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Introduction
The plant cell wall is the most abundant reservoir of lignocellulosic 

material in the biosphere and degradation takes place by microbial 
enzymes is a key biological process that is central to the carbon cycle, 
herbivore nutrition and host invasion by phytopathogenic fungi and 
bacteria. Xylan, the main component of hemicellulose consists of α-1, 
4-linked d-xylosyl residues backbone branched with other pentoses,
hexoses and uronic acids. Xylanases and associated debranching
enzymes produced by a variety of microorganisms, which bring about
the hydrolysis of Xylobiose of hemicelluloses [1,2].

While xylanases have been reported from fungi [3], bacteria [4], 
actinomycetes [5,6], and yeast [7-9], there have been few studies 
using edible fungi as a xylanase source [10]. There are three reasons 
for using edible fungi as xylanase sources. First, mushrooms produce 
a wide range of extra-cellular enzymes that enable them to degrade 
complex lignocelluloses substrates into soluble substances [11]. 
Second, xylanase from edible fungi is an extra-cellular enzyme, with 
more than 90% of the xylanase from the mushroom secreted out of 
cells by T. Clypeatues [12]. Third edible mushroom protein is safe and 
highly nutritional [13]. Many of these fungi are also the source of high-
value metabolites of interest to the pharmaceutical, food and cosmetic 
industries [14,15]. The objective of this study was to characterize 
xylanase enzyme, produced by Pleurotus eryngii grown on 0.6% starch 
as a main substrate in liquid-state culture and examined the effects of 
pH, temperature and metal ions on crude xylanase stability. To our 
knowledge, this is the first report describing the characterization of 
xylanase by edible mushroom Pleurotus eryngii.

Materials and Methods
Fungal strain

In this study, mushroom strain Pleurotus eryngii was purchased 
from Edible fungi Institute, Shanghai Academy of Agricultural 

Sciences Shanghai, China. Stock cultures of these fungi are maintained 
on Potato dextrose agar slants at 4°C.

Inoculum preparation

The inoculum was prepared by growing mushrooms on a rotary 
shaker at 120 rpm and 27 ± 2°C in 250 ml Erlenmeyer flasks containing 
50 ml of following synthetic medium (per liter) 6.0 g glucose, 0.2 g 
yeast extract, 0.5 g peptone, 1.0 g KH2PO4 and 0.5 g MgSO4·7H2O. The 
medium was adjusted to pH 5.5 with 0.1 N HCl or NaOH. After 4 days 
of cultivation mycelial pellets of Pleurotus eryngii were harvested and 
homogenized with a laboratory blender.

Culture conditions

Lignocellulosic substrates submerged fermentation has been 
carried out on a rotary shaker at 120 rpm and 27 ± 2°C in 250 ml 
Erlenmeyer flasks containing 50 ml of above-mentioned medium with 
different carbon sources (glucose, xylose, sucrose, starch, xylan, wood 
straw and rice husk powder) with 0.2, 0.4 and 0.6% concentrations g/L. 
The initial pH of the medium was adjusted to 5.5 prior to sterilization 
by using 0.1 N HCl or NaOH. 1.0 ml of mycelial homogenate was used 
to inoculate the Erlenmeyer flasks containing media. After 96 hours 
of mushroom cultivation, when cultures reached end of logarithmic-
stationary phase of growth, the extracellular enzymes were extracted in 
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order to measure the pH of culture medium and enzyme activity. The 
mycelial biomass was separated by filtration through Whatman filter 
paper No.1 and followed by centrifugation (5000 g; 15 min) at 4°C and 
the final pH was measured by (WAPA) pH meter.

Enzyme assay

Xylanase activity was determined by mixing 0.5 ml sample with 
0.5 ml of oat to xylan (Fluka, Germany) (1% w/v) in 50mM citrate 
buffer (pH 5.3) at 60°C for 15 min reported by Bailey et al. [16]. Xylose 
standard curve was used to calculate the xylanase activity. In assay the 
release of reducing sugars were measured by using dinitrosalicylic acid 
reagent method [17]. One International unit of enzyme activity was 
defined as the amount of enzyme, releasing 1 µmol of reducing sugars 
per minute ml-1.

Results and Discussion
The effect of time period and carbon sources on the production of 

xylanase by Pleurotus eryngii was checked and it is concluded from the 
outcome of the present study as shown in Figures 1-3 and Table 1 that 
the addition of different carbon sources were enhanced the xylanase 
production and result reveals that incubation period varies from 
carbon source to carbon source. However, after 96 hours a decrease 
in enzyme production was observed when starch was used as a carbon 
source for the growth and xylanase production that may be due to the 
exhaustion of nutrients from the medium that affected the organism’s 
growth. Other factor, glucose is the end product of starch so in my 
study glucose has shown repressed expression, which is also supported 
by early investigators [18-20]. After optimizing carbon source, nitrogen 
sources were optimized with two different concentrations (0.5 and 
1.0%) and incorporated with 0.6% starch in the fermentation medium 
for the growth and xylanase production of Pleurotus eryngii. Among 
the nitrogen sources used 1.0% corn steep liquor was found best for 
xylanase production as shown in Table 2.

The crude xylanase produced by Pleurotus eryngii when grown on 
0.6% starch, 0.5% corn steep liquor and 0.05% valine incubated at 30°C 
for 96 hours and pH was adjusted to 7.0 was characterized on the basis 
of time of incubation, substrate specificity, substrate concentration, 
enzyme volume, buffer, pH, pH stability, temperature, thermostability, 
activators and inhibitors.

The xylanase activity of Pleurotus eryngii was observed highest 
up to 15 minutes at 60°C and then gradually declined as shown in 
Figure 4. The reason behind the decrease in xylanase activity might be 
inactivation of enzyme on prolong incubation or self digestion [21,22]. 
Similar results are reported from earlier studies [23,24]. Figure 5 shows 
the substrate specificity xylan was replaced with various substrates 
such as CM-cellulose, avicel, cellulose and starch. The 100% relative 
higher activity was observed by 2.0% xylan. Figure 6 shows the effect 
of substrate concentration (xylan 0.5-4.0%) on xylanase activity 
produced by Pleurotus eryngii. Xylanase activity was increased with 
increase of xylan concentration up to 2.0% and later on activity was 
gradually decreased. The declination of xylanase activity may be due 
to alteration in enzyme and substrate ratio. The effect of crude enzyme 
volume (0.1-1.0 ml) was also checked on Pleurotus eryngii xylanase 
activity. The higher xylanase activity was found using 0.5 ml crude 
enzyme while low xylanase activity was observed when less amount of 
enzyme volume was used so it could be due to insufficient amount of 
enzyme to hydrolyze available substrate as shown in Figure 7. Figure 8 
shows the effect of different buffers (sodium phosphate, sodium citrate 
and universal buffer (0.05 M. pH 5.5) on xylanase activity. The 100% 

Figure 1: Effect of 0.2% carbon sources on growth and xylanase production 
by Pleurotus eryngii after 288 hours of incubation period.

Figure 2: Effect of 0.4% carbon sources on growth and xylanase production 
by Pleurotus eryngii after 288 hours of incubation period.

Figure 3: Effect of 0.6% carbon sources on growth and xylanase production 
by Pleurotus eryngii after 288 hours of incubation period.

SD: Standard Deviation; SE: Standard Error; Minimum: 2.1150; Maximum: 
7.4800; Sum: 42.296; Mean: 5.2870; Variance: 3.5130; SD: 1.8743; SE Mean: 
0.6627

Figure 4: Effect of time of incubation on crude xylanase.
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relative activity was determined by using sodium citrate buffer which 
was used throughout the study. The use of sodium citrate buffer in 
xylanase activity is reported by Salama et al. [25].

Figure 9 shows the effect of pH and pH stability on xylanase activity 
synthesized by Pleurotus eryngii using sodium citrate buffer ranging 
from pH 3.0-10.0. The maximum activity was determined at pH 5.0. 
The similar results have been reported by Franco et al., Ximenes et al. 
and Chipeta et al. [26-28]. The pH stability of xylanase was also checked 
using sodium citrate buffer ranging from pH 3.0-10.0 when enzyme 
was incubated for 10 minutes without substrate. After 10 minutes 
substrate was added and assay was carried out at 60°C. Xylanase 
showed maximum pH stability in-between pH 5.0 to 7.0. The similar 
results are reported by Ref. [29-32].

Figure 10 shows the effect of temperature and temperature stability 
ranging from 10-100°C on crude xylanase activity. The xylanase activity 
increased due to the enzyme catalyzed reaction up to 60°C and also 
due to the increase in the number of collisions between the reacting 
molecules. But, the enzyme probably got denatured on exposure to 
higher temperatures than its optimum and therefore, steadily lost its 
activity when incubated for 15 minutes with sodium citrate buffer 
pH 5.0. These findings are in accordance with several earlier reports 
showing optimal xylanase activity at 60°C by Balakrishnan H et al. [33-
35]. 100% relative xylanase activity was measured after incubation at 
60°C for 15 minutes and high optimum temperature may have striking 
effect on industrial purpose. The thermostability was checked by 
heating enzyme for 10 minutes at different temperatures ranging from 
10-100°C. More than 40% activity was retained within 10 minutes at 
100°C that proves xylanase activity is thermostable.

Figure 11 shows the effect of various metal ions or compounds 
(5 mM) on xylanase activity produced by Pleurotus eryngii. The 
xylanase activity was activated by metal ions such as Zn2+ and Ca2+ that 
suggests xylanase is a metalloenzyme. Xylanase is strongly inhibited 
by EDTA. The maximum activity was noted with 10 mM ZnCl2 114% 
and CaCl2 105% respectively. It has been reported that the divalent 
metals enhance xylanase activity [36-39]. Figure 12 shows effect of 
different concentrations (2.5-15.0 mM) of the best activator and was 
observed that xylanase activity increased with the increase of ZnCl2 
concentration and 100% relative activity was noted with 10 mM ZnCl2. 
This was also observed that with the increase of ZnCl2 concentration 
decreased the enzyme activity and it may be due to the higher amount 

SD: Standard Deviation; SE: Standard Error; Minimum: 5.4380; Maximum: 
7.1280; Sum: 30.116; Mean: 6.0232; Variance: 0.4317; SD: 0.6570; SE Mean: 
0.2938

Figure 5: Effect of substrate specificity on crude xylanase.
(a) Effect of pH (b) pH stability; SD: Standard Deviation; SE: Standard Error; 
Minimum a: 74.420; Maximum a: 100.00; Sum a: 664.62; Mean a: 83.077; 
Variance a: 82.316; SD a: 9.0728; SE a: 3.2077; Minimum b: 74.420; Maximum 
b: 100.00; Sum b: 664.62; Mean b: 83.077; Variance b: 82.316; SD b: 9.0728; 
SE b: 3.2077

Figure 9: Effect of pH and stability on crude xylanase.

SD: Standard Deviation; SE: Standard Error; Minimum: 3.3020; Maximum: 
7.3450; Sum: 39.759; Mean: 5.6799; Variance: 2.5078; SD: 1.5836; SE: 
0.5985

Figure 6: Effect of substrate concentration on crude xylanase.

SD: Standard Deviation; SE: Standard Error; Minimum: 3.4910; Maximum: 
6.9670; Sum: 30.739; Mean: 5.1232; Variance: 1.7009; SD: 1.3042; SE: 0.532

Figure 7: Effect of enzyme volume on crude xylanase.

SD: Standard Deviation; SE: Standard Error; Minimum: 5.2990; Maximum: 
6.3010; Sum: 17.538; Mean: 5.8460; Variance: 0.2573; SD: 0.5073; SE: 0.2929

Figure 8: Effect of different buffers on crude xylanase.
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Carbon sources % Biomass g/50 ml Xylanase Activity IU/ml
Xylose 0.2 0.05 1.635

0.4 0.02 5.35
0.6 0.02 6.068

Glucose 0.2                                                                0.043 0.46
0.4 0.11 0.88
0.6 0.11 0.92

Sucrose 0.2                                                            0.19 1.21
0.4 0.27 2.205
0.6 0.25 6.53

Starch 0.2 0.02 1.443
0.4 0.027 2.46
0.6 0.026 6.83

Xylem 0.2 0.048 2.383
0.4 0.048 3.77
0.6 0.051 1.258

Wood straw 0.2 0.02 0.961
0.4 0.02 0.832
0.6 0.012 0.85

Rice husk 0.2 0.007 0.912
0.4 0.007 1.818
0.6 0.011 3.069

a: Biomass g/50 ml; b: Xylanase Activity IU/ml; SD: Standard Deviation; SE: Standard Error; Minimum a: 0.007; Maximum a: 0.0.270; Sum: 1.360; Mean: 0.065; Variance 
a: 0.006; SD a: 0.078; SE a: 0.017; Minimum b: 0.460; Maximum b: 6.830; Sum: 50.844; Mean: 2.421; Variance b: 4.071; SD b: 2.018; SE b: 0.440; ± indicated standard 
deviation from mean value

Table 1: Effect of different carbon sources on growth and xylanase production by Pleurotus eryngii.

Nitrogen sources % Biomass g/50 ml Xylanase Activity IU/ml
KNO3 0.5 0.043 2.82

1.0 0.037 3.671
NaNO3 0.5 0.047 3.541

1.0 0.064 3.863
(NH4)2 HPO4 0.5 0.061 2.64

1.0 0.054 3.01
Urea 0.5 0.062 2.95

1.0 0.067 3.16
Corn steep liquor 0.5 0.072 6.530

1.0 0.083 7.185

a: Biomass g/50 ml; b: Xylanase Activity IU/ml; SD: Standard Deviation; SE: Standard Error; Minimum a: 0.037; Maximum a: 0.083; Sum: 0.590; Mean: 0.059; Variance 
a: 0.000; SD a: 0.014; SE a: 0.004; Minimum b: 2.640; Maximum b: 7.185; Sum: 39.370; Mean: 3.937; Variance b: 2.541; SD b: 1.594; SE b: 0.504; ± indicated standard 
deviation from mean value.

Table 2: Effect of nitrogen sources on growth and xylanase production by Pleurotus eryngii.

(a) Temperature (b) Temperature stability; SD: Standard Deviation; SE: 
Standard Error; Minimum a: 45.550; Maximum a: 100.00; Sum a: 652.14; Mean 
a: 65.214; Variance a: 333.27; SD a: 18.256; SE a: 5.7729; Minimum b: 41.580; 
Maximum b: 100.00; Sum b: 796.36; Mean b: 79.636; Variance b: 662.75 SD; 
b: 25.744; SE b: 8.1409

Figure 10: Effect of temperature and stability on crude xylanase.

SD: Standard Deviation; SE: Standard Error; Minimum: 44.650; Maximum: 
114.05; Sum: 980.45; Mean: 75.419; Variance: 519.21; SD: 22.786; SE: 6.3198

Figure 11: Effect of (5mM) metal ions or compounds on crude xylanase.
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of activator, which acts as inhibitor.

Figures 12 and 13 show thermostability of crude xylanase at 
fixed temperatures 60°C and 70°C respectively with varying time of 
incubation (10-60 minutes) with and without ZnCl2. It was observed 
that xylanase activity was decreased with increasing time of incubation 
in all cases but in the case of without activator, activity was lower in 
comparison to 10 mM ZnCl2 as an activator at 60°C and 70°C. More 
than 80% and 75% xylanase activity was retained at 60°C and 70°C 
respectively after 60 minutes of incubation with activator (ZnCl2) 
(Figure 14).

Conclusion
According to this study, crude enzyme characterization proved that 

enzyme is thermostable and pH stable, which is suitable for industrial 
use and xylanase produced by Pleurotus eryngii can be cost effective 
and helpful for pulp and paper industries by saving large amount of 
foreign exchange.
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