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Introduction
Alpine ecosystems are crucial laboratories for the study of how 

changing climatic variables will impact local species assemblages. 
The steep elevation gradients in these regions provides for analysis of 
several ecotones within a small area. The biomes that inhabit these areas 
are particularly susceptible to changing environmental parameters 
since many exist at the limits of their ranges [1]. Since alpine ecotones 
represent bioclimatic transitions, species compositional change is high 
and susceptible to slight alteration in bioclimatic regimes [2]. While 
many studies have identified biotic response to climate change over 
large regions, the response at the local and individual ecosystem level 
are necessary to understand population dynamics that underlie range 
shifts [3,4].

Existing research has focused on the response of individual 
species, often overlooking important biotic and abiotic interactions 
that drive community assembly. All the life forms within a local 
community interact with each other and their physical world forming 
a complex intricate fabric that identifies the characteristic traits of that 
assemblage. The predicted trend in climate induced range shifts is for 
increased extinctions at the warm boundaries and species expansions 
at the cold range limits [3]. However, in alpine regions, the loss of space 
with elevation will lead upslope migrating species into a summit trap 
which will drive extinction rates higher [5,6].

Since the response rate to altered environmental conditions varies 
among each member of the local assemblage, climate change will 
drive significant alteration of the interactions between the individual 
components and the overall functioning of the local community. 
Since alpine vegetation tends to be long lived, [2], changes in the 
timing and availability of resources can have significant negative 
impacts on individual species survival rates while at the same time 
providing opportunities for competition to allow replacement species 
to prosper [7]. An ongoing study of the Global Observation Research 
Initiative in Alpine Environments (GLORIA) site in the European Alps 

demonstrates this process as species richness has shown a 12% increase 
in only a 10 year period [8].

Spectral characteristics measured with remote sensing instruments 
such as the Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced 
Thematic Mapper (ETM+) enable us to analyze ecological properties of 
vegetation. Vegetation has characteristic spectral responses such as low 
red reflectance due to chlorophyll absorption and high near infrared 
(NIR) reflectance due to the reflectance of the internal structures of the 
canopy [9]. Changes in surface reflectance can thus be correlated with 
variation in vegetative cover and plant health. Since the constituents 
of the plants vary over their phenological cycle, it is also possible to 
identify the various stages of the cycle such as spring flowering and 
fall senescence. Changes in the timing of these cycles can serve as an 
indicator of climate change.

Soil also demonstrates unique spectral characteristics depending 
on properties such as its moisture, organic matter content and texture 
[10]. Lower soil moisture content, a possible indicator of water stress 
in vegetation, would cause higher surface reflectance in the mid-
wave infrared (MWIR) region that can be detected using Landsat 
data [11]. Higher temperatures combined with lower humidity levels 
will increase evapotranspiration resulting in less soil and vegetation 
moisture which will place additional burden on ecosystem vegetation. 
These effects are heightened in regions experiencing historic droughts 
such as the southwestern United States [12]. Jackson et al. [10] found 
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Abstract
This paper presents a time series study of vegetative composition change in an alpine ecosystem in the Big Pine 

Creek watershed in California’s Eastern Sierra Nevada Mountain’s. Sixteen sample sites that demonstrated same 
directional trends in their visible and near-IR responses were examined for changes species composition over the 
last 30 years using spectral mixture analysis to evaluate how warming temperatures have altered the vegetative 
mix of those sites. These findings are used to establish the relationship between trends in spectral reflectance and 
changes in vegetative composition. We found that changes in the compositional make up of a site can result in 
changes to the spectral response that contradict the trends in vegetative indices and Tasseled Cap transformations. 
At one particular site, we show that Tasseled Cap indices are all consistent with a statistically significant decline in 
surface cover while spectral mixture analysis demonstrates statistically significant increases in vegetative cover.
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that plant water stress will decrease the NIR response while increasing 
the reflectance in the red region of the spectrum. In addition to altering 
the spectral reflectance properties of the vegetation, plant stress can 
alter the geometry of the plant through processes such as drooping or 
wilting, resulting in a higher soil fraction component of the response 
signal [10]. Todd and Hoffer [13] found that reduced vegetation 
moisture content tends to increase visible and MWIR reflectance [13].

Vogelmann et al. [14] examined trends in spectral response in 
a time series study of the San Pedro Parks Wilderness area in New 
Mexico for the years 1992 through 2006. Higher elevations were shown 
to be spectrally stable except for areas infested with western spruce 
budworm. Some of the lower elevation shrub regions had declines 
in their short-wave infrared (SWIR)/NIR ratios as did patches of 
conifer trees suffering from high mortality rates [14]. Loss of available 
moisture significantly impacts forest growth and overall ecosystem 
health (Williams et al., [15]). Higher temperatures may also promote 
pest infestation. Williams et al. [15] found that bark beetle populations 
increased during warmer periods, especially in forests already 
suffering moisture deficits induced by higher temperatures. This study 
determined that maximum temperature (TMAX) is an ideal surrogate for 
determining vapor pressure deficit induced forest stress [15]. 

The ecological response to elevated temperatures and CO2 levels 
is complex and will be affected by other factors such as water and 
other nutrient resource availability. In cold alpine regions where 
water availability is not limiting, higher temperatures are expected to 
increase the habitable zones for several species, allowing for upslope 
migration and increased vegetative cover. In alpine regions, higher 
temperatures combined with increased atmospheric CO2 levels will 
increase photosynthesis resulting in increased biomass; provided 
other essential resources are not limited [16]. Conversely, where water 
is limited, higher temperatures will increase plant stress resulting in 
reduced vegetative cover [17].

Remote sensing using multispectral imagers such as the Landsat 
5 Thematic Mapper (TM) and the Landsat 7 Enhanced Thematic 
Mapper (ETM+) provide a wealth of data that can be used to monitor 
for changes in the environment. Large scale regional change are clearly 
evident from the 30 meter resolution imagery these instruments 
provide. However, at this resolution, important details within each 
pixel remain hidden. For remote sensing applications, unless the image 
is over human controlled agricultural plots, most TM or ETM+ image 
pixels will include several components that cannot be discerned from 
the raw data. For each pixel, the radiance measured by the sensor in 
each wave band is composed of a mixture of reflectance energies given 
off by each of the individual components within that pixel.

	 In order to elicit the sub-pixel information needed to assess 
vegetative composition change, we need to employ spectral mixture 
analysis (SMA). The basic theory of SMA is that in any given pixel, a 
limited number of dominant components contribute the overwhelming 
majority of the radiance measured by the sensor. These components 
are called endmembers (EM). The simplest SMA technique is called 
Linear Spectral Mixture Analysis (LSMA). For LMSA, the fractional 
coverage of each EM is proportional to its contribution the overall 
radiance value of the pixel. This can be expressed mathematically using 
equation (1)
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Where Ri is the spectral reflectance for band i of a pixel, fk is the 
fraction of endmember k within the pixel, Rik is the known spectral 

reflectance of endmember k within that pixel in band i, ei is the error 
for band i, and n is the number of endmembers in the pixel [18]. 
LMSA can be used to unmix pixel spectra from both multi spectral and 
hyperspectral data [19]. Two methods for solving for fk have been used; 
constrained and unconstrained. In the constrained method, sum of the 
fractions must equal 1 as shown in equation (2) [18].
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 In the unconstrained method, fk is not required to sum to 1 which 
means the solution will not equal the actual percent cover of each EM 
[18]. The error for each band ei is defined as the root mean square error 
(RMSE) expressed as equation (3),
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Where m is the spectral band [20]. Models of each pixel are 
developed by varying the fractions of each EM. The model which 
produces the lowest RMSE is considered the best-fit and those EM 
fractions are recorded as the solution [20]. The RMSE represents the 
difference between the measured and modelled value. The RMSE 
should be in the range of the noise level of the absolute reflectance. 
For Landsat TM data, this is 0.56%. The analyst can select an arbitrary 
threshold for the RMSE value for determining when a given pixel has 
been successfully unmixed; typically 2% [21]. 

LSMA makes several important assumptions including; each EM 
is spectrally unique, each EM is constant over the entire spatial extent 
of the analysis, and the radiance measured by the sensor is a linear 
combination of all the EM contributions [22]. Typical EM selection 
includes an EM for soil, one for photosynthetic vegetation, and one for 
litter or dead vegetation. There are several methods for determining EM 
spectra including the use of existing spectral libraries, identification of 
a pixel within the image that is 100% fractional coverage for a particular 
EM, or obtaining actual field measurements of the EM at the sample 
site. One of the primary sources of inaccuracy in LMSA is variation 
of a particular EM spectra within the entire scene (Song, 2005). This 
limitation on LMSA led to the development of Multiple End Member 
Spectral Mixture Analysis (MESMA). MESMA allows for the EM 
spectra to vary pixel by pixel.

MESMA differs from LSMA in that while an individual pixel may 
contain a limited number of EM, (typically 2 or 3), the entire image 
may contain many different EM. This allows each pixel to be uniquely 
analyzed providing much greater definition for the entire image [23]. 
Since obtaining actual field spectra is often impossible, the use of 
within-image pure EM pixels is commonly used. These pure EM pixels 
can be selected using the Pixel Purity Index (PPI) technique. This 
method is available as a tool in the Exelis Visual Information Solutions 
(ENVI) software package called the n-Dimensional Visualizer. This 
tool calculates a score for each pixel based on repeated projections of 
the pixel data onto a randomly oriented vector which intersects the 
mean of the data cloud. The result is identification of pixels containing 
the highest purity of a specific EM [20]. 

Pre-processing of remote sensing imagery is often performed to 
reduce data set dimensionality. One of the most common is Principal 
Components Analysis (PCA). Since the bands in multi-spectral data 
are often correlated, PCA transforms correlated data into a reduced 
number of easier to interpret uncorrelated data that are called 
principal components [24]. When applying PCA to two images, the 
first few principle components will remain unchanged while the later 
components will contain the change information. A threshold value 
is assigned to identify which pixels have changed and which have not 
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[25]. PCA can also be used as a noise reduction technique since the 
latter principle components consist mainly of noise, they can be zeroed 
out. PCA can also be used in change detection. When two successive 
images are processed using PCA, the discontinuities appear as latter 
components. 

A modification of the PCA technique has been developed called the 
Minimum Noise Fraction (MNF) transformation. Whereas standard 
PCA applies successive linear transformations in order to maximize 
variance, the MNF transform was designed to maximize the signal to 
noise ratio (SNR) by applying linear transformations that successively 
minimize the noise fraction. The MNF transformed bands with the 
least SNR are then used for imagery analysis. The MNF transform is 
equivalent to PCA when the noise variance is the same in all bands [26]. 

One of the underlying assumptions of PCA is that the SNR declines 
as the principle component number increases. However, this is not 
always the case which means that potentially valuable information 
contained in the latter principal components is often discarded. The 
MNF transform is performed by first de-correlating and rescaling the 
noise using the data from the noise covariance matrix then applying 
a standard PCA analysis to the noise-whitened data. The noise is 
separated by only using coherent portions of the data [27]. The primary 
objective of the MNF transform is to identify a small number of noise-
free components which can help in the selection of endmembers. Once 
an MNF transform has been applied, a PPI index is calculated for each 
pixel to identify the best EM pixels [23].

In previous studies, we examined the spectral response at 
numerous sample sites in the Big Pine Creek watershed to determine 
how those sites have changed over the last three decades. In our first 
study we examined the average spectral response across the watershed 
and found that both the visible and NIR responses were declining 
[28]. Vegetation indices are useful tools to analyze for the increase or 
decline in vegetative surface cover. However, these indices are based 
primarily on the ratio between the visible and NIR bands. A decline 
in the visible band surface reflectance from increased visible light 
absorption combined with an increase in NIR reflectance from higher 
surface complexity are indicative of increased vegetative surface cover. 
Likewise, increased surface reflectance in the visible range combined 
with a decline in the NIR reflectance from less surface complexity 
is an indicator of a decline in surface vegetative cover. While the 
simple ratios are useful in identifying increases or declines in surface 
characteristics, these indices do not provide clear information on what 
is taking place when the visible and NIR surface reflectance change in 
the same direction. In order to determine what is occurring at sites 
where both the visible and NIR spectral responses are trending in the 
same direction, we need to decompose the spectral responses of those 
sites using spectral mixture analysis. 

In this study we explore ecosystem response to recent climate 
change by performing a spectral mixture analysis of 16 sample sites 
which demonstrated similar directional trends in their visible and near-
IR spectral response and analyzing trends in sample site composition 
using time series analysis of Landsat surface reflectance data. We apply 
a statistical approach to determine trends in the data that are indicative 
of changing vegetative composition. We present this information by 
first describing the study area and the data used in the analysis, we then 
discuss the research approach and methods used to collect and process 
the data, followed by our results and conclusions. We hypothesize that 
sites where the visible and NIR spectral responses are changing in the 
same direction will demonstrate compositional changes that account 
for the spectral response trends. 

Study Area and Data
This section describes the study area and the data used in the 

analysis.

Study area description

Figure 1 below shows the Big Pine Creek watershed located in 
California’s Eastern Sierra Mountains. Big Pine Creek is a major 
tributary to the Owens River which is a significant source of fresh water 
for Los Angeles. The Owens River valley straddles the Great Basin and 
Mojave deserts with vegetation consisting primarily of pine forests at 
higher elevations and xeric species at lower elevations. Areas bordering 
streams and the Owens River are primarily grass dominated meadows 
[29]. Elevation within the watershed increases from East to West with 
the higher regions dominated by barren rock and woodlands with the 
lower regions dominated by mixed desert shrubs.

The Big Pine Creek watershed ecosystem owes its existence to snow 
melt and melt-water from the Palisade Glacier. In addition to being 
the southern-most glacier in the United States, it is also the largest 
glacier in the Sierras with a surface area of 1.3 km2. It was formed about 
3,200 years ago, reaching a maximum extent as recently as 170 years 
ago [30]. It has been generally in retreat ever since. The Big Pine Creek 
watershed drainage area covers approximately 82 km2 and its average 
flow is 1.8 m3/s. Measurements taken in the 1980’s indicate that the 
creek is a gaining stream at the lower elevations in contrast to most 
other Owens River tributaries which are losing streams [31]. Since all of 
the living species within this watershed depend on the glacier and snow 
melt for their survival, the impact of temperature and precipitation 
variations on the biodiversity of the Big Pine Creek watershed is the 
focus of this study.

In previous spectral studies of the Big Pine Creek watershed, 
we examined 105 sample sites. Three sites for each of the top ten 
predominant land cover classifications present in the watershed and 
three sites at 100 meter elevation gradients from 1200 meters above 
sea level to 3600 meters above sea level. At each elevation, a densely 
vegetated site, a moderately vegetated site and a sparsely vegetated site 
were selected. While many of the sites demonstrated clear trends in their 
spectral reflectance consistent with declining or increasing vegetative 
surface cover, numerous locations exhibited same direction trends in 
their visible and NIR reflectance bands making interpretation of what 
is taking place difficult. In this study 16 of those sample sites which 
were accessible for in situ sampling were chosen for detailed spectral 
mixture analysis to elicit sub-pixel information which could provide 
us with evidence of species compositional change not discernable from 
the multi-spectral 30 meter resolution Landsat imagery.

Data

The data in this study includes Landsat surface reflectance data 
obtained from the USGS Earth Explorer web site, ground truth 
spectra from 116 surface cover samples collected in situ throughout 
the study area during July 2014, and modeled endmember spectra and 
abundance values derived from the Landsat data using the ENVI 5.1 
software package.

Surface reflectance data: The Landsat program has been providing 
earth observation remote sensing data to the scientific community for 
four decades. The first Landsat satellite was placed in orbit in 1972 with 
Landsat 7 remaining operational today. Landsat 5 was only recently 
taken off-line. The latest generation satellite, Landsat 8, was launched 
on February 11th, 2013 and is now operational. Data for this study 
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includes imagery from both the Landsat 5 TM and Landsat 7 ETM+ 
sensors.

Table 1 details the six reflective bands of the Landsat sensors, 
covering the visible (blue, green, and red), near infrared (NIR), short-
wave infrared (SWIR), and mid-wave infrared (MWIR) regions of the 
spectrum as well as their ecological applications. Bands 5 and 7 are 
sometimes referred to as SWIR1 and SWIR2. However, in this study, 
we refer to band 5 as the SWIR and band 7 as the MWIR. Band 6 covers 
the thermal infrared (TIR) and the data from this region is not used in 
this study. These descriptions are retrieved from the Northern Arizona 
University Infrared Spectrometry Laboratory. (http://www.cefns.nau.
edu/seses/llecb/Spectrometer/RemoteSensing.html).

The Landsat imagery used in this analysis was acquired for 30 dates 
in the month of July from 1984 through 2013. Most of the imagery used 
in this analysis is from Path 42, Row 34 with four of the images from 
Path 41, Row 34. Both image ID ground swaths cover the entire study 
area. The imagery acquisition date and time for the data used in this 
analysis are listed in Table 2 below. 

This surface reflectance data product for each of these imagers 
was obtained from the EarthExplorer web site operated by the United 
States Geological Survey (http://earthexplorer.usgs.gov/). Since the 
period of maximum leaf area index generally occurs in the mid-June 
to mid-August time frame [32], only imagery in the July time frame 
was considered for this analysis in order to minimize the impacts of the 
phenological cycle on the reflectance data.

Meteorological data: Meteorological data referenced in this study 
was obtained from the University of Oregon’s Parameter-elevation 
Regressions on Independent Slopes Model (PRISM) web (http://www.
prism.oregonstate.edu/). According to its website, PRISM data are 
modeled estimates based on point data and a digital elevation model 
and is available for the entire continental US at 4 km resolution. All 
sample sites in this study fall within 11 PRISM grid cells as shown in 
Figure 2. 

Research Approach and Methods
This section contains a description of the research approach and 

the methodology used to collect and process the data.

Research approach

This study examines how the surface cover in the watershed has 
varied over the last 30 years at 16 sample sites in which the spectral 
reflectance trends in both the visible and NIR bands change in the 
same direction. This is accomplished by performing a spectral mixture 
analysis of each of the sample sites for each year in the study, then 
performing a time series trend analysis of the endmembers identified. 

Research methods

The research methodology consists of surface reflectance data 
collection; endmember determination; data processing; and statistical 
analysis. Each step is described below.

Data collection: In order to perform a temporal study comparing 
the physiological changes over time at each of the sample sites, surface 
reflectance values for each year of the study period were obtained 
from the USGS Climate Data Record (CDR) archive. The climate data 
referenced in this study were obtained from the PRISM web site by 
entering the geographic coordinates of each sample site into the data 
base and downloading the PRISM data set for each site over the 30 
years of the study period. 

A total of 116 endmember samples were collected in the field. 
These samples fell into nine broad categories including six types of 
photosynthetic vegetation, non-photosynthetic vegetation such as 
litter, and two barren surface cover types, soil and rock. Due to the 
remoteness of the site and its rugged terrain, taking field spectral 
measurements was not practical. Therefore, the samples were sealed 
in plastic bags and stored on ice for transport back to the lab where 
their spectra was measured with an Analytical Spectral Devices, Inc. 
(ASD) 0.35 to 2.5 µm Flexscanspectroradiometer. The 1 nm bandwidth 
spectra generated by the ASD instrument was rescaled to match the 
Landsat spectral bands using the spectral resampling application in the 
ENVI 5.1 software.

Surface reflectance data: USGS surface reflectance data is generated 
from a software package known as the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS). The surface reflectance data is 
computed by applying an atmospheric correction to the raw Landsat 
imagery [33]. This atmospheric correction uses the Second Simulation 
of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model 
to account for various atmospheric column constituents including 
water vapor, ozone, and aerosol optical thickness [34].

The LEDAPS process uses average daily lamp brightness history 
to obtain calibration coefficients based on acquisition date. These 

Figure 1: Study area location showing the boundary of the Big Pine Creek 
watershed

Band Spectral 
Range (µm)

Resolution 
(m) Region Common Applications

1 0.45 - 0.52 30 Blue Soil/Vegetation Delineation

2 0.52 - 0.60 30 Green Assessment of Vegetation Vigor

3 0.63 - 0.69 30 Red Chlorophyll Absorption for Determining 
Vegetation

4 0.76 - 0.90 30 NIR Biomass Survey's, Delineate Water 
Bodies

5 1.55 - 1.75 30 SWIR Vegetation and Soil Moisture,

6 10.4 - 12.5 120 TIR Thermal mapping and estimated soil 
moisture

7 2.08 - 2.35 30 MWIR Hydrothermal Mapping

Table 1: Landsat Band Description and Ecological Application

http://www.cefns.nau.edu/seses/llecb/Spectrometer/RemoteSensing.html
http://www.cefns.nau.edu/seses/llecb/Spectrometer/RemoteSensing.html
http://earthexplorer.usgs.gov/
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/


Citation: Sawyer PS, Stephen H (2015) Climate Driven Vegetative Composition Changes in the Big Pine Creek Watershed Using Spectral 
Mixture Analysis and Time Series Analysis of Landsat Surface Reflectance Data over a 30 Year Period. J Biodivers Biopros Dev 2: 146. 
doi:10.4172/2376-0214.1000146

Page 5 of 12

Volume 2 • Issue 1 • 1000146
J Biodivers Biopros Dev
ISSN: 2376-0214 IJBBD, an open access journal

calibration coefficients are used to determine the at-sensor radiance 
values [34]. The LEDAPS process converts at-sensor radiance to 
top-of-atmosphere (TOA) by an algorithm that incorporates solar 
irradiance derived from the MODTRAN model, bandpass, earth sun 
distance and solar zenith angle (Masek [34].The LEDAPS atmospheric 
correction assumes particle scattering and gaseous absorption can 
be decoupled [34]. LEADAPS applies Moderate Resolution Imaging 
Spectroradiometer (MODIS) atmospheric correction routines to Landsat 
data that correlates surface reflectance is with TOA reflectance using (4), 

3 2 2 2 4 2( , , , , ) ( )
1T

s
g R A R A g

R
O

A S
A T O O CO NO CH T T H O
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ρρρ + +
+

 
= + 
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        (4)

where ρs is the surface reflectance, Tg is the gaseous transmission, 
TR+Ais the Rayleigh and aerosol transmission, ρR+Ais the Rayleigh and 
aerosol atmospheric intrinsic reflectance, and SR+Ais the Rayleigh and 
aerosol spherical albedo [34]. 

The 6S radiative transfer model is used to derive surface reflectance 
from (6) with the input of aerosol optical thickness (AOT), atmospheric 
pressure and water vapor. The Total Ozone Mapping Spectrometer 
(TOMS) carried by the Nimbus 7, Meteor 3 and Earth Probe satellites 
provides the ozone concentration data. For the 1994 through 1996 time 
period when TOMS data was unavailable, vertical sounder data from 
the National Oceanic and Atmospheric Administration (NOAA) was 
used. Rayleigh scattering is adjusted to local conditions using surface 
pressure data from NOAA’s National Center for Environmental 
Protection (NCEP) [34]. 

This atmospheric correction methodology uses a dark dense 
vegetation procedure developed by Kaufman et al. [35] to determine 
AOT from the imagery. This technique is based on the assumption of 
a linear relationship between surface reflectance in the visible bands 
and the surface reflectance in the short wave band (2.2 µm where 
surface reflectance is not affected by the atmosphere) based on the 
physical correlation between bound water absorption and chlorophyll 
absorption. Using this procedure to calculate surface reflectance in the 
visible bands then allows for the determination of AOT by comparing 
the TOA reflectance to the surface reflectance. Since this technique only 
determines the AOT in the blue region, a continental aerosol model 
is used to determine AOT in the other spectral regions. The AOT, 
atmospheric pressure, ozone and water vapor data are then processed 
by the 6S model to convert TOA reflectance to surface reflectance [34]. 
The USGS CDR data set provides us with observed surface reflectance 
values for each of the six reflectance bands for all sample sites in each 
year of the study. 

Spectral endmember determination: Spectral mixture analysis for 
this study was performed using the spectral hourglass wizard toolkit 
in the ENVI 5.1 software application. The spectral hourglass wizard 
provides a systematic process for determining spectral endmembers 
within a given region of interest. The first step in the process is 
application of a minimum noise (MNF) transform to the reflectance 
data. This transform determines the inherent dimensionality of the 

Figure 2: Sample site locations.

Image Date Time Scene ID (Path/Row)

7/13/2013 10:28 42/34

7/28/2012 10:28 42/34

7/18/2011 10:22 42/34

7/31/2010 10:24 42/34

7/5/2009 10:16 41/34

7/25/2008 10:20 42/34

7/7/2007 10:27 42/34

7/13/2006 10:20 41/34

7/26/2005 10:15 41/34

7/30/2004 10:16 42/34

7/12/2003 10:10 42/34

7/25/2002 10:09 42/34

7/22/2001 10:14 42/34

7/19/2000 10:10 42/34

7/17/1999 10:11 42/34

Image Date Time Scene ID (Path/Row)

7/30/1998 10:12 42/34

7/27/1997 10:04 42/34

7/24/1996 9:48 42/34

7/31/1995 9:31 41/34

7/3/1994 9:52 42/34

7/16/1993 9:56 42/34

7/29/1992 9:56 42/34

7/27/1991 9:57 42/34

7/8/1990 9:53 42/34

7/5/1989 9:34 42/34

7/2/1988 10:04 42/34

7/25/1987 9:52 41/34

7/29/1986 9:55 42/34

7/3/1985 9:57 41/34

7/7/1984 10:02 42/34

Table 2: Summary of Landsat imagery used in this analysis
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data and generates an eigenvalue plot for each MNF band. In order to 
improve spectral processing results, MNF bands containing only noise 
are discarded to preserve linear independence among the components. 

The next step in the process is to derive endmembers from the 
image. The spectral hourglass wizard calculates a pixel purity index 
(PPI) by repeatedly projecting n-dimensional scatter plots on a 
random unit vector. A PPI image is created with the value of each pixel 
corresponding to the number of times the pixel was determined to be 
extreme. This process identifies the purest pixels in a scene. Spectral 
endmembers are then determined using the n-dimensional visualizer 
which locates and identifies the most extreme spectral responses in a 
data set. At this point, the spectral hourglass wizard produces a spectral 
unmixing abundance image which assigns abundance values to each 
spectral endmember in each pixel.

The ENVI Spectral Hourglass Wizard generated a set of endmember 
spectra for each sample site. In order to determine what each of the 
endmember spectra represented, the spectra was compared to the 
ground truth spectra. The abundance of each of the ENVI generated 
spectral endmembers was determined for each date in the study period 
and a trend analysis was performed to determine how the fractional 
coverage of each of the endmembers has changed over the last 30 years.

Statistical trend analysis: The non-parametric Mann-Kendall 
(MK) trend test is used to establish the presence of trends in the 
spectral endmembers over the last 30 years. This analysis essentially 
determines if a set of values (y) are increasing or decreasing over time. 
Mann-Kendall analysis looks at the sums of the signs of the differences 
between successive data points and calculates a score or “S” statistic 
with the following properties: for S<0 (values are decreasing over 
time); for S>0 (values are increasing over time). The magnitude of the 
S-statistic is a measure of the strength of the trend. For a sample size 
of 30, S values of ±111 indicate a statistically significant trend with a p 
value of <0.05. This means the null hypothesis of no-trend in the data 
can be discarded with the risk of committing a Type II (rejection of a 
true null or H0) error at less than 5%. The MK S-statistic is calculated 
using (5)

1

1 1
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n n

i i
i j i

S sign y y
−

= = +

= −∑ ∑                                                          (5)

wheren is the number of observations and yi (i=1…n) is the value 

at time Ti and yj (i=1,…, n) is the value at time Tj [36]. Variance in the 
S statistic is calculated as

( ) n(n 1)(2n 5)
18

Var S − +
=                                                               (6)

This variance assumes there are no tied pairs in the data. If tied 
pairs are identified, the software program applies a continuity equation 
which assumes a normal distribution for S with a zero mean. The 
variance is used to determine the probability (p) of obtaining a value of 
S greater than that calculated for the given number of data points when 
no trend is present. The probability statistic is determined from the Z 
score which is defined as:
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for S>0

, for S=0

, for S<0

In addition to the trend statistic (S), Kendall’s tau (τ) is determined 
from the equation

( 1)
2

s
n nτ =

−
                                                                                         (8)

Where n is the number of observations. Kendall’s tau is similar to 
the correlation coefficient in linear regression. The magnitude of the 
trend is determined using the Sen’s slope estimation with confidence 
intervals defined as the upper and lower estimate for the mean value 
of the slope. Sen’s slope is determined by calculating the slope at each 
data point and taking the median of those slopes as the magnitude of 
the trend as shown;
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                                   (9)

These calculations are carried out in Excel using the XLSTAT add-
in statistical application. This program generates the S statistic as well 
as the probability (p) value which is used to quantify the statistical 
significance of the trend. The confidence factor (risk of rejecting a true 
null) is defined as (1-p)*100%. 

Results and Discussion
Ground truth endmember spectra

A total of 116 surface cover samples located throughout the study 
area were collected in situ in July 2014 including three to four samples 
from each of the 16 sample sites used in this study. The surface cover 
types are classified as either photosynthetic vegetation (PV), non-
photosynthetic vegetation (NPV), or barren surface. There were six 
broad classes of PV present: broad leaf trees including aspen, birch, and 
cottonwood; narrow leaf trees including willow and woodrush; needle 
leaf trees including pine and fir; sage bush; stem shrubs including 
juniper, hardhack and sedges; and leafy shrubs including manzanita, 
monkey flower and desert peach (Figures 3 and 4). 

The NPV consisted primarily of litter and dead vegetation. Barren 
surface included various soil and rock types. All of the ground truth 
samples were categorized into those nine surface types and a composite 
spectra of each surface cover was created. Figure 5 shows the composite 
ground truth spectra of all the PV types collected in the field. Figure 
6 shows the composite ground truth spectra of non-photosynthetic 
(NPV) along with composite soil and rock spectra. Reflectance values 
have a scaling factor of 10,000 to match the Landsat surface reflectance 
data set. 

For each sample site, the endmember spectra produced by the 
ENVI software application were compared against the ground truth 
endmember spectral library to determine their classification. The 
abundance values for each endmember type, (PV, NPV, and Soil/Rock), 
were compiled for each sample site for each year and a trend analysis 
was performed to determine how the surface cover has changed over 
the last 30 years. 

Figures 7 and 8 provide an example of this procedure. In Figure 7, 
sample site #1 ENVI generated spectral endmembers for photosynthetic 
vegetation from the Landsat 5 TM imagery for the year 2000 are 
compared against the spectra produced from vegetation samples 
collected at that site. At this particular location, vegetation is primarily 
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California sage (Artemisia californica) and Big sagebrush (Artemisia 
tridentata). Although the raw reflectance values are significantly 
different, the shapes of the spectra allow us to clearly identify that the 
ENVI generated spectra nD Class #3 matches the ground truth spectra 
for Big sagebrush while the nD Class #4 matches the ground truth 
spectra for California sage.

ENVI Generated Spectra for Sample Site #1 PV

Ground Truth Spectra for Sample Site #1 PV

In Figure 8, sample site #13 ENVI generated spectral endmembers 
for non-photosynthetic vegetation (litter) and soil from the Landsat 5 
TM imagery for the year 1994 are compared against composite litter 

and soil ground truth samples. As with the vegetation spectra, the soil 
and litter spectra differs in their data values, but their distinctive shapes 
are clearly distinguishable.

In general, the ENVI generated spectra data values were much lower 
than those produced by the ASD instrument. The spectra measured in 
the laboratory are contact samples, meaning there is no atmospheric 
column between the sample and the detector. This contrasts with the 
full atmospheric column between the study site and the Landsat sensor 
orbiting 700 km above the earth.

ENVI Generated Spectra for Sample Site #13 Soil and Litter

Ground Truth Spectra for Composite Ground Truth Soil and Litter

In addition to the spectra, the ENVI software generated abundance 
images of each modeled endmember in every pixel. The constrained 
option was selected so that the abundance values reflected fractional 
coverage of each endmember within each pixel. The software also 
produced an RMS image indicating the root mean square error 
associated with the derived endmembers for each individual pixel. 
Average error values for all 30 years of the study are shown in table 
four for each site.

Table 3 shows the trends in surface cover for those 16 sites where 
the trends in spectral response would be consistent with a change in 
surface composition, (visible and NIR trending in the same direction). 
In most instances we see trends in the PV and NPV going in opposite 
directions. For example, 7 of the sites show declines in PV along with 
increases in NPV while at 4 sites, the PV is increasing while the NPV 

a. Sage (Big sage - Artemisia tridentata ) Sage Sample as analyzed in the lab

b. Stem Shrub (Sedge - Carex nervina) Stem Shrub Sample as analyzed in the lab

c. Leaf Shrub (Manzanita - Arctostaphylos
patula)

Leaf Shrub Sample as analyzed in the lab

Figure 4: Samples of study area shrubery. a - Artemisia tridentata, b - Carex 
nervina and c - Arctostaphylos patula.

Figure 5: Composite ground truth reflectance spectra for photosynthetic 
vegetation types present in the study area.

Figure 6: Composite ground truth reflectance spectra for non-photosynthetic 
vegetation, soil, and rock types present in the study area.

a. Broad Leaf (Aspen - Populus tremuloides) Broad Leaf Sample as analyzed in the lab

b. Narrow Leaf (Willow - Salix eastwoodiae) Narrow Leaf Sample as analyzed in the lab

c. Needle Leaf (Pine - Pinus jeffreyi) Needle Leaf Sample as analyzed in the lab

Figure 3: Samples of study area trees. a - Populus tremuloides, b - Salix 
eastwoodiae and c - Pinusjeffreyi.
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is in decline. Of the remaining 5 sites, 3 show increases in both PV and 
NPV while 2 site show both the PV and NPV are in decline. At 10 of 
the 16 sites, barren surface (soil or rock) is in decline while the spectral 
contribution at 6 of the barren sites is increasing.

At sites where the PV and NPV are moving in the same direction, 
we see barren surface going in the opposite direction as one would 
expect. Where the PV and NPV are receding, we see increased barren 
surface contribution to the observed surface reflectance signal. Likewise 
where PV and NPV are increasing, the barren surface contribution is 
in decline. 

An interesting observation from this data is that the trends 
in barren surface do not necessarily correlate to the Tasseled Cap 
transformation for brightness (TCB). Table 4 shows that for 6 of the 
16 sites, the TCB value is trending in the opposite direction from the 
barren surface cover. Similarly, the Tasseled Cap greenness (TCG) 
transformation would be expected to trend in the same direction as 
the PV fractional coverage. However in 9 of the 16 sites we find the 
opposite. The Tasseled Cap wetness (TCW) index is often correlated to 
increases in surface vegetation cover as higher vegetation cover means 
more water content in the scene. However, in 7 of the 16 sites we see the 
PV trends going in the opposite direction from the TCW trends. 

These results highlight the caution one must use when interpreting 
the meaning of the Tasseled Cap transformations. This is especially 
important when attempting to interpret what is taking place when the 
visible and NIR spectral responses are trending in the same direction. 
Although most of the instances cited do not involve statistically 
significant trends, at sample site #13, we see statistically significant 

positive trends in PV while at the same time we see statistically 
significant declines in TCG and statistically significant increases in TCB. 
For a detailed explanation of how we derived the vegetation indices and 
Tasseled Cap transformations, see Sawyer and Stephen [28].

The real advantage that spectral mixture analysis has over simple 
spectral reflectance derived vegetation indices is the ability to discern 
changes in the endmembers within an individual pixel. This information 
is essential in determining how climate change is impacting local 
species assemblages. Table 5 shows the average abundance of the six 
predominant PV types over the last 30 years at each of the 16 sites 
in this study. This table shows that our study site vegetation consists 
primarily of shrubs with some deciduous and conifer trees. Most of the 
trees are located within a hundred meters of the Big Pine Creek while 
the shrubs are ubiquitous throughout the study area. 

Tree species identified in the study area include leaf species such as 
Willow, Woodrush, Cottonwood, Birch, Poplar and aspen, along with 
conifers including Jeffery Pine and Red Fir. Two sages were identified; 
Big sagebrush and California sagebrush. Numerous shrub species 
were identified. The shrubs were classified as stem type for those with 
needle like leaves or sedges and as leaf type for those with broad leaves. 
Stem type shrub species include Juniper, Golden Hardhack, Green 
Ephedra, Black Greasewood and sedges. Leaf type shrubs are primarily 
Manzanita, Monkey flower and Desert Peach.

Table 5 shows the average fractional surface cover of each of the PV 
types at each site for the 30 years of the study period as derived from the 
spectral mixture analysis of the Landsat imagery. Table 6 shows how 

ENVI Generated Spectra for Sample Site #1 PV

Ground Truth Spectra for Sample Site #1 PV

Figure 7: Comparison of ENVI generated spectra for sample site #1 with 
ground truth spectra of the vegetation collected at that site.

ENVI Generated Spectra for Sample Site #13 Soil and Litter

Ground Truth Spectra for Composite Ground Truth Soil and Litter

Figure 8: Comparison of ENVI generated spectra for sample site #13 with 
ground truth composite spectra of the soil and litter samples collected 
throughout the watershed.
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the individual endmembers have trended at each of the sample sites 
where the spectral analysis is consistent with compositional change. 
Table 7 provides a description of what the trend values are showing. In 
this summary, trends are defined as large if their |S| value exceeds 60, 
moderate for 20<|S|<60, small for 5<|S|<20, and slight for |S|<5. 

The results of our spectral mixture analysis of the 16 sites that we 
hypothesized were undergoing compositional change are consistent 
with that theory. We see vegetative compositional changes at each 
of the sites examined, with three of those sites consistent with large 
compositional changes. Looking at the combined PV trends, for the two 
sites with statistically significant trends, 13 (S=148) and 14 (S=-105), 
the results are not always consistent with the vegetative indices and 
Tasseled Cap transformations. At site 13, the spectral mixture analysis 
indicates vegetation is increasing while all three vegetative indices are 
declining. Likewise, the TCB, TCG, and TCW scores all suggest declines 
in vegetative surface cover. At site 14, the spectral mixture analysis 
indicates declining vegetative surface cover which is in agreement with 
two of the vegetative indices (SAVI and MSAVI2) and the tasseled cap 

transformations. However, the NDVI trend at this site is consistent with 
a small increase in vegetative surface cover. These results demonstrate 
the difficulty with assessing vegetative compositional change using 
only vegetative indices and Tasseled Cap transformations.

Looking more closely at site 13, we see large increases in sage with 
a moderate increase in stem shrubs and a small decline in leaf shrubs. If 
we examine how their individual contribution to the composite spectral 
response has changed, we see that since sage and stem shrubs have 
higher NIR signatures, age (ρNIR=0.7153) at 21%, stem (ρNIR=0.6554) at 
40%, and leaf shrubs (ρNIR=0.5979) at 13%. Higher sage and stem will 
result in a higher composite NIR spectral response which is consistent 
with what the trend data shows for this sites NIR response. In the Red 
band, an increase in sage (ρNIR=0.2685) at 21%, and stem (ρNIR=0.1769) 
at 40%, combined with a decline in leaf shrubs (ρNIR=0.1667) at 13% 
will likewise result in a higher cumulative Red band response since 
although higher vegetative cover is expected to result in increased 
Red band absorption from higher chlorophyll levels, the composition 
change to species with higher Red band reflectance result in a higher 

Sample
Sites

Trends in Surface cover for each sample site (S Values) Trends in CDR Surface Reflectance Data for Landsat Bands (S Values)

PV NPV Barren Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

1 33 10 -20 -78 -59 -87 -257 -155 -111
2 -30 95 -83 0 -52 -65 -97 -23 21
3 -26 22 23 -7 5 30 14 110 77
4 5 -42 7 -121 -160 -158 -124 -52 -55
5 62 -10 -50 -21 46 69 91 118 -35
6 -28 -112 67 -55 -43 7 28 35 -36
7 85 -75 -9 -44 -40 -32 -15 103 -46
8 -39 82 -70 -35 6 20 5 63 -60
9 -15 54 -5 23 26 48 55 76 77

10 -52 4 17 143 164 170 201 153 127
11 23 6 -10 -123 -156 -169 -184 -139 -149
12 -25 -54 18 -150 -163 -147 -96 -158 -141
13 148 -15 -59 19 146 75 48 188 157
14 -105 52 16 56 91 51 72 147 147
15 -17 1 -2 -123 -113 -112 -121 -125 -190
16 83 1 -41 -61 -47 -25 -32 35 -22

Table 3: Trends in Surface Cover and spectral reflectance for sites consistent with compositional change

Sample
Sites

Trends in Surface cover for each sample site Trends in Vegetation Indices and Tasseled Cap Transformations

PV NPV Barren NDVI SAVI MSAVI2 TCB TCG TCW
1 33 10 -20 -139 -181 -191 -159 -149 117
2 -30 95 -83 -15 -39 -41 -99 -35 -19
3 -26 22 23 21 17 11 69 -11 -97
4 5 -42 7 39 -23 -39 -143 -53 -35
5 62 -10 -50 9 25 29 83 51 19
6 -28 -112 67 23 23 25 17 49 5
7 85 -75 -9 7 5 7 -12 18 -42
8 -39 82 -70 -3 9 9 -7 33 11
9 -15 54 -5 -25 -7 5 53 -13 -89

10 -52 4 17 -25 45 51 183 45 -101
11 23 6 -10 -21 -67 -85 -211 -63 117
12 -25 -54 18 59 17 7 -207 21 125
13 148 -14 -59 -37 -13 -9 143 -15 -187
14 -105 52 16 -9 5 13 89 -13 -169
15 -17 1 -2 15 7 9 -145 73 155
16 83 1 -41 9 -39 -37 -45 -21 -21

Table 4: Trends in Surface Cover and Vegetation Indices for sites consistent with compositional change
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composite Red band signature. This matches the trend we see in the 
Red band response at this site.

Meteorological data
Ecological changes we have identified in the Big Pine Creek 

watershed are consistent with warming temperatures. In our previous 
paper, we identified statistically significant increases across the 
study area in both the maximum temperature (TMAX) and minimum 
temperature (TMIN). Looking at monthly trends, we found that for the 
maximum temperatures, the largest increases are taking place in the 
summer with smaller increases in the winter. Higher temperatures are 
an important factor in driving ecological changes since all biological 
processes are at their essence chemical reactions and increased 
temperatures will increase reaction rates. Increased biological activity 
can alter vegetative composition by changing the availability essential 
nutrients. Some nutrients will be more available through faster litter 
breakdown while some nutrients will be consumed at faster rates. This 

change in resource availability will drive changes in species composition 
to those species that are better suited to the new environmental 
conditions and resource make-up [28].

Precipitation and Big Pine Creek stream flow trends were also 
examined to determine if the moisture deficit conditions were impacting 
ecological responses over the study period. Here we found that although 
there was a slight decline in precipitation in the watershed, stream flow 
was slightly increasing which is consistent with warmer temperatures 
increasing the melt water contribution to the stream flow from the 
Palisade glacier [28]. In addition to driving biological activity, higher 
temperatures will also increase evapotranspiration. This will reduce 
moisture availability and stress vegetative species, especially those 
that are not drought tolerant. For the monthly minimum temperature 
trends, we see the largest increases are taking place in the summer and 
fall with smaller increases in the winter and spring. What these data 
demonstrate is that the summers are getting warmer and the winters 
are getting milder. This is an important finding since as discussed 

Sample Sites Photosynthetic Vegetation (PV) 30 Year Trends in Surface Composition (S Values)

ID Elevation (meters) 
a.s.l

Trees
Sage Bush

Shrubs

Broad Leaf Narrow Leaf Needles (Stem) (Leaf)

1 1201 58
2 1201 -30
3 1294 -26
4 1402 3 -15 -14 -12
5 1403 37 -19
6 1460 -4 -6
7 1598 23 17
8 1798 -2 -36
9 1805 -8
10 2105 -7 -56
11 2198 -4 27 40
12 2502 -8 -7 6
13 2603 70 14 -6
14 2702 -20 -43 -64
15 2899 21 -17 -81
16 3099 4 70 -8

Table 6: Trends in vegetative composition for the 30 year study period

Sample site ID Elevation 
(Meters)

Fractional Surface Cover (%)
Average RMSE 

(%)                 Trees
Sage Bush

     Shrubs
Broad Leaf Narrow Leaf Needle Leaf (Stem) (Leaf)

1 1201 31 0.82
2 1201 28 0.64
3 1294 6 1.01
4 1402 14 23 10 14 0.52
5 1403 9 13 0.22
6 1460 6 5 0.47
7 1598 7 10 0.31
8 1798 2 10 0.76
9 1805 4 0.66

10 2105 8 24 0.54
11 2198 6 29 12 0.52
12 2502 5 24 9 0.76
13 2603 21 40 13 0.80
14 2702 6 38 22 0.35
15 2899 8 9 12 1.14
16 3099 35 21 21 0.27

Table 5: Average sample site vegetative surface cover for the 30 year study period
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Sample
Sites Trends in Photosynthetic Vegetation (PV)

1 Moderate increase in sages with California sage supplanting Big sage
2 Moderate declines in sage (California Sagebrush) with larger declines in big sage
3 Moderate decline in broad leaf tree (Cottonwood)
4 Slight increase in broad leaf tree (Cottonwood) with small declines in narrow leaf (Willow) and needle (Jeffrey Pine)

5 Moderate increase in sage (Big Sagebrush) with a small decline in stem shrub (Juniper)

6 Slight decline in sage (Big Sagebrush) with a small decline in leaf shrub (desert peach)
7 Moderate increase in sage (Big Sagebrush) with a small increase in stem shrub (Juniper and Golden Hardhack)

8 Slight decline in sage (Big Sagebrush) with a moderate decline in stem shrubs (Inyo Buckwheat and Golden Hardhack)

9 Small decline in stem shrub (Green Ephedra and Golden Hardhack)
10 Small declines in sage (Big Sagebrush) with moderate declines in stem shrub (ephedra)

11 Slight decline in sage (Big Sagebrush) with moderate increases in stem shrubs (Hardhack) and leaf shrubs (Manzanita)

12 Small declines in sage (Big Sagebrush) and stem shrub (Hardhack) with small increases in leaf shrub (Manzanita)

13 Large increase in sage (Big Sagebrush) with moderate increases in stem shrub (Golden Hardhack) and  a small decline in leaf shrubs (Cutleaf Monkeyflower)

14 Moderate declines in sage (Big Sagebrush) and stem shrub (Juniper) and a large decline in leaf shrub (Manzanita)
15 Moderate increase in sage (Big Sagebrush) with small decline in stem shrub (Juniper) and a large decline in leaf shrub (Manzanita)

16 Slight increase in narrow leaf tree (Willow) with a large increase in needle (Red Fir) and small declines in stem shrub (Juniper)

Table 7: Endmember trend description for sites consistent with compositional change

earlier, warmer summers will increase evapotranspiration during 
the dry season, increasing potential water stress in the vegetation. 
Milder winters will also result in reduced water storage capacity as 
less precipitation will fall as snow, which also results in reduced water 
supplies in the warmest time of the year [28]. 

The seasonal trends found in this analysis closely align with future 
climate regimes predicted by general circulation models showing 
milder wetter winters and hotter drier summers [37]. Lenihan et al. 
[37] show that these future climate scenarios can produce shifts in 
the vegetative composition. In particular, their biological distribution 
model simulations suggest a shift from shrubs to grasslands under 
these conditions [37]. The temperature trends demonstrate that the Big 
Pine Creek watershed is at heightened risk from climate change and 
highlight the need to develop strategies to adapt to the new climate 
paradigm.

Confidence levels

Multitemporal satellite imagery is impacted by several factors 
including changes in sensor response, sensor stability, atmospheric 
effects, and illumination effects [38]. Geometric pixel registration 
errors are generally less than ½ pixel [39]. Radiometric uncertainty for 
the TM data are approximately 5% [40]. The USGS surface reflectance 
data set has been assessed against MODIS surface reflectance data and 
found to be highly correlated with discrepancies between 2.2 to 3.5 
percent [41].

The spectral mixture analysis performed for this study generated 
RMS errors of less than 1% on average. The average RMSE error values 
for each site are shown in Table 5. However, the interpretation of what 
each ENVI generated endmember represents is somewhat subjective. 
Accuracy of this interpretation is dependent on the ability of the analyst 
to correctly match the modeled spectra to actual ground truth spectra. 

Summary and Conclusions
This study examined the changes in the ecosystem of the Big Pine 

Creek watershed as measured by trends in sample site composition at 
16 locations over a 30 year time span from 1984 through 2013. Analysis 
of trends in surface reflectance and vegetation indices do not provide 
reliable information when the visible and NIR bands are trending in 
the same direction. We hypothesized that compositional change was 

taking place at these sites which can account for the same directional 
trends in the visible and NIR regions. Spectral unmixing can help us 
elicit information not discernable from simple trend analysis of Landsat 
spectral bands. In this analysis, we see evidence that compositional 
changes are taking place at each of the sites. Although none of the 
individual species components demonstrated statistically significant 
changes, the cumulative change in photosynthetic vegetation at two 
sites were statistically significant.

In remote areas that do not have historical surface cover composition 
data, quantitative analysis of how each individual component affected 
the composite spectral signal is not possible. Analysis of vegetative 
indices and Tasseled Cap transformations break down when the Red 
and NIR bands change in the same direction. However, by performing 
a spectral unmixing of the sample sites, we can look at the qualitative 
results of trend data to infer the impact compositional changes are 
having on the composite spectral response in each band. This analysis 
demonstrates a way to elicit a plausible explanation for the spectral 
responses recorded by the Landsat imager. We observed at site 13 how 
a compositional change with an overall increase in vegetative surface 
cover can result in both higher Red and NIR signatures even though 
the vegetative indices suggest decreasing vegetative surface cover. This 
suggests that previous studies that examined trends in vegetative indices 
where the visible and NIR trended in the same direction cannot be 
relied upon to definitively state that increased or decreased vegetation 
index trends mean higher or lower levels of photosynthetic vegetation. 
What may actually exist are vegetative compositional change or varying 
amounts of NPV or litter surface cover. Analysis of vegetative change 
that relies solely on changes in the composite spectral response may 
miss important compositional changes that may contradict vegetative 
indices and Tasseled Cap transformations.
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