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Introduction
Diagnostic decision-making is not a simple task in medicine. The 

proposition and confirmation of a diagnosis must take into account the 
patient’s clinical parameters, the clinical context and the physician’s 
medical knowledge. Physicians use more than one million pieces of 
information in the care of their patients [1] and almost one third of their 
time is spent recording and compiling information [2]. Unsurprisingly, 
physicians may be unable to recall every item of relevant knowledge 
and to relate all these items to the care process [3]. Clinical decision 
support systems (CDSS) have been developed to improve patient safety 
and care processes [4,5]. Several studies and reviews have shown these 
tools to be effective [6-9] in the areas of diagnosis and treatment.

A decade ago, the United States consensus report “Crossing the 
Quality Chasm: A New Health System for the 21st Century” highlighted 
the importance of using CDSS to reduce the frequency of medical 
errors, to ensure that best practice is followed and to reduce care costs 
[10]. In a recent review, Peleg and co-workers [3] suggested that CDSS 
should be a part of a knowledge-management toolkit that a healthcare 
organization can employ to deliver the “right knowledge to the right 
people in the right form at the right time” [11]. The development of 
CDSS involves two knowledge-management tasks: consideration 
of possibilities for the integration of the CDSS into the care system 
workflow and knowledge management for correct decision-making. 
Many problems arise in the content of knowledge bases and also of their 
quality. Clinical practice guidelines (CPG) are standardized documents 
developed to improve the quality of medical care. The computerization 
of clinical guidelines has attracted much interest in recent years, as 
it would not only facilitate their dissemination but also improve the 
knowledge-based process through which they are produced.  There 
are several approaches to the computerization of clinical practice 
guidelines, which remains a very complex task [12]. We can classify 
them into two main categories [13]. The documentary approach: this 
approach is to use the document as a medium of representation; it is 
based on a markup text with markup languages ​​like XML (Hypertext 
Guideline Markup Language (HGML) and Guideline Elements Model 
(GEM)). The second approach consists of extracting knowledge of CPG 
(Eon, GLIF, Asbru, Proforma, Prodigy and Arden Syntax MLM) [13]. 

CDSS models must take into account issues relating to patient 
data quality, such as incompleteness, poor structuring and lack of 
reliability and problems associated with inaccuracies and uncertainties 
in CPG. Many clinical diagnosis tasks involve reasoning in conditions 
of uncertainty [14], and there are many approaches for the uncertainty 
representation of knowledge in CPG, such as Bayesian networks (BN) 
[15] or fuzzy cognitive maps (FCM) [16]. FCM describe domains with
nodes, also known as concepts (variables, states, inputs: facts, outputs:
decision) and fuzzy relationships (the influence of concepts) between
them. The fuzzy approach provides degrees of causality, represented
as links between concepts (variables, states, inputs, outputs). This
structure establishes the forward and backward propagation of
causality, allowing the knowledge base to evolve through the addition,
modification or removal of concepts and the links between them.

Urinary tract infection (UTI) is the most common urological 
disorder [17] and constitutes a serious health problem affecting millions 
of people each year [18]. UTI treatment costs billions of dollars annually 
[19]. UTI is the second most common type of infection [18] and the 
populations at particularly high risk of UTI include young children, 
pregnant women and the elderly, together with those with spinal cord 
injuries, indwelling catheters, diabetes, multiple sclerosis, human 
immunodeficiency virus and underlying urological abnormalities [20]. 
A study carried out in the United States and Canada showed that about 
a half of all women will have a UTI at some time in their lives, mostly 
caused by Escherichia coli, and a quarter of women will have recurrent 
infections [21]. A number of studies have shown that the diagnosis 
and management of UTI is a common, complex problem requiring 
special attention [21,22]. Inappropriate diagnosis and the massive 
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Abstract
Decision making in the field of medical diagnosis involves a degree of uncertainty and a need to take into account 

the patient’s clinical parameters, the context of illness and the medical knowledge of the physician, to determine and 
confirm the diagnosis. In this study, we investigated and evaluated a model framework, for diagnostic decisions, 
based on a cognitive process and a Semantic Web approach. Fuzzy cognitive maps (FCM) are a cognitive process 
applying the main features of fuzzy logic and neural processors to situations involving imprecision and uncertain 
descriptions, in a similar way to intuitive human reasoning. We explored the use of this method for modeling clinical 
practice guidelines, using Semantic Web tools to implement these guidelines and for the formalization process. 
Twenty-five clinical and 13 diagnosis concepts were identified, to represent the problem of urinary tract infection 
diagnosis.
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use of antibiotics are considered to be the key factors governing the 
development of bacterial resistance to antimicrobial drugs [20].

We present and discuss the results obtained for the application of 
the resulting diagnostic model to a database of 70 patients presenting 
with urinary tract infections.

Background
Clinical decision support systems

CDSS make a significant contribution to medical knowledge 
management technologies, by supporting the clinical process and 
the use of knowledge, from diagnosis and investigation, through to 
treatment and long-term care. Their role and acceptance in daily 
clinical practice is increasing [23]. Recent studies [24] have shown that 
CDSS can improve physician performance and accuracy, but that the 
quality of each system may depend on the technical approach used to 
model medical information. Schurink et al. (2005) reviewed a number 
of computer-assisted decision support systems for the diagnosis and 
treatment of infectious diseases in intensive care units [25]. They 
concluded that CDSS are useful for decision-making in infectious 
disease management, but that more prospective evaluation of these 
systems is required.

The choice of an empirical antimicrobial treatment suitable for 
the patient requires careful consideration of the patient’s treatment 
parameters (current treatment, drug allergies etc.) but, above all, it 
requires a good first diagnosis based principally on a clinical approach. 
Diagnosis is based on a notion of causality between the infectious disease 
and its clinical signs in physiological and pathological conditions.

We aimed to create a computerized system that dynamically guides 
physicians through the workflow and helps them to diagnose clinical 
forms of UTI. We tackled the problem of modeling medical knowledge 
from guidelines and handling imprecision and uncertainty in the 
assignment of UTI diagnosis, through the combined use of cognitive 
maps and Semantic Web approaches.

Fuzzy cognitive maps (FCM)

FCM were developed by R. Kosko [26] as an extension of cognitive 
maps, to represent the cognitive relationships between concepts. 
FCM represent knowledge in a symbolic manner, encoding the 
relationships between the elements of a mental landscape so that the 
impact of these elements can be assessed. FCM applies fuzzy logic to 
cognitive maps, making it possible to predict changes in the concepts 
represented in cognitive maps. The graphical illustration of FCM is a 
signed, directed graph with feedback, consisting of nodes and weighted 
interconnections. Nodes correspond to concepts: variables and states 
used to describe the behavior of the system. 

Nodes are connected by weighted arrows representing cognitive 
relationships between nodes (Figure 1). Each concept is characterized 
by a range of value, generally [0…1] or [-1…1]. The dynamics of the 
system is implied by the interaction of concepts through the cognitive 
strength of relationships among them. The cognitive relationships 
are represented linguistically with an associated fuzzy set. It allows 
having degrees of causality. This structure establishes the forward 
and backward propagation of causality, allows the knowledge base to 
increase when concepts and links between them are increased [27,28].

The construction of an FCM for the modeling of a medical 
decision making task is consisting of two parts: (a) the determination 
of concepts and (b) the determination of the strength of cognitive 

relationships between concepts. Each concept is modeled as a variable 
Ci, i=1,2,…N  that can take fuzzy or discrete values according to the 
problem data and is determined by experts’ knowledge and medical 
guidelines. The strengths of cognitive relations (namely weights) 
between concepts are assigned by if-then rules, which are constructed 
by experts-physicians based on medical guidelines. There are three 
possible types of cognitive relationships between concepts, expressing 
the type of influence of one concept on others. The weight assigned to 
the interconnection between concept Ci and concept Cj, denoted by Wij 
(wrights), is positive (Wij>0) for positive causality or negative (Wij<0) 
for negative causality. Alternatively, it could be null (Wij=0), if there is 
no relationship between concept Ci and concept Cj. Knowledge about 
the cognitiverelationships controlling the dynamic behavior of the 
system is stored in the structure of a map and in the interconnections 
summarizing the correlations between causes and effects. 

The cognitive relationships between concepts were initially 
determined by experts following the construction process of FCMs, as 
linguistic variables [28]. The linguistic variables proposed in [27] and 
used for modeling FCMs are: T (influence)={negatively very strong, 
negatively strong, negatively medium, negatively weak, negatively very 
weak, zero, positively very weak, positively weak, positively medium, 
positively strong, positively very strong, positively very very strong}. 
These twelve triangular membership functions have been previously 
described in [28,29] showing their functionality. The fuzzy influences 
among concepts are transferred to numerical values of connections, 
called weights Wij, which are estimated by defuzzification of the 
aggregated, linguistically expressed, concept connections.

In semantic web, the weights Wij are transferred to semantic 
weights, namely Wijsemantic within the range [0,1] that depicts the 
semantic value of numerical weight.Once the FCM is constructed, it 
can receive data from its input concepts, perform reasoning and infer 
medical decisions as values of its output concepts [29,30]. A generic 
diagnosis example is illustrated in Figure 1.

The value of a concept D is obtained by multiplying the value of 
each of its input concepts, Ci, by their respective weights, Wij, giving 
values of [-1..1]. The values are then summed and a non linear function 

 

Figure 1: Representation of an FCM model.
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decision tree created manually in our project from the AFSSAPS and 
European Association of Urology CPG. We worked with the domain 
ontology of Infectious Diseases DCO (Debug IT Core Ontology) [31]. 
DCO serve as the core component of the interoperability platform for 
the Debug IT project2.

Inference engine

As part of our project, we aim to formalize the rules and have them 
executed by an inference engine. EulerSharp (known as Eye) [32] is 
an inference engine with backward-forward-backward chaining that 
allows “loop-checking” to ensure the processing of all data, to reason 
with data, queries and rules in N3. We chose to use EulerSharp on the 
basis of its historical performance3, frequent updates4, plugins and the 
possibility of integrating new features5 (built-in).

Methods

Our approach involves the various phases of cognitive map 
construction and the use of these maps with Semantic Web tools. 

Figure 2 shows the steps involved in the formalization of guidelines 
in N3 and their connection with the final CDSS used directly by the 
physician. We present in detail the steps followed during the design of 
our system.

Structuring and enhancement of the decision tree: This is the first 
step in the proposed approach. We initially worked with the AFSSAPS 
(French Agency for the Safety of Health Products) CPG6, subsequently 
integrating a second CPG (European Urology Association). A medical 
expert will read and make the decision tree from the CPG.

Extraction of clinical concepts and diagnoses: We extracted 
clinical concepts and diagnostic concepts (all diagnoses) from our 
decision tree. In the decision tree, all attributes will be extracted as the 
concept. There are two types of concepts: diagnosis concepts (diseases.) 
and clinical concepts (clinical, biologicaland radiological). The disease 
is manifested by clinical signs but in our diagnostic approach, we 
deduce the dignosis from the clinical findings or signs (Figure 3).

Standardization of clinical concepts and diagnoses: We manually 
standardized concepts with the DebugIT ontology of Infectious 
Diseases (DCO).Each attribute is aligned with a concept of ontology 
DCO (Figure 4).

Writing diagnostic rules: The CPG is expressed as “If Premise 
Then Conclusion” rules. The premise takes into account several patient 
parameters and consists of several basic premises. The extraction of 
knowledge from CPG takes the form of fuzzy “If-Then” rules, which 
can be formalized as follows:

If the value of the concept Ci is “a state X” /increases/decreases 
then the value of Y is Dj, with a degree of influence (weight) Wij. Every 
relationship between a concept and a clinical diagnostic concept is 
defined as a membership function determining the degree of causality 
between two concepts (see below). For example, “If the urine dipstick 

is used to limit the range of possible output values.

Fuzzy Cognitive Map reasoning mechanism

The FCM reasoning process follows a number of steps till the 
system’s equilibrium point. These steps can be found in [28,30] and we 
briefly present them here. At first step, the initial state of the concepts is 
given either from experts or from the existing medical database. During 
reasoning the FCM iteratively calculates its state until convergence. 
The state is represented by a state vector Ck, which consists of real node 
values ( ) [0,1]k

iC ∈ , i=1,2,…N at an iteration k. The value of each node is 
calculated by the following equation: 
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where f  is a threshold (activation) function:
( )( ) 1/(1 )m xf x e−= + 				                    (2)

Where m is a constant parameter [28]. The parameter m determines 
how quickly the )(xf  approaches the limiting values of 0 and 1. The 
transformation function is used to reduce unbounded weighted sum 
to a certain range, which hinders quantitative analysis, but allows for 
qualitative comparisons between concepts [30]. 

In order to remove the spurious influence of inactive concepts 
(concepts with zero values) on other concepts, and to avoid the conflicts 
emerge in cases where the initial values of concepts are 0.5, as well as 
the missing data, a modified FCM reasoning formalism can be used. 
Based on this assumption, we reformulated eq. (1) as:
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This eq. (3) overcomes also the limitation present by the sigmoid 
threshold function. Thus, the insufficient knowledge and/or missing 
information for each node can be handled with less deviation from 
reality.

The simulation stops when a limit vector is reached, i.e., when
k k -1
i iC - C e≤ ; where e is a residual, whose value depends on the 

application type (and in most applications is equal to 0.001) [30]. The 
conclusions based on FCM should be viewed together with existing 
scientific knowledge [31,32]. Conclusions based on an analysis and/
or simulations of FCM can be counter-intuitive or against scientific 
results. If such are encountered, one must further study the assumptions 
depicted in FCMs, but also be open to insights gained from a systemic 
approach to problem analysis that FCM is.

Materials and Methods
Materials

In our project, resources are represented by the clinical data1, 
diagnostic guidelines (in the form of a decision tree) for urinary tract 
infections and domain ontology. We used 70 anonymous patients from 
several European hospitals. From this data set, 32 patients were female 
and 38 male with an average age 44 ± 25(average ± standard dev) twelve 
of 32 female patients were pregnant. For each patient, signs/symptoms/
observables/age/sex were taken into account by the system,we used the 

1Data bases from several European hospitals (France, Germany, Belgium).
2DebugIt: The DebugIT project is a large -scale integrating project funded within the 
7th EU Framework Programme (FP7).
3http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt.
4http://eulersharp.sourceforge.net/DONE.
5http://eulersharp.sourceforge.net/2003/03swap/euler-builtins.html. 
6http://www.afssaps.fr/Infos-de-securite/Recommandations-de-bonne-
pratique/Diagnostic-et-antibiotherapie-des-infections-urinaires-bacteriennes-
communautaires-de-l-adulte-recommandations-de-bonne-pratique.

http://eulersharp.sourceforge.net/2003/03swap/dtb-2010.txt
http://eulersharp.sourceforge.net/DONE
http://eulersharp.sourceforge.net/2003/03swap/euler-builtins.html
http://www.afssaps.fr/Infos-de-securite/Recommandations-de-bonne-pratique/Diagnostic-et-antibiotherapie-des-infections-urinaires-bacteriennes-communautaires-de-l-adulte-recommandations-de-bonne-pratique
http://www.afssaps.fr/Infos-de-securite/Recommandations-de-bonne-pratique/Diagnostic-et-antibiotherapie-des-infections-urinaires-bacteriennes-communautaires-de-l-adulte-recommandations-de-bonne-pratique
http://www.afssaps.fr/Infos-de-securite/Recommandations-de-bonne-pratique/Diagnostic-et-antibiotherapie-des-infections-urinaires-bacteriennes-communautaires-de-l-adulte-recommandations-de-bonne-pratique
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test is negative then the diagnosis of UTI is wrong with a degree of 
confidence of 0.9”. Our approach makes use of this knowledge to 
build cognitive maps in which these rules represent the relationships 
between concepts and a fuzzy value is attributed to the weight of each 
relationship.

Construction of an FCM model for UTI diagnosis: We first 
developed FCM for UTI diagnosis based on the CPG. A number of 
medical guidelines relating to the diagnosis of UTI were formalized 
into FCM knowledge models, according to the approach presented 
in Figure 4. For the construction of our FCM model for medical 
decision support, it was necessary to identify the main concepts and to 
determine the strengths of connections (cognitiveinfluences) between 

these concepts. It was also necessary to extract a number of IF-THEN 
rules for the improvement of differential diagnosis. The concepts and 
their relationships were extracted manually, initially from CPG, using 
the previously described decision tree approach. Each concept and 
clinical diagnosis contributes to a node represented in FCM. 

By this way, all the concepts were defined. The relationships 
between these concepts and the clinical diagnosis concepts described 
in the natural language of the CPG were translated into formal 
language by defining the fuzzy weight of each concept [30]. These 
linguistic weights were initially used to describe the influence of a 
clinical sign (concept) on a clinical diagnosis. These weights were then 
converted into numerical weights in the range [-1,1], by the centroid 
defuzzification method of fuzzy logic.

 

Figure 2: Diagram showing the approach used for CPG implementation.

 

Figure 3: Diagram showing the approach used for CPG implementation.

 

Figure 4: Diagram describing the elementary FCMconstruction.
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The clinical and diagnostic concepts

For the UTI diagnosis problem considered here, we defined 30 
clinical concepts corresponding to signs, symptoms, observations and 
examinations. Thirteen diagnostic concepts corresponding to possible 
diagnoses of UTIs were described from CPGs.

FCM model weights: In FCM models, weights (initially described 
by fuzzy membership functions) can take their values within the range 
[-1,1], but in N3 these values must be translated to the range 0 to 1, with 
conservation of their meaning and ensuring that the same results are 
obtained. Each of the FCM weights indicates a degree of confidence, 
from 0 to 1 (Table 1).

Elementary FCM for each possible UTI diagnosis: For each 
possible UTI diagnosis, we constructed an elementary FCM (sub-
FCM) describing the diagnosis according to the initial conditions. We 
therefore constructed 13 elementary FCM.

We represented the concepts, with their causality, in 13 elementary 
interconnected FCM. The concepts “Ci” are the clinical concepts and Dj 
is the diagnostic concept described in Figure 4. 

FCM implementation in N3: We implemented our algorithm 
for reasoning in N3, using plugins of the inference engine EulerSharp 
developed in Prolog7. 

Medical models are written in the form of rules. This simplifies 
the modeling technique to the expression of relationships in terms of 
True or False structures and the attachment of degrees of confidence 
in the relationship. Furthermore, rules expressing medical knowledge 
make use of built-in elements of the Eye [32]. For FCM modeling, the 
following Eye predicates are used with the Euler built-in fl:pi.

•	 fl:mu is an Eye predicate for expressing fuzzy set membership, 
e.g. (:x :C) fl:mu 0.8 indicates that :x is a :C with a degree of confidence 
in fuzzy set membership of 0.8. 

For example:

(:patient001:Symptom01)fl:mu 1

This indicates that the patient suffers from Symptom01, and the 
activation value of FCM concept “Symptom01” is 1. The expression 
fl:mu 1 “bridges” the relationship between the Symptom01 and the 
patient001 by creating fuzzy set membership. 

•	 fl:sigma is an Eye predicate for expressing fuzzy subsethood 

e.g. (:C :D) fl:sigma 0.9 indicates that :C is a rdfs:subClassOf :D with a 
degree of confidence of 0.9. 

A concrete example for the FCM disease model would be:

(:Symptom01:D1-diagnosis) fl:sigma 0.3.

•	 This indicates that the observable “Symptom01” has a 
strength of impact on “D1-diagnosis” of 0.3 (the numerical value for 
fuzzy set membership). This value of 0.3 expresses the defuzzified value 
of weight (strength of the relationship) between these two concepts.

fl:pi is an Euler built-in rdf: Property for expressing the reasoning 
process of FCM. fl:pi is a built-in supplied via plug-in http://eulersharp.
sourceforge.net/2006/02swap/fcm-plugin.yap.

The formalized medical knowledge in the context of FCM is 
represented with ontological concepts, using N3 and logic-rules format. 

The FCM concepts are included in an ontology repository 
established for the needs of the project: DCO. DCO is continually 
updated to ensure that it contains all the relevant clinical concepts. 
We worked with the DebugIT project ontologists to enrich the DCO 
ontology for use with our rules (Figure 5).

Thus, based on this implementation approach, all the concepts, 
relationships and fuzzy rules for differential diagnosis are written in 
N3. The case of a patient is shown below as an example.

Case: Male, Old, Digital Rectal Examination (positive), Urine 
Dipstick Test (positive), Dysuria, Urinary Frequency, Residual Bladder.

With the proposed methodology, each cause-effect relationship 
between an observation and diagnosis is described by one or more 
fuzzy rules, thus producing the rule-based FCMs. From each fuzzy 
rule, an inference is generated, depicting the degree of confidence we 
have in the influence concerned. Moreover, based on the available CPG 
encoded as fuzzy rules, some of the relationships (weights) may change 
in value or degree of confidence before the final diagnosis is reached, 
taking into account cases and observable states that contribute to a 
different diagnosis. This is an important issue in FCM construction 
and diagnosis, as specific initial states of observables can be assessed 
for patients (Table 2).

In Appendix A, some examples of the FCM formalization of UTI 
diagnosis problems in N3 are given.

We investigated the use of this tool to provide diagnostic patterns 
for UTIs. The proposed approach, using FCMs, is able to establish 
decisions for the differential diagnosis of patients presenting UTI 
symptoms.

Results 
The result of our work is summarized in the development of 

Fuzzy membership functions 
(triangular)

Fuzzy 
regions

Deffuzzified 
value (weight)

Semantic 
weights

Negative very very strong 
influence

[-1, -0.9) -1 0

Negative very strong influence (-0.9 -0.7) -0.8 0.05
Negative strong influence (-0.8  -0.6) -0.7 0.1
Negative medium influence (-0.7  -0.4) -0.55 0.15
Negative weak influence (-0.4  -0.2) -0.3 0.2
Negative very weak influence (-0.2   0) -0.1 0.3
Positive very weak influence (0   0.2) 0.1 0.4
Positive weak influence (0.2  0.4) 0.3 0.55
Positive medium influence (0.4 0.7) 0.55 0.65
Positive strong influence (0.6  0.8) 0.7 0.75
Positive very strong influence (0.7  0.9) 0.8 0.85
Positive very very strong influence (0.9 1) 1 1

Table 1: Determination of fuzzy weights for semantic languages.

7http://eulersharp.sourceforge.net/2006/02swap/fcm-plugin.yap.

 
Figure 5: Representation of the mechanism for diagnosis decision-making .

http://eulersharp.sourceforge.net/2006/02swap/fcm-plugin.yap
http://eulersharp.sourceforge.net/2006/02swap/fcm-plugin.yap
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a platform able to interact with heterogeneous data and formalize 
knowledge from CPG. The results presented here follow the steps 
in the methodology described above and the inference mechanism 
for FCM (Eulersharp/plugin). 92% (65/70 patients: 37 males and 28 
females) diagnosis proposed by the system was in fully agreement with 
the guidelines. 

Inference results

We present an overview of the RDF file containing the results 
generated by the inference engine. For example, patient 013 is very 
likely to have a urinary tract infection but it is most likely to have 
prostatitis.

Patient 13 (symptoms): Male, Old, Urine Dipstick Test (positive), 
Dysuria, Urinary Frequency, Residual Bladder, Vesical Urethral Reflux. 
These symptoms are translated in N3 as follows:

(:patient0013 dco:FlankPain) fl:pi 0.

(:patient0013 dco:Fever) fl:pi 0.

(:patient0013 dco:Male) fl:pi 1.

(:patient0013 dco:UrineDipstickTest) fl:pi 1.

(:patient0013 dco:Chills) fl:pi 0.

(:patient0013 dco:Pregnant) fl:pi 0.

(:patient0013 dco:DisorderOfUrinaryTract) fl:pi 1.

(:patient0013 dco:Dysuria) fl:pi 1.

(:patient0013 dco:UrinaryFrequency) fl:pi 1.

(:patient0013 dco:ResidualBladder) fl:pi 1.

(:patient0013 dco:VesicalUretralReflux) fl:pi 1.

(:patient0013 dco:Urolithiasis) fl:pi 0.

(:patient0013 dco:DiabetesMellitus) fl:pi 0.

(:patient0013 dco:Immunosuppression) fl:pi 0.

(:patient0013 dco:Kidneyinsuffiency) fl:pi 0.

(:patient0013 dco:PathologicalState) fl:pi 0.

(:patient0013 dco:Old) fl:pi 1.

Using Euler Yap inference engine the following results are 
produced (Figure 6): 

The numerical values from 0 to 1 indicate the rank of the suggested 
diagnosis. Diagnosis concept values with values close to 1 are the 
most likely to be correct, following the CPG list closely. A diagnostic 
concept value close to 0 indicates that the corresponding diagnosis is 
highly unlikely. In the results of the patient 013 displayed in Figure 6, 
we notice the presence of two diagnoses with a 0.99 degree of belief 
and the third one has 0.59. We take the two diagnoses that the same 

disease because the concept “Acute Prostatis” is a son of the concept 
“Complicate urinary tract infection” (Acute prostate is a complicate 
urinary infection).

As this work concerns the modeling of diagnosis guidelines, the 
results obtained were compared with the recommendations provided 
by the relevant clinical suggestions.

Discussion
This study had three main objectives. The first was to establish 

reasoning algorithms for fuzzy cognitive maps. The second was to use 
N3 notation and logic to implement of our cognitive maps for CPG 
knowledge formalization and the integration of other knowledge 
resources (other CPG). Finally, we validated the model by applying our 
cognitive map reasoning to a patient database.

The proposed approach made it possible to model the medical 
knowledge contained in CPGs and to identify cognitive relationships 
through a process resembling human reasoning as closely as possible.

By using fuzzy cognitive maps, we were able to incorporate a 
second source of knowledge complementary to the AFSSAPS CPG. The 
possibility of incorporating other types of knowledge is advantage as it 
makes it possible to model simple knowledge in a medical field that is 
broad, complex and closely related to other areas.

We implemented the knowledge bases, rules and databases in 
the same environment (RDF, N3, Euler etc.) without compatibility 
constraints. This is one of the advantages of using Semantic Web tools. 
The success rate of the proposed model for UTI diagnosis was 92%, 
demonstrating that this model is functional and likely to be useful in 
clinical practice in the future. The advantage of this approach is that it 
facilitates the sharing and reuse of knowledge from CPG and simplifies 
maintenance.

One advantage of the proposed FCM-based decision-making 
system over other approaches, such as the Bayesian belief networks, 
artificial neural networks, logistic regression or even other fuzzy 
logic-based approaches, is that it resembles human decision-making, 
with its capacity for approximate reasoning and handling incomplete 
information. We used only one source of knowledge appropriate to 
CPG. The field of community-acquired infections of the urinary tract 
in adults is not entirely covered by CPG, and we identified a large 
amount of missing information concerning the relationship between 

Rule Impact of influence Formalization in N3
Rule1 If the patient is Pregnant, then 

Simple Urinary Tract Infection is an 
inadequate diagnosis

The strength of influence between “Simple Urinary 
Tract Infection” and “Pregnant” is zero (no relationship 
between concepts in the case of this patient)

(dco:Pregnant dco:SimpleUrinaryTractInfection) fl:sigma 0.

Rule 2 If patient has Flank Pain THEN the 
patient may have a Complicated 
Urinary Tract Infection 

The strength of the relationship between Flank Pain and 
Complicated Urinary Tract Infection is positive and very 
very strong (numerical value=1)

The strength of the relationship between Flank Pain and 
Complicated Urinary Tract Infection is positive and very very 
strong (numerical value=1)

Table 2: Example of Formalization of rules in N3.

 

Figure 6: An overview of inference results (acute prostatitis).
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domain concepts. The rules implemented concerned only community-
acquired urinary tract infections in adults. The integration of other 
CPG covering other infectious diseases domains would improve this 
system.

All fuzzy systems have a capability to translate the human operator 
knowhow into expertise rules expressed in a simple language makes it a 
very promising technique. Nevertheless, when the number of variables 
to be considered becomes too high, the rule base rapidly explodes, 
and problems linked to its implementation follow. The problem of the 
combinatorial explosion in the number of rules is present. 

Moreover, the knowledge held in CPG is not sufficient for the 
diagnosis of and response to various specific and clinical situations. 
Thus, the knowledge contained in the guidelines is not sufficient in 
itself to produce a dynamic and efficient tool for decision support in 
real clinical practice. Future work should focus on the construction of 
more dynamic systems based on the proposed methodology, which 
could potentially integrate more sources of knowledge and data 
covering other infectious diseases.

Conclusion 
We present here our results for the modeling of medical knowledge/

guidelines and the behavior of the system for decision support in UTI 
diagnosis based on the use of a new soft computing technology consisting 
of FCMs implemented in a Semantic Web approach. This work 
establishes a decision support tool based on FCM formalism for UTI 
diagnosis, by proposing the appropriate diagnosis for each individual 
case. 2 CPGs for the diagnosis of UTI were formalized into elementary 
FCM, to establish the FCM knowledge model. FCM methodology was 
then implemented in N3, which is an open and semantic language.
The developed software tool determines diagnosis recommendations 
for UTIs. It receives relevant data concerning the state of the patient 
as input from the data store or a clinical information system (CIS). 
The simulations for test patients performed by implementation of the 
proposed FCMs provide the differential diagnoses for this pilot set of 
patients. 

In this study we investigated the use of cognitive approaches for 
implementing CPG with Semantic Web tools. This work represents 
a first step towards the development of a methodology for the 
implementation of dynamic heterogeneous knowledge in medicine for 
decision support systems. In future studies [33-50], we plan to test our 
rules on larger data sets and to update them by integrating knowledge 
from experts and data mining.
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Appendix A

Some of our UTI diagnosis knowledge base is presented in N3. For example:

 (:patient001:Dysuria)fl:mu 1

This means that the patient suffers from “Dysuria”. Dysuria is a concept of the 
FCM disease model describing a patient condition “patient001” and the activation 
value of the FCM concept “Dysuria” is 1.

 (:patient001:Strangury) fl:mu 0

This means that the patient does not suffer from “Strangury” (the symptom-
concept of disease model is “Strangury”) and the activation value of concept 
“Strangury” is 0. 

(:patient001:Pregnancy) fl:mu 1.

This means that the patient (female) is pregnant, and the activated value of 
concept “Pregnancy” is 1.

Another example, for the relationship between an observable and diagnosis 
concept:

(:C3-Dysuria:D1-UTI-diagnosis) fl:sigma 0.3.

This means that the observable “Dysuria” has an impact on “D1-diagnosis” 
with a confidence level of 0.3 (numerical value of fuzzy set membership). The value 
of 0.3 is the defuzzified value of fuzzy set membership defining the weight (strength 
of relationship) between these two concepts.

For example, the N3 code for the model of simple acute pyelonephritis is as 
follows:

# Definition of the relationship between clinical concepts and simple acute 
pyelonephritis

(dco:FlankPain dco:SimpleAcutePyelonephritis) fl:sigma 1.

(dco:Fever dco:SimpleAcutePyelonephritis) fl:sigma 1.

(dco:Pregnant dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:UrineDipstickTest dco:SimpleAcutePyelonephritis) fl:sigma 1.

(dco:PainfulKidneysPalpation dco:SimpleAcutePyelonephritis) fl:sigma 1.

(dco:Male dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:Chills dco:SimpleAcutePyelonephritis) fl:sigma 1.

(dco:Urolithiasis dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:UrinaryFrequency dco:SimpleAcutePyelonephritis) fl:sigma 0.4.

(dco:HeartPulseRate dco:SimpleAcutePyelonephritis) fl:sigma 0.8.

(dco:SuprapubicPain dco:SimpleAcutePyelonephritis) fl:sigma 0.5.

(dco:Dysuria dco:SimpleAcutePyelonephritis) fl:sigma 0.6.

(dco:SuprapubicPain dco:SimpleAcutePyelonephritis) fl:sigma 0.6.

{(?Pdco:FlankPain) fl:mu 0.} => {(dco:FlankPain dco:SimpleAcutePyelonephritis) 
fl:sigma 0.

(dco:Feverdco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:UrineDipstickTest dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:PainfulKidneysPalpation dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:Chills dco:SimpleAcutePyelonephritis) fl:sigma 0.}.

{(?P dco:Fever) fl:mu 0.} => {(dco:FlankPain dco:SimpleAcutePyelonephritis) 
fl:sigma 0.

(dco:Fever dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:UrineDipstickTest dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:PainfulKidneysPalpation dco:SimpleAcutePyelonephritis) fl:sigma 0.

(dco:Chillsdco:SimpleAcutePyelonephritis) fl:sigma 0).
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