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Abstract
This article discusses the possibility of coupling a polymerization reaction to an oscillatory kinetic model, 

complemented by diffusion which can lead to spatial structure. We used three well–known mathematical models of 
oscillators: a variant of the Rossler multivibrator, a model proposed by Edelstein, and the Oregon Oscillator. One or 
some of the terms in the equations of these models come from a polymerization reaction, while the other terms of 
these equations will come from collateral processes. So, almost any reaction could become oscillatory and/or with 
dissipative structure, adding the adequate collateral processes. The propagation stages are considered as invariants 
and initiation reactions of order α = 0, 1, or 2, and termination reactions of order β = 1 or 2 are assumed. Except in 
the case α = 1, β = 2, all six remaining reactions combinations (α, β) can be coupled to least one, and often to several 
of the models. The effects of destabilization a stable homogeneous steady state by the presence of diffusion is also 
discussed, which is always be possible.

Keywords: Reaction kinetics; Rossler multivibrador; Oregon
oscillator; Oscillatory chemical reactions

Introduction
Theoretical and experimental studies of oscillating reactions 

have been studied at many laboratories and the interest of this type 
of phenomena has increased rapidly which led to the discovery of 
oscillations in biochemical and chemical systems [1]. Interestingly, 
in the early studies, thermodynamicists and applied mathematicians 
worked out models for such reactions and discussed the feasibility 
of oscillations in homogeneous chemical systems. Later a general 
criterion was available for the type of chemical reactions that could 
present undamped oscillations [1].

When the first discoveries in oscillatory chemical reactions 
[2] and spatial structures were found in chemical systems [3] (e.g.,
concentration waves), mathematical expressions to fit experimental
results were looked for.

Adequate models for the chemical oscillations [4] are provided by 
non-linear ordinary differential equations when they are considered 
as precursors of the formal kinetic development. Partial differential 
equations [5] could explain the appearance of spatial rearrangements 
when they are applied to the reaction kinetics considering spatial 
diffusion. There are some kinetic reaction mechanisms, which are 
in general very complex that can be fit to mathematical models to 
predict the apparition of oscillations and/or spatial arrangements [6]. 
Recently, it has been suggested [7] that the mathematical equations of 
these models could be divided in two groups. Some of these equations 
will consider the main reactions (object to study), and the rest of them 
will take in account collateral processes. So, almost any reaction could 
become oscillatory and/or with dissipative structure by adding the 
adequate collateral processes. In this paper, examples of the application 
of this idea to polymerisation reactions, is shown.

General Theory
Polymerisation processes and rate equations [7]

Three steps are considered in the polymerisation reactions:

Initiation:	
ikX Rα →

where reaction rate is of the form Ri∼ Xα, and α can take the values 
0, 1 or 2

Propagation: R + X → pk  R

reaction rate is of the form Rp ∼ RX

Termination: βR → tk  products

In this case reaction rate is of the form Rt ∼ Rβ and β can take the 
values 1 or 2.

By assuming the steady state for the propagators R, that is Ri 
= Rt = Rt, it is obtained that R ∼ Xα/β; then the expression for the 
polymerisation rate X pol

•
 becomes: 

1
· · ·pol i gX k X k X

α
α βα

• +
= − −                (1)

where kg includes the constants kp and kt.

The term X represents monomer concentration, and the propagation 
stages are considered as invariants and the different mechanisms of the 
polymerisations will be denoted using the symbols [α, ] [7,8], where the 
initiation reaction (α) can be of zero, first, 1, or second order and the 
termination reaction (β) can be of of first or second order. 

Analysis without diffusion

Ordinary differential equations system [4,9] in two variables, X and 
Y, will be considered

)Y,X(NY

)Y,X(MX

=

=
•

•

		 (2)
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where Dx and Dy are diffusion coefficients, respectively. In this 
context, the steady states are named homogeneous steady state (HSS). 
Their stability can also be studied by linearization, and when suitable 
perturbations for the desired boundary conditions are defined. In 
this paper, the Neuman´s conditions [10] (of no–flow in the system 
boundary) are used:

t
0

t
0

x(t,r)  Ae cos

y(t,r)  Be cos

nr X X
nr Y Y

ω

ω

= = −

= = −
			              (11)

where n is the wave number, which under the conditions x(0, L) 
= ± A and y(0, L) = ±B, must satisfy,

mn
L
π

=

where L is the length of the system and m = 0, 1, 2, 3, .....(an integer)

The secular matrix of the linearized system takes the form












−

−
= 2

y

2
x

n nDba

gnDc
M 			                (12)

whose trace is

Tn= T0 – (Dx+ Dy)·n2				                 (13)

and the determinant is

Detn= Det0 – n2·(bDx+ cDy) + Dx·Dy·n
4	                (14)

Now, trace and determinant depend on the wave number, n. The 
roots of the secular equation 

ω2 – Tn·ω + Detn = 0		               (15)

will be also dependent on the wave number. As in the no diffusive 
case, if one of those roots has a positive real part, the homogeneous 
steady state will be unstable. That can be so because of the conditions 
Detn < 0, or Tn > 0. The condition Tn > 0 is impossible to be fulfilled, 
unless in the no diffusive case T0 > 0, that is, the homogeneous steady 
state was already unstable in diffusion absence. So, it is impossible a 
homogeneous stable steady state, which fulfilled T0 < 0, Det0 > 0, to be 
destabilized by diffusion. Besides, in the case T0 > 0, if ω had a positive 
real part because of being Tn > 0, that positive real part would be 
ωRe+ = Tn/2 if ∆n = Tn

2 – 4Detn < 0, or ωRe+ = [(Tn + ∆n1/2)/2] if ∆n ≥ 
0; in one or the other case, the higher positive value of this real part 
will be reached when n = 0. That means that in the case of where are 
several solutions (for some n values), when it is allowed by the limit 
conditions, the homogeneous solution (n = 0), will be amplified faster 
and predominates above the no homogeneous ones, and the presence 
of spatial structures is not probable.

The condition Detn < 0 has not been considered yet. If p = n2, it can 
be expressed as a second grade polynomial:

Detn = Det0 – p·(bDx+ cDy) + DxDyp
2 < 0	               (16)

and it is possible that it could be fulfilled in some interval p1 
< p < p2 (although T0 > 0 and Det0 > 0, case in which it can be said 
that the homogeneous steady state can be destabilized by diffusion. 
Independently of p2> p1> 0, and p1p2 = Det0/Dx·Dy, it is necessary Det0 
> 0 to be firstly fulfilled. Moreover, as p1 + p2 = [(b·Dx + c·Dy)/Dx·Dy] > 0, 
it is necessary that bDx+ cDy > 0. Finally, the condition for that interval 

where the variable Y represents the concentration of a specie 
that appears in a collateral process. The steady states denoted by SS(i), 
fulfill the equalities 

•

X  = 0, 
•

Y  = 0, and the X and Y concentrations 
can be calculated by solving M(X0,Y0) = 0, N(X0,Y0) = 0 equations. A 
linearized variational system [10,11] is obtained when considering the 
perturbations defined as:

0

0

YY)t(y
XX)t(x

−=
−=

					                  (3)

the system is of the form

x cx gy

y ax by

•

•

= +

= +
					                  (4)

where the coefficients

,
x
Mc

0







∂
∂

=
0y

Mg 







∂
∂

= , 
0x

Na 






∂
∂

= , 
0y

Nb 







∂
∂

=

are the elements of the characteristic no–diffusive matrix









=

ba
gc

M0

This matrix trace is 

T0 = b + c		                (5)

and its determinant is

Det0 = bc – a		                  (6)

In the neighbourhood of the steady state (SS) the solutions of (3) 
are in the form

t

t

x Ae

y Be

ω

ω

=

=
					                  (7)

where, ω are the roots of the equation:

ω2 – T0·ω + Det0 = 0				                   (8)

The steady state is unstable if, at least, one of these roots has a positive 
real part. It occurs when Det0 < 0. However, this condition causes the SS 
to be a “saddle point”, which normally involves explosions, and so, it is 
discarded as realistic chemical model. 

A root with a positive real part can be obtained if T0 > 0. 

If T0 = 0 and the discriminant is: 

∆0 = T0
2 – 4Det0 					                 (9)

if Det0 < 0 then ∆0 > 0, the steady state is a node; if Det0 > 0 then ∆0 
< 0, i the steady state s a focus.

In all the equations systems that will be examined, the condition 
Det0 > 0 will be fulfilled, and the transitions from T0< 0 to T0 = 0 and to 
T0> 0 will be possible, that is, from a stable focus (T0 ≤ 0, ∆0 ≈ – 4Det0< 
0) to node (T0 = 0, ∆0 = – 4Det0 < 0) and to unstable focus (T0 ≥ 0, 
∆0 ≈ – 4Det0 < 0). Hopf [12] proved that this bifurcation leads to the 
apparition of a limit cycle around the unstable focus, with sustained 
oscillations of the system. In this paper, the Hopf bifurcations existence 
in all the studied cases is verified.

Including the diffusion process

If diffusion effects along one dimension (r) are considered, the 
equations (2) take the form [13,10]
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to exist is that the discriminant must be positive,

∆(16) = (b·Dx+ c·Dy)
2 – 4Dx·Dy·Det0 > 0	              (17)

If all of those conditions are fulfilled, as Tn < T0 < 0, Detn< 0 < Det0, the 
inequality 0n ∆>∆  will be also fulfilled, and so, 00nn TT ∆+>∆+  
could be accepted. The positive real part of ω will be higher for some n 
≠ 0, than for n = 0, and if that is so, the no homogeneous perturbation 
increases more quickly than the homogeneous one (if both of them 
coexist and compete).

If the homogeneous steady state is unstabilized for any wave 
number, n, an initial fluctuation having a Fourier component with that 
n, will force the system to go out from the homogeneous steady state 
and a new spatial arrangement produced by fluctuations [14] will be 
obtained.

Now, the three mathematical models will be analysed.

Models
Rossler modified model [7,15,16]

1A. without diffusion:
1

2

3

4

5

6

7

1

2

1

3 1

2

2 2

2

degradation products of
2

3

2

degradation products of
i

p

t

m F

m

m

m

m

m

m

k

k

k

A Y
A X X
X Y Y X

X D
A D X

X D

D X D X

X R

R X R
R polymer

α

β

 → →
 + →
 + → +

 →


+ →
 →←
 + → +
 →
 
 + → 
 →  

The kinetic equations:

2 2 2 2
1 1 2 2 3 1 3 1 5 6 7

1

2
1 3 4 3 1

2
2 5 6 2

X 2 3 2 2

Y

D

D

R

i p

i t

A m X A X m XY m X m A D m X m X m D X k X k RX

m X FY

m X m A D

m X m D

k X k R

α

α β

α

β

•

•

•

•

•

 = − + − − + − + − − −


= −
 = −


= −

 = −


When 01 2D 0, D 0, R 0
• • •

= = = , they are reduced to two equations:

( )
1 /

2 3 ( / ) 17 5
1 2 1 2 3

6

1

X

Y

i
i p

t

m m kA A m X m XY m X X k X k X
m k

m X FY

β

α α βα
β

•
+

•

  
 = + − − + − − −  

 


= −

and the following equations are obtained:

2 3
1 2 3 4 5

6 7

X k XY k X k X k X k

Y k X k Y

•

•

= − + − + +

= −
		                (18)

where the values of k1, k2, k3, k4, k5, k6 and k7 are defined as follows: 

Considering the polymerizations types {0, 1} and {0, 2}: 
1/

1 5 2 1 4; , 1, 2 ,i
g g p

t

kA k A m k k con k k
k

β

β β
β

  
 = = − = = = =    

2 1 3 2,m k m k= = , 7 5
3 6 1 7

m m = , k = m , k F= −

for the polymerization type {1, 1}: 

7 5
1 5 2 1 4 2 1 3 2 3 1 6 7

6

; , , , , ,i p
i

t

k k m mA k A m k k m k m k k m k F k
k mβ

= = − − = = − = = = =

for polymerization type {2, 1}: 
1/ 2

7 5
1 5 2 1 4 2 1 3 2 3 1 6 7

6

; , , 2 , , ,
2

i
i p

t

m m kA k A m k m k m k k k k m k F k
m k

 
= − = = − = + = = = 

 

when the polymerization type {2, 2} is considered:
7 5

1 5 2 1 4 2 1 3 2 3 1 6 7
6

; , , 2 , , ,
2

i
i p

t

k m mA k A m k m k m k k k k m k F k
k m

 
= − = = − − = = = = 

 

A. A concrete case [7] will be considered. With the following values 
of the constants: k1 = 1, k2 = 0.9, k3 = 1, k4 = 0.2, k5 = 0.01, k6 = 1.5ε and 
k7 = ε. The system becomes :

2 30.9 0.2 0.01

(1.5 )

X XY X X X

Y X Yε

•

•

= − + − + +

= −
			              (19)

This system has an only one homogeneous steady state (X0 = 0.271, 
Y0 = 0.4065) and its secular matrix is 

M0 = 







ε−=ε=
−==

b5.1a
7305.0g061.0c

with T0 = 0.061 – ε, will be positive if ε < 0.061, and Det0 = 0.3455ε 
> 0. So, (19) admits Hopf bifurcation and a limit cycle around the 
unstable steady state for ε < 0.061.

1B. Considering that there is a diffusion process, (18) becomes:

2

1 2 2 3 3 4 5 2

2

6 7 2

x

y

X Xk XY k X k X k X k D
t r
Y Yk X k Y D
t r

∂ ∂
= − + − + + +

∂ ∂
∂ ∂

= − +
∂ ∂

	               (20)

and using the constants values of Section 1A

2

2 3 2

2

2

0.9 0.2 0.01

·(1.5 )

x

y

X XXY X X X D
t r
Y YX Y D
t r

ε

∂ ∂
= − + − + + +

∂ ∂
∂ ∂

= − +
∂ ∂

	              (21)

The secular matrix is












−ε−ε

−−
= 2

y

2
x

n nD5.1

271.0nD061.0
M

whose trace is Tn = 0,061 – ε – (Dx+ Dy)n2, and the determinant, 
Detn= 0.3455ε – n2·(0.061·Dy – ε·Dx) + DxDyn

4. The condition Det0> 0 is 
fulfilled; the bDx + cDy > 0 implies that 0.061Dy > ε·Dx, and (17) requires 
(0.061Dy – εDx)

2> 4Dx·Dy·0.3455ε. For ε = 1 (value in which T0 < 0), Dx 
= 1, Dy = 600 (adequate units), this condition is also fulfilled. p = 0.025 
could be a possible value of p that makes Detn< 0; for that p value, the 
real part of T0 is (0.021/2), and its higher than the real part of T0, – 
(T0/2) < 0 (since ∆0≈ – 0.5 < 0, the homogeneous steady state was an 
stable state).

Edelstein model [7,17,18]

2A. This model is based in an enzymatic mechanism [18-20] 
whose substrate is monomer X. That makes possible to be applied in 
biochemical polymerisations
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X
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
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
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
 →
 
 + → 
 →  


The kinetic equations are:

1 2 3 4

2 2

2 3 4 5

2 3 4 5

2 2

X 2

2

p

i t

m XU m XY m C m C k RX

U A m XU

Z m ZX m C m C m ZY

C m ZX m C m C m Zp

R k X k R

•

•

•

•

•

 = − + + −


= −
 = − + + −

 = − − +

 = −


Which are reduced to two variables if 0, R 0, 0.Z C
• • •

= = =
Observe that 0,Z C

• •

+ =  then Z + C = B = constant, resulting in the 
following equations:

( ) ( )( ) ( )2 2
1 3 4 1 3 2 5 3 4

1 1

X 2 · / 2 /

Y

i p i tm XU k k a k k X B m m m X m m X m p m m

A m XU

•

•

 = − + + − + + + + +  

 = −

with the definitions

( ) ( )1 2 2 i 1 p i t 2 3 4 2 3 3 4 3 4 3 5 2 8 1 9A = A / ,m / = k ,2k + k k / 2k =k , m = k , m = k ,m = k , ,µ µ + + = =B m m B m m B A k m k

it is obtained:
2 3 4

1 2 7
5 6

8 9

k X k
X k XY k X k

k X k

Y k k XY

•

•

+
= − − +

+

= −

			                 (30)

This model applies only to the polymerization type {2,2}.

Considering the following values [7] for the constants (in adequate 
units): k1 = 1/µ, k2 = 1/µ, k3 = 60/µ, k4 = 60/µ, k5 = 1, k6 = 2.2, k7 = 30/µ, k8 
= 16.858 and k9 = 1, the equations system becomes:

21 60( 1)( 30)
2.2

16.858

XX XY X
X

Y XY

µ

•

•

+
= − − +

+

= −

     			                (31)

which has a steady state in X0 = 2, Y0 = 8.429. The secular matrix is

















−=−=
µ

=
µ

=
=

2b429.8a

2g3474.0c
Mn

and the trace, 0 (0.3474 / ) 2T µ= − , if T0 = 0.1737, then T0 > 0. 
Moreover, Det0 = (16.1633/ T0) > 0. So, if µ < 0.1737, a limit cycle 
around the unstable steady state exits.

2B. If the diffusion is considered, (30) can be written as

2
2 3 4

1 2 7 2
5 6

2

8 9 2

x

y

k X kX Xk XY k X k D
t k X k r
Y Yk k XY D
t r

+∂ ∂
= − − + +

∂ + ∂

∂ ∂
= − +

∂ ∂

	               (32)

and with the values for the parameters previously used:
2

2
2

2

2

1 60( 1)( 30)
2, 2

16,858

µ
∂ + ∂

= − − + +
∂ + ∂

∂ ∂
= − +

∂ ∂

x

y

X X XXY X D
t X r
Y YXY D
t r

		               (33)

The secular matrix is


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











−−−

µ
−

µ=
2

y

2
x

n

nD2429.8

2nD3474.0
M

whose trace is
2

yxn n)DD(23474.0T +−−
µ

=

and the determinant

2 416.1633 0.3474 2n y x x yDet n D D D D n
µ µ

 
= − − + 

 

Det0 > 0 is fulfilled. In order to fulfill the conditions

xy D2D3474.0
>

µ

and
20.3474 16.16332 4y x y xD D D D

µ µ
 

− > 
 

the values µ = 1 (that leads to T0< 0), Dx = 1, Dy = 600, are used. So, 
the conditions for Detn < 0 are fulfilled if p = 0.2, value that provides 
a real part of ω (0.0181/2), higher than the real part of ω0 (without 
diffusion), (ω0/2) < 0, since ∆0 < 0. The homogeneous steady state was a 
stable focus and it could be destabilized by diffusion. 

Oregon oscillator [7,21], Stiffly coupled oregonator [22]

5A. It was conceived first by Field and Noyes [21] as a model 
developed from the well-known Belousov–Zhabotinsky oscillating 
reaction [2]. Those authors explained it in three variables, but it is 
possible to reduce it to two variables assuming that the third one is 
always maintained in steady state (stiff coupling) [23], without losing 
its main important characteristics.

1

2

3

1

2

1

destruction products of Z
2

2 inactive dimer, D

Y

Ri

p

t

m

m

m

k

k

k

A Z X
Z X
A X X Y

X
Z

X

R X R
R polymer

α

β

+ →
 + →
 + → +


→
 →
 →
 

+ → 
 →  

The kinetic equations are:
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2
1 1 2 2

2 3

1 3

X 2 2 i p

i t

A Z m ZX A X m X k X k RX

Y A X m Y

Z A Z m Y

R k X k R

α

α β

α

β

•

•

•

•

 = − + − − −


= −

 = − −

 = −

Which are reduced to two variables if 0 ( ), 0;Z stiff coupling R
• •

= =

( )
( )

1 1 3 1/
/ 12

1 1 2 2

2 3

X
2

Y

i
i p

t

A m X m Y
kA m X A X m X k X k X
k

A X m Y

β
α βαα

β

•

+

•

 −
=   + + − − −  

 
= −

Considering polymerizations type {0, 1} and {0,2} and with the 
definitions:

1/
1 1 1 2 1 3 3 1 3 4 6 2 5 2 p i t 7 2 8 3A = k ,m = k ,A /m = k ,m /m = k ,k = 2m +,k = A k (k / k ) , k = A , k = mβ− β

The kinetic equations take the form:

YkXkY

XkXk
Xkk

)Xkk(YX

87

2
65

43

21

−=

−+
+
−

=

•

•

			               (34)

Polymerization type {1, 1} with the definitions:
1 1 1 2 1 3 3 1 3 4 5 2 6 2 p i t 7 2 8 3A = k , m =k , A /m = k , m /m = k , k = A k , k = 2m + k (k /k ), k = A , k = m− i

results in (34).

  

A1 =k1, m1 =k2, A2 /m3 =k3, m1/m3 =k4, k5 =A2, k6 = 2m2 +2ki + kp (ki / 2kt )
1/2 ,

k7 = A2 ,k8 =m3

Polymerization {2, 2} and the definitions:

give as a result equations (34).

3A. Assuming the following values for the parameters [7] k1 = 1, 
k2 = 1, k3 = 1, k4 = 1, k5 = 1 and k6 = 8.375⋅10–6 (proposed value by Field 
y Noyes considering the bromine chemistry [24], in order to explain 
the Belousov–Zhabotinsky reaction); k7 = ε and k8 = ε, the system (34) 
becomes:

6 2(1 ) 8.375 10
1

( )

Y XX X X
X

Y X Yε

•
−

•

−
= + − ⋅

+

= −

			             (35)

There is a steady state in X0 = Y0 = 488.68. The secular matrix is









ε−=ε=

−==
=

ba
9959.0g9877.0c

M0

and the trace is T0 = 0.9877 – ε. Det0 = 8.176⋅10–3ε > 0. If ε < 0.9877, 
the steady state will be unstable and a limit cycle around it will be arise. 

3B. Introducing the diffusion process, (34) can be written as

2

2

y87

2

2

x
2

65
43

21

r
YDYkXk

t
Y

r
XDXkXk

Xkk
)Xkk(Y

t
X

∂
∂

+−=
∂
∂

∂
∂

+−+
+
−

=
∂
∂

		               (36)

Using the same constants that in 3B, the system is

2
6 21

2

2

7 8 2

( ) 8.375 10
1 x

y

X Y k X XX X D
t X r
Y Yk X k Y D
t r

−∂ − ∂
= + − ⋅ +

∂ + ∂
∂ ∂

= − +
∂ ∂

(37)

with the following secular matrix
2

2

0.9877 0.9959

·
x

n
y

D n
M

D nε ε

 − −
=   − − 

whose trace is,

Tn = 0.9877 – ε – (Dx+ Dy)·n2

and the determinant,
3 2 48,176 10 (0,9877 )n y x x yDet n D D D D nε ε−= ⋅ − − +

When Det0 > 0, the conditions 0.9877·Dy > ε·Dx, and (17) if ε = 1 
(that means T0 < 0), Dx = 1, Dy = 2, can be fulfilled; for example, the 
value p = 0.2 satisfies the conditions for Detn < 0. For that value, the 
real part of ωn is 0.2837/2, higher than the part corresponding to n = 0, 
that would be T0/2 < 0 (since ∆0 < 0). The homogeneous steady state is 
a stable focus.

Conclusion
Except for the polymerisation {1, 2}, the rest of the polymerisations 

types considered in this paper can fit, at least, to one and frequently 
to some of the three mentioned oscillators. Supercritical bifurcation 
defbpf, with limit cycle apparition in absence of diffusion, is possible in 
all the considered models. Moreover, in all cases, it is possible to get an 
unstable homogeneous steady state of diffusion, and a homogeneous 
steady state (stable in diffusion presence) can be destabilized by 
diffusion. By the moment, it is difficult to predict the scientific [25-
30] or technological applications that could have the theoretical 
development made in this paper.
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