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Abstract

This article discusses the possibility of coupling a polymerization reaction to an oscillatory kinetic model,
complemented by diffusion which can lead to spatial structure. We used three well-known mathematical models of
oscillators: a variant of the Rossler multivibrator, a model proposed by Edelstein, and the Oregon Oscillator. One or
some of the terms in the equations of these models come from a polymerization reaction, while the other terms of
these equations will come from collateral processes. So, almost any reaction could become oscillatory and/or with
dissipative structure, adding the adequate collateral processes. The propagation stages are considered as invariants
and initiation reactions of order a = 0, 1, or 2, and termination reactions of order = 1 or 2 are assumed. Except in
the case a =1, B = 2, all six remaining reactions combinations (a, 8) can be coupled to least one, and often to several
of the models. The effects of destabilization a stable homogeneous steady state by the presence of diffusion is also

discussed, which is always be possible.

Keywords: Reaction kinetics; Rossler multivibrador; Oregon
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Introduction

Theoretical and experimental studies of oscillating reactions
have been studied at many laboratories and the interest of this type
of phenomena has increased rapidly which led to the discovery of
oscillations in biochemical and chemical systems [1]. Interestingly,
in the early studies, thermodynamicists and applied mathematicians
worked out models for such reactions and discussed the feasibility
of oscillations in homogeneous chemical systems. Later a general
criterion was available for the type of chemical reactions that could
present undamped oscillations [1].

When the first discoveries in oscillatory chemical reactions
[2] and spatial structures were found in chemical systems [3] (e.g.,
concentration waves), mathematical expressions to fit experimental
results were looked for.

Adequate models for the chemical oscillations [4] are provided by
non-linear ordinary differential equations when they are considered
as precursors of the formal kinetic development. Partial differential
equations [5] could explain the appearance of spatial rearrangements
when they are applied to the reaction kinetics considering spatial
diffusion. There are some kinetic reaction mechanisms, which are
in general very complex that can be fit to mathematical models to
predict the apparition of oscillations and/or spatial arrangements [6].
Recently, it has been suggested [7] that the mathematical equations of
these models could be divided in two groups. Some of these equations
will consider the main reactions (object to study), and the rest of them
will take in account collateral processes. So, almost any reaction could
become oscillatory and/or with dissipative structure by adding the
adequate collateral processes. In this paper, examples of the application
of this idea to polymerisation reactions, is shown.

General Theory

Polymerisation processes and rate equations [7]

Three steps are considered in the polymerisation reactions:

where reaction rate is of the form R~ X¢, and a can take the values
0,1or2

Propagation: R + X ~ 5 4R
reaction rate is of the form R ~ RX
Termination: BR — Xy products

In this case reaction rate is of the form R ~ R and f can take the
values 1 or 2.

By assuming the steady state for the propagators R, that is R,
=R = ng it is obtained that R ~ X“¥; then the expression for the
polymerisation rate X, becomes:

. 24
Xpot = -k X" —k, X7 (1)
where kg includes the constants k and k..

The term X represents monomer concentration, and the propagation
stages are considered as invariants and the different mechanisms of the
polymerisations will be denoted using the symbols [a, ] [7,8], where the
initiation reaction (a) can be of zero, first, 1, or second order and the
termination reaction () can be of of first or second order.

Analysis without diffusion

Ordinary differential equations system [4,9] in two variables, X and
Y, will be considered

Y = N(X,Y)
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where the variable Y represents the concentration of a specie
that appears in a collateral process. The steady states denoted by SS,
fulfill the equalities X =0, Y =0, and the X and Y concentrations
can be calculated by solving M(X Y) = 0, N(X Y,) = 0 equations. A
linearized variational system [10,11] is obtained when considering the
perturbations defined as:

x(t) =X-X,

Y(t) =Y- Yo
the system is of the form

(©)

X=cx+gy
. 4)
y=ax+by

where the coefficients

(an g_[an , a:(aNJ [N
c=|—1,8=| =~ ==
[5):4 0 ay 0 ox 0 ay 0
are the elements of the characteristic no-diffusive matrix
a b
This matrix trace is
T,=b+c )
and its determinant is
Det,=bc-a (6)

In the neighbourhood of the steady state (SS) the solutions of (3)
are in the form

x=Ae™
t @)
y = Be”
where, w are the roots of the equation:
-Tyw+Det,=0 (8)

The steady state is unstable if, at least, one of these roots has a positive
real part. It occurs when Det < 0. However, this condition causes the S§
to be a “saddle point”, which normally involves explosions, and so, it is
discarded as realistic chemical model.

A root with a positive real part can be obtained if T, > 0.
If T, = 0 and the discriminant is:

A,=T, - 4Det, )

if Det, <0 then A,>0, the steady state is a node; if Det, >0 then A,
<0, i the steady state s a focus.

In all the equations systems that will be examined, the condition
Det, > 0 will be fulfilled, and the transitions from T,;< 0 to T, = 0 and to
T,> 0 will be possible, that is, from a stable focus (T, < 0, A = - 4Det <
0) to node (T, = 0, A ;= - 4Det < 0) and to unstable focus (T > 0,
A, = - 4Det, < 0). Hopf [12] proved that this bifurcation leads to the
apparition of a limit cycle around the unstable focus, with sustained
oscillations of the system. In this paper, the Hopf bifurcations existence
in all the studied cases is verified.

Including the diffusion process

If diffusion effects along one dimension (r) are considered, the
equations (2) take the form [13,10]

Page 2 of 6
X _ X
at | tor? (10)
oY o°Y
o Y or?

where D_and D are diffusion coefficients, respectively. In this
context, the steady states are named homogeneous steady state (HSS).
Their stability can also be studied by linearization, and when suitable
perturbations for the desired boundary conditions are defined. In
this paper, the Neuman's conditions [10] (of no-flow in the system
boundary) are used:

x(t,r) = Ae” cosnr=X - X,

(11)
y(t.,r) = Be” cosnr =Y - ¥,

where n is the wave number, which under the conditions x(0, L)

=+ A and y(0, L) = +B, must satisfy,
mr
n=—
L

where L is the length of the system and m =0, 1, 2, 3, .....(an integer)

The secular matrix of the linearized system takes the form

M :(C—Dxnz g ] 12)
" la b —Dyn2

whose trace is

T=T,-(D+ Dy)-n2 (13)

and the determinant is
Det = Det, - n*(bD_+ ch) + DK'Dy'n4 (14)

Now, trace and determinant depend on the wave number, n. The
roots of the secular equation

- T, w+Det =0 (15)

will be also dependent on the wave number. As in the no diffusive
case, if one of those roots has a positive real part, the homogeneous
steady state will be unstable. That can be so because of the conditions
Det < 0,0r T > 0. The condition T >0is impossible to be fulfilled,
unless in the no diffusive case T,>0, that is, the homogeneous steady
state was already unstable in diffusion absence. So, it is impossible a
homogeneous stable steady state, which fulfilled T,< 0, Det,> 0, to be
destabilized by diffusion. Besides, in the case T,> 0, if w had a positive
real part because of being T > 0, that positive real part would be
W, =T /2if An =T?- 4Det <0, or w, = [(T, + An"?)/2] if An >
0; in one or the other case, the higher positive value of this real part
will be reached when n = 0. That means that in the case of where are
several solutions (for some n values), when it is allowed by the limit
conditions, the homogeneous solution (n = 0), will be amplified faster
and predominates above the no homogeneous ones, and the presence
of spatial structures is not probable.

The condition Det_< 0 has not been considered yet. If p = n?, it can
be expressed as a second grade polynomial:

Det = Det - p~(be+ ch) + DXDyp2 <0 (16)

and it is possible that it could be fulfilled in some interval p,
< p < p, (although T > 0 and Det,> 0, case in which it can be said
that the homogeneous steady state can be destabilized by diffusion.
Independently of p,> p,> 0, and p,p, = Det /D -D, it is necessary Det,
> 0 to be firstly fulfilled. Moreover, as p, . p, = [(b D +c¢D )/D -D ] > 0
it is necessary that bD + cD > 0. Finally, the condition for that interval
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to exist is that the discriminant must be positive,

=(bD+cD )2 4Dx-Dy-Det0 >0 (17)

Ay
If all of those conditions are fulfilled, as T <T,<0,Det <0<Det, the

inequality 4/A, > \/AT, will be also fulfilled, and so, T, +4/A, > T, +./A,

could be accepted. The positive real part of w will be higher for some n
# 0, than for n = 0, and if that is so, the no homogeneous perturbation
increases more quickly than the homogeneous one (if both of them
coexist and compete).

If the homogeneous steady state is unstabilized for any wave
number, n, an initial fluctuation having a Fourier component with that
n, will force the system to go out from the homogeneous steady state
and a new spatial arrangement produced by fluctuations [14] will be
obtained.

Now, the three mathematical models will be analysed.
Models

Rossler modified model [7,15,16]
1A. without diffusion:
4 s v L
4, +X >2X
X +Y —=> Y + degradation products of X
2X —" 5D,
A + D, —2 53X

2X &= D,

D, + X —“— D, + degradation products of X
aX —4>R
R+X R

BR —— polymer

The kinetic equations:

X =A—m X+ 4,X —m, XY =2m, X" +3m A,D, —2m X" +2m X" —m,D* X —ak X “ —k,RX
Y=mX-FY
D, = m,X* — m,A,D,

D, =mX’* —mD,

R =kX" - SkR’

When ]51 =0, D ,=0, f{o = 0, they are reduced to two equations:

k 1p
ak X" —k | o |yl
B,

X =d + (4 —m) X —m, XY+ mx* = % x0
mg

Y =mX - FY
and the following equations are obtained:

X ==k XY +ky X* k3 X° +ky X + ks

. (18)
Y =kgX —k,Y

where the values of kL kz, ks, k4, ks, l<6 and k7 are defined as follows:
Considering the polymerizations types {0, 1} and {0, 2}:

11
A1=k5;AZ=ml—kg=k4[conkg= kp[ﬁk/lcj ,ﬁ=1,ﬁ=2],

m, =k, my=k,,

m,ms _

»kg=m;,k;, =—F

for the polymerization type {1, 1}:

kk .
oo gy, IS e my =k, F =k,

4 =k; 4, =- Bk T
t 6

my =k, =k, my, =k, my -

for polymerization type {2, 1}:

1/2
A=k Ay —m, = Ky my =y omy = 2k, =y, TS g kY km =k F =k,
; mg 2k,

when the polymerization type {2, 2} is considered:

A = ks Ay —my =k, my =k, my = 2k, _k”(zk/; ]:kz’ m,;,mS = ks my = ke, F =k
t 6

A. A concrete case [7] will be considered. With the following values
of the constants: k = 1, k,= 0.9, k,= 1, k,= 0.2,k = 0.01, k, = 1.5¢ and
k.= e. The system becomes :

v 2 3

).(, XY +0.9X% - X3 +0.2X +0.01 (19)

Y =£(1.5X-Y)

This system has an only one homogeneous steady state (X, = 0.271,
Y, = 0.4065) and its secular matrix is

¢=0.061 g=-0.7305
°"la=15¢ b=-¢

with T = 0.061 - e, will be positive if € < 0.061, and Det, = 0.3455¢
> 0. So, (19) admits Hopf bifurcation and a limit cycle around the
unstable steady state for € < 0.061.

1B. Considering that there is a diffusion process, (18) becomes:

2
a—Xz kXY + kX, -k, X+ k, X + ks +Dxa—)2(
Ot S or
(20)
kX —kY+D o ar
ot Y or
and using the constants values of Section 1A
oX _ X
ot ' ’
oy _ %Y 2D

g(1.5X -Y)+D, =
or?

The secular matrix is
0.061-D.n*> -0.271
M, =
[1.58 —s—Dynzj

whose trace is T, = 0,061 — ¢ - (D + Dy)nZ and the determinant,
Det = 0.3455¢ - (0 061- D -e¢D)+DD n4 The condition Det > 0 is
fulﬁlled thebD +cD >0 1mphes that 0. 061D >e&D,, and (17) requires
(0. 061D, - eD )Z> 4D -Dy-0.3455¢. For e = 1 (Value in which T < 0), D
=1,D = £ 600 (adequate units), this condition is also fulfilled. p = 0. 025
could be a possible value of p that makes Det < 0; for that p value, the
real part of T is (0.021/2), and its higher than the real part of T, -

(T,/2) < 0 (since A= - 0.5 < 0, the homogeneous steady state was an
stable state).

Edelstein model [7,17,18]

2A. This model is based in an enzymatic mechanism [18-20]
whose substrate is monomer X. That makes possible to be applied in
biochemical polymerisations
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The kinetic equations are:

).( =mXU =2m, XY +m,C+m,C—k, RX
U=4,—mXU

Z = -mZX + mC + m,C — mZY

é =m,ZX — m,C — m,C + myZp

R=kX* - 2kR®

Which are reduced to two variables if Z=0,R=0,C=0.
Observe that z + C =0, then Z + C = B = constant, resulting in the
following equations:

X =m XU ~ (2k, vk vk, /2K, )XZ [ B(my+m)(mX +m) ! (myX +myp+m,+m,)]
Y= A4, - m XU

with the definitions

A= Ayumy /= kg, 2k, Tk gk /2K =k, B(my ) my =Ky, B(my +my ) my =k, mB=K, A, =k, m, =k,

it is obtained:

X =k XY kX2 KX ks
kSX + k6 (30)
Y = kg — kXY
This model applies only to the polymerization type {2,2}.

Considering the following values [7] for the constants (in adequate
units): k = 1/, k, = 1/, k, = 60/, k, = 60/, k, = 1, k, = 2.2, k_= 30/, k,
=16.858 and k, = 1, the equations system becomes:

x=Lixy-—x2_80X+D 5,
u X422 (31)

Y =16.858 - XY

which has a steady state in X,=2,Y,=8.429. The secular matrix is

L 03474 2
M, = u u
a=-8429 b=-2

and the trace, T, =(0.3474/u)-2, if T, = 0.1737, then T > 0.
Moreover, Det, = (16.1633/ TO) > 0. So, if p < 0.1737, a limit cycle
around the unstable steady state exits.

2B. If the diffusion is considered, (30) can be written as

Page 4 of 6
4 U X _yxy kx? RoXrke o X
Ax+U —" 52X o ks X+ke " (32)
X+X &=cC Y o koxyap, oY
my or & ™ Y op2
my
€3 s Z+ P and with the values for the parameters previously used:
2X %>R 2
] X _Lxy—x2 80D 5 p OX
R+ X —23R ot u X+2,2 or (33)
K, oY oY
2R ——> polymer = 16,858_)(Y+DyF
»

The secular matrix is
03474 o . 2

X

M, = H Hn
-8.429 -2-Dyn’

whose trace is
T = 0.3474

n

-2-(D, +D,)n’
and the determinant

Det

n

_161633  , [0.3474

4
p p Dy—2ij+Dnyn

Det,> 0 is fulfilled. In order to fulfill the conditions

3474
0.347 D, >2D,
and
2
[0.3474D D J - ap.p. 161633
y X y-x
u H

the values p = 1 (that leads to T ;< 0), D_=1, Dy =600, are used. So,
the conditions for Det_ < 0 are fulfilled if p = 0.2, value that provides
a real part of w (0.0181/2), higher than the real part of w, (without
diffusion), (w,/2) < 0, since A < 0. The homogeneous steady state was a
stable focus and it could be destabilized by diffusion.

Oregon oscillator [7,21], Stiffly coupled oregonator [22]

5A. It was conceived first by Field and Noyes [21] as a model
developed from the well-known Belousov-Zhabotinsky oscillating
reaction [2]. Those authors explained it in three variables, but it is
possible to reduce it to two variables assuming that the third one is
always maintained in steady state (stiff coupling) [23], without losing
its main important characteristics.

A+7Z - X
Z + X —%— destruction products of Z
A+ X 52X +7Y

2X —™— inactive dimer, D,
Y —=—>Z
aX —>R

R+X 2R

BR —— polymer

The kinetic equations are:
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. _ 2
X =AZ -2mZX + A, X - 2m, X’ — ak X“ —k,RX X _Yh=%) | y_g375.10°x° +D, 0 )2(
ot 1+X S or (37)
_ _ 2
Y=4X-mY aY—kX kY+Da):
. ot or
Z=-AZ - mY
with the following secular matrix
— a B
R=kX" - pkR Y 0.9877-D.n’>  —0.9959
. . n= 2
Which are reduced to two variablesif Z = 0 (stiff coupling), R = 0; ¢ —¢-D,n
)-( _ (A1 _ le)m3Y . v whose trace is,
A+mX A X -2m X —ak Xk, [ﬂk J x @ T,=0.9877 - ¢~ (D+ D )-n?
Y = A4,X —mY I and the determinant,
-3 2 4
Considering polymerizations type {0, 1} and {0,2} and with the Det, =8,176-10 "¢ —n (0’9877Dy -&D,)+D,Dyn
definitions: When Det, > 0, the conditions 0.9877- D >eD,and (17) ife = 1
A=k m, =Ky, A fmy =k, m, fmy =k, = 2m, + K, = A, —k (kB k= A, Ky =m, (that means T <0),D =1, Dy = 2, can be fulﬁlled for example, the

value p = 0.2 satlsﬁes the conditions for Det_< 0. For that value, the

The kinetic equations take the form: real part of w_is 0.2837/2, higher than the part corresponding to n =0,

© Yk, -k,X) R that would be T /2 < 0 (since A < 0). The homogeneous steady state is
X= k; +k,X kX -k X (34) a stable focus.

Y =k, X-kY Conclusion
Polymerization type {1, 1} with the definitions: Except for the polymerisation {1, 2}, the rest of the polymerisations

A=k, m =k, A /m,=k,, m/m,=k,, k=A,~k,k=2m,+k (k/k), k,=A,, k=m, types considered in this paper can fit, at least, to one and frequently
to some of the three mentioned oscillators. Supercritical bifurcation

results in (34). defbpf, with limit cycle apparition in absence of diffusion, is possible in
A, =k, m =k, A,/m, =k, m,/m, =k, k,=A,, k =2m,+2k+k (k /2k)", all the considered models. Moreover, in a'll cases, it is possible to get an
unstable homogeneous steady state of diffusion, and a homogeneous

ko= o= steady state (stable in diffusion presence) can be destabilized by
Polymerization {2, 2} and the definitions: diffusion. By the moment, it is difficult to predict the scientific [25-
. . 30] or technological applications that could have the theoretical
give as a result equations (34). devel de in thi
evelopment made in this paper.

3A. Assuming the following values for the parameters [7] k, = 1,
k,=1,k,=1,k,=1,k =1 and k = 8.375-10° (proposed value by Field
y Noyes considering the bromine chemistry [24], in order to explain
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