1)

+a,zeU,

The subclasses SD (B, a) and KD, (B, a) which will also be denoted
by SD(B, ) and KD(, a) respectively were studied by Shams, Kulkarni
and Jahangiri in [3]. They have obtained sufficient conditions for f to be
in the classes SD (B, a) and KD (B, a).

Coefficient Inequalities

We now give coefficient inequalities for functions belonging to the
subclasses SDP (B, @) and KDP (B, @). Our first result is contained in

Theorem 3.1: If feSD,(B,a) with 0<pB<a<p, then

fesp(al PBJ and if B>p2;<x then fes, (aﬁ Iiﬁj
Proof: We know that 9R(z)</z| for any complex number z.
Therefore f €SD,(B,a) gives us

ER(zf’(z)j N Bm[zf'(z) ‘pj”‘
From this we get

f(z) f(z)

#'(z)|, a-pB

(i e 62

Now, if 0< pB<a < p, then it follows that

0<o=PB
1-p

andifﬂ>p

(3.1)

p,

, then we have
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Thus, 0< LPB < )22

For p=1, we obtain the following corollary due to Owa, Polato"glu,
and Yuvaz [1].

Corollary 3.1: If f € SD (B,a) with 0 < pB <« then f e S*[%}

Next, we state the corresponding result for functions belonging to
the subclass KD, (8, a).

Theorem 3.2: If fe€KD,(B.@) with 0<pB<a<p then

a-ppB
, then fer( = j

fer[%j and if B>2
Proof: Proof is similar to the proof of Theorem 3.1.

The following corollary is due to Owa, Polato“glu, and Yuvaz [1]
for p=1.
Corollary 3.2: If f € KD(B,a) with 0< f<a then fEK( . ,Bﬁj

We now state the main theorem of this paper.

Theorem 3.3: If /' €SD,(B,) then |a +1| |lp—0|{) (3.3)
2(p-a) L2Ap=a)
and ‘ap +n‘ P H( A ] (n=2) (3.4)
Proof: Weknow thatif /€ SD,(f,@),then R[Z;((Z))j al Zﬂ (zeU)
Define a function q(z) by
/()
( f/f{z j,(a,pﬁ)
4(z) = f(@) (zeU) (3.5)
(p—a)

Note that q is analytic in U with  ¢(0)=1and R(q(2))>0 If

q(2) :1+qlz+qzz2 +...,

then we can write Zj: ;(ZZ)) al Z B f Zan
or zf'(2) —f(Z)(PJF(f__ZJZ%Z”} (g, =D. (3.6)

From this, we obtain

na,,, = (f ﬂJ@n+a+4%1+a _2q,,+..+a,+n-1g) (3.7)
From the coefficient estimates for Carath'eodory functions [4], we
know that |g,|<2 forall n>1
Making use of it in (3.7) we see that
20p-—a
<= (p=a) —(1 +|
nji=p|
Therefore, for n=1, we have
2Ap-«a
| < (p-a)
-A

which proves (3.3). Now for n=2, we obtain ‘a

LAp-a) [Hz(p—a)}
2i-p U 1-A

++|

| p+n 17+1 | p+2 p+n1 (38)

(3.9)

2p-a)

(l+‘a

p+2 p+l

This shows that (3.4) is true for n=2. For n=3, we see that

Page 2 of 3
2Ap-a) 2p-a), 2Ap-a) Ap-a), P(p-a)
1+ + < 1
p+3 3‘1 ﬂ‘ ( Ay ap+2) 3‘1*ﬂ‘ L + ‘lfﬁ‘ + 2‘1—ﬂ‘ + 2‘17ﬂ‘z

Thus, (3.4) holds for n=3. Next, we assume that (3.4) is true for n=k
and therefore
2<p—a>]
-4l

2p-a) (|, 2Ap-a)

20p-a)
A H{“

2p-a) |, 2p- a)]

T | A T T (T
2(p-a) 2(1’*0!)
NGOE ﬂ\”[ Al—ﬂ\j‘

This shows that (3.4) is true for n=k+1. Hence, by using the principle
of mathematical induction, (3.4) holds for all n > 2.

Remark 3.1: Taking p=1 in Theorem 3.3, we obtain

2(1 a) 2(P—0!)
e ﬂ|H( A

which was given by Owa, Polato“glu and Yavuz [1]

(3.10)

J(nZZ)

| p+l

Remark 3.2: Taking p=1 and B=0 in Theorem 3.3, we have

n+l

a H( Jj—2a) (n=1), which was proven by Robertson [5].

n+l

We know that / € KD,(8,@) if and only if z/'e SD,(B,a) [2]. Thus,

we have

Theorem 3.4: If f(z)e KD, (f,a) then

la,..| s 2222 (3.12)
(p +1)‘1 ,B‘
2p(p-a) J2p-a)

d |a,, >2). 3.13
and ol - /,,‘H[ = ﬁ\] "= G139
Proof: For f e KD, (f,a) we know z/(2)+pz"" + Z na,z"" e SD, ().

Therefore ’
gfi,(Hzf"(z)j a=pB (.,
f'(@) 1-B
Define a function r(z) by
- Zf"(Z)J_ B
( ﬂ)[f'(Z) “h (3.14)

r(z)

(r-a) =<0

Note that r is analytic in U with r(0)=1 and R(r(z))>0 If

r(z)=1+¢qz+q,2" +..

e G
f (2)

-, then we can write

[1 ﬂjz”’ or

o"(z) = f(Z)[p 1+(” “jiw] (r, =1).

n=1

a-pb
1-p

(3.15)

From this, we obtain

n(p+ma,., :[] 5

j(pr +(p+l)ap+|r +(p+2)ap+2r +..+(p+n— l)aw R (3 16)

From the coefficient estimates for Carath"eodory functions [4] , we
know that |r | <2 foralln > 1.

Making use of it in (3.16) we see that
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Page 3 of 3
ay | SO (i (pe|a,. [+ (p+ D]yt (prn-Dla,., | (3.17) 2Ap-a)| pi<e2p-a)| 5[ 2p-a)
n(p+n)l+p| S‘z‘er P ‘Z‘mz p 'P ‘Z‘pw
1= 7 i3 - -4
Therefore, for n=1, we have
L 2(p-a) and max{q 2t e 3 2(p+n><p—a>("*‘[Hz(p—a)]]
= DA (3.18) Pl g X g LH 7]
which proves (3.12). Now for n=2, we obtain )| o 4 2( +D(p-a)
et Y@l plef !+ =Dy
2Ap-a) -l
| < == (p+ (p+D)|a,,
2(p +2)|1 ﬂl Proof: Proof follows from the fact that
2p-a) f(2)=z"+ S ¢ 2*, p=12.... and using Th 3.3
a = 7 (p+(p+Dla |+(p+2)la WZ s P , £,... ANd USINg lheorem 5.3.
|"+3 3(p+3)|1- ﬁl(p (7 )| pl* P )| e kg;rl
2p(p-a) (H_z(p_a)] Corollary 3.3: If f €KD,(f,a) then
72 +2)|1- 1- » -a il a -a pin
p2f-A =4 max{o,\z\fzp@_nz\ St (=) }s\f(z)\

(p+Dli- 4| 2 n(p+m)i- ﬁ\L -4l

This shows that (3.12) is true for n=2. For n=3, we see that

pn

p, 2p(p=a) | & 2p(p-a) [17[,,2p-@)
S‘z‘ + ‘z‘ +z H 1+— ‘z
2p-a) (p+D[1-4] Saprnl-pal -8
|ap+3 m(P*(P+1)|ap+l+(p+2)|ap+zJ (
max et _2pp=a) p 2p(p-a) L2p-a) pen-i |
. and {‘“’“ -2 e } A
< 2(p-a) (1+2(P—a)+2(17—a)+2 (p-—a)
3(p+3)1-4 [I-5| 211- 4] \l—ﬂ\z

p+n—1 ' pfl 2 1
<@l ol (pTl)(;l 2Apsip-a)

Thus, (3.12) holds for n=3. Next, we assume that (3.12) is true for
Proof: Proof follows from the fact that

n=k and therefore

— — — > k
| S 2p(p-a) 1+2(p a)+2(p ) 1+2(p @) +... f@)=z"+ Z aqz, p=12,..
(k+1)(p+k+D[1- B -8  2i-4 -5 K=p+l
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(n+l)n|1—ﬂ| 1-p|
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which was proven by

1=
!
Robertson [5]
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2Ap-a) S 2p-a) [ 172p-)
“”"{ Lo s W [1,1 A D
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