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Introduction
Over the past two decades, incineration has been increasingly 

applied for treating municipal solid waste (MSW). The dominating 
purpose of burning MSW is to cut down the volume and mass of MSW, 
because of the increasing difficulty of finding suitable sites for controlled 
and uncontrolled landfill waste disposal operations [1,2]. The capacity 
of incinerating MSW was about 16.4 Mt, up to 16% of all MSW in 2011 
in China [3]. Recently, incineration has also been the most widespread 
adopted technology for the disposal of medical waste (MW) since the 
nationwide outbreak of severe acute respiratory syndrome (SARS) in 
2003 in China. Incinerating MW can not only neutralize its infectivity, 
which is the most hazardous MW property, but also sharply reduce its 
volume [4,5].

However, during incinerating MSW and MW, a great quantity of 
fly ashes from the air pollution control (APC) systems, which were set 
up for wiping off hazardous materials in the flue gas, were discharged. 
These APC fly ashes were classified as hazardous wastes owing to 
containing significant amounts of toxic materials such as heavy metals 
and persistent organic pollutants (POPs), e.g. dioxins and furans [6-9], 
and the fly ash from medical waste incinerator (MWI) was much more 
deleterious than that of municipal solid waste incinerator (MSWI) [8,9].

With growing public concerns and rigorous regulatory requirements, 
how to safely handle the ash is gaining more and more attention by the 
scientific community and by the general society. It is well known that 
inappropriate treatment and final disposal of the ash can induce adverse 
impacts on both public health and the environment [10]. Therefore, 
developing a safe and reliable immobilization technology, to transform 
the ash into a stable form, is very necessary. Many alternative methods 
for hazardous fly ash treatment have been suggested and developed. 
One of these methods is the melting technology which reduces the 
volume, yields the glassy leaching-resistant slag, and destroys toxic 
organic compounds effectively [11-14].

Among several melting methods, plasma melting technology has 
attracted increasing interest for hazardous waste treatment. Compared 
with a fuel type melting furnace, a thermal plasma system has the 
advantages of high temperature and high energy density, which allows 

fast heat transfer at the reactor boundaries and correspondingly shorter 
treatment time. In the past decade, thermal plasma technology has been 
extensively used for the treatment of various hazardous wastes [13-20].

In this study a direct current (DC) plasma appliance has been 
developed for the vitrification of fly ashes from both MWI and MSWI. 
The transformation of the mineralogical species of fly ashes and the 
leachability of major heavy metals during melting process were 
investigated, in order to ascertain the mechanism of fixing metal in 
molten slag. Also the density and the microstructure of original ash 
and vitrified slag were surveyed.

Experimental Methods
Thermal plasma system

The plasma torch used in this experiment consists of four major 
parts: cathode, first anode, linked part and second anode, as shown in 
Figure 1. Compared with conventional thermal plasma torches, this 
torch has a special design with two nozzles shaped copper anodes set at 
different axial distances from the cathode tip [21,22]. This configuration 
can not only extend jet length but also enhance the arc stability. In this 
work, argon was used as working gas at a flow rate varied from 12 to 
14 L/min. The double arcs plasma torch was operated in direct current 
mode with typically 20-30 V/100 A for the first arc and 50-60 V/100 A 
for the second arc. The temperature of the plasma jet near the torch exit 
is over 11000K, and the heat flux of the plasma jet is around 65 kW/m2 
at 14cm downstream from the exit [20-24].
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 A plasma melting furnace based on this plasma torch has been 
developed in our lab. A crucible filled with fly ash was vitrified by 
atmospheric thermal plasma jet. The crucible had a capacity of 30-60 
g of fly ash, which could be completely vitrified within about 15 min. 
using this plasma melting furnace, prior study on treating MWI fly ash 
has shown satisfactory results [11].

Fly ash

Three representative fly ash samples were used in this investigation, 
named FA1, FA2 and FA3, respectively. Both FA1 and FA2 were collected 
from fabric filters in air pollution cleaning devices installed in MSWI, 
but the former was obtained from a grate type incinerator, then the latter 
was from a circulated fluidized bed incinerator. FA3 was sampled from 
a medium-scale MWI with handling capacity of 10 tons/d, equipped 
with a simplified stoker furnace. These three incinerators are all located 
in Zhejiang province in Southeast China.

The elemental composition of samples tested by X-ray Energy 
Disperse Spectroscopy (EDS) (GENENIS 4000, EDAX Inc. USA) is 
shown in Table 1. The elementary composition of these three samples 
was very similar, and their primary elements were carbon, oxygen, 
silicon, chlorine and calcium. Nevertheless, the loss of ignition (LOI) 
was far different, and LOI of FA3 was as high as 18.2%, which was much 
higher than that of FA1 and FA2. That was to say the proportion of 
organic components in MWI ash was much higher, compared with 
MSWI ash, which went against melting process.

The heavy metal in ash samples was extracted using mingled acid 
solution then tested by Atomic Absorption Spectrophotometer (AAS) 
(SOLAAR 969, Thermo Inc., America). The concentrations are also 
listed in Table 1. As can be seen, the amount of Zn and Pb in all samples 
far exceeded that of Cd, Cr, Cu and Ni, and Zn was especially so.

Results and Discussion
Metal leaching test

Fly ash and molten slag: The leaching capability of heavy metals 
was evaluated by the toxicity characteristic leaching procedure method 
(TCLP, USEPA method 1311). Acetic acid solution (pH 2.88 ± 0.05) was 
used as the leaching liquid.

The liquid-to-solid ratio was 20:1 and agitation time was 18 hr with 
rotary tumbler at (30 ± 2) r/min. After extraction, the leachates were 
examined by AAS (Table 2). The results show that the heavy metals’ 
leaching characteristics of FA1 were very similar to FA3, but as for FA2, 
the leachability was quite different. For example, the concentration of 
Zn in FA2 was near to 5 mg/L far exceeding that of FA1 and FA3, and 
the leaching content of 0.3033 mg/L of Cd was beyond threshold value 
of Cd according to the Environmental Protection Administration of 
China.

After melting treatment, TCLP was also adapted to examine the 

Element FA1 FA2 FA3

C 8.69 25.35 13.54
O 30.80 33.15 23.90
Na 2.26 1.29 1.75
Mg 2.61 1.23 3.01
Al 3.59 8.83 4.28
Si 7.50 13.87 6.17
P 1.12 0.73 0.63
S 3.58 0.99 1.51
Cl 11.96 1.26 17.23
K 2.79 1.44 1.50

Ca 22.95 7.89 21.66
Fe 2.15 3.24 0.56
LOI 7.17 10.3 18.2

heavy metals concentration (mg/kg)
Pb 2943.5 (713.7)* 1964.2 (70.1) 1237.4 (214.1)
Cd 142.2 (15.0) 68.4 (14.8) 74.7 (13.3)
Cr 74.3 (21.4) 93.7 (7.7) 117.3 (34.3)
Zn 9743.8 (1511.4) 7512.5 (221.6) 8053.4 (780.2)
Cu 465.2 (43.2) 542.7 (75.9) 227.7 (21.1)
Ni 74.9 (34.9) 69.2 (33.7) 55.9 (31.2)

LOI - loss of ignition
*Values in parentheses are standard deviation of means of triplicate

Table 1: Elemental composition of fly ashes (wt%).
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1 6 2 3 4 5
Figure 1: Schematic diagram of experimental set-up
1-Cathode, 2-Anode I, 3-Linked Part, 4-Insulated Ring, 5-Anode II, 6-Gas 
Entrance, 7-Cooling Water.

Pb Cd Cr Zn Cu Ni

FA1 0.3254 (0.070)* 0.1323 (0.0254) 0.2464 (0.0735) 0.1422 (0.0077) 0.0483 (0.0028) 0.2293 (0.0585)
FA2 0.2868 (0.1005) 0.3033 (0.0291) 0.4725 (0.2133) 4.7465 (1.230) 0.2859 (0.1407) 0.2851 (0.0753)
FA3 0.3106 (0.0786) 0.1361 (0.0195) 0.2491 (0.0128) 0.0758 (0.0034) 0.1109 (0.0136) 0.1973 (0.0141)
S1 0.0243 (0.0151) 0.0865 (0.0044) BDL 5.9382 (0.011) 1.533 (0.026) 0.0504 (0.0236)
S2 BDL BDL BDL 0.0843 (0.0098) 0.2972 (0.0221) 0.308 (0.0258)
S3 0.4946 (0.1657) 0.0559 (0.0397) 0.1067 (0.0622) 0.0537 (0.0238) 0.0544 (0.0236) 0.0763 (0.0388)

China limit 3 0.3 10 50 50 10

BDL-below detection limit
*Values in parentheses are standard deviation of means of triplicate

Table 2: The leaching concentrations of heavy metals in fly ashes and vitrified slags (mg/L).
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metals’ leaching abilities in the produced slags, named S1, S2 and S3, 
respectively. And the concentrations are listed in Table 2. It is indicated 
that the slags show well effect on retaining heavy metals. Particularly, 
we can find that resistance to dissolution was most effective for Cr, Cd 
and Pb which were highly toxic. Compared with FA2, the extracted 
amounts of S2 swiftly decreased, especially for Cd, Pb, Cr and Zn. As 
for S1 and S3, the amounts of several heavy metals were even higher 
than those in raw ashes, such as Pb, Zn and Cu. The reason was that the 
high content of Chlorine in FA1 and FA3 impeded the stabilization of 
heavy metals [25-27] and the high value of basicity of FA1 and FA3 led 
to poor efficiency of vitrification [28]. It should be noted here, the total 
elemental mass balances were not considered in this study for some 
volatile metals such as Cd and Pb may evaporate to the atmosphere 
during molten stage. Therefore, when using thermal melting technology 
to treat fly ash, a secondary air pollution control system should be 
designed to catch volatile metals [29].

Additive for melting: The experiments on improving the melting 
performance of FA1 and FA3 were conducted by adding SiO2 (analytic 
grade) (Western-Union Chem-Industrial Corp., Shanghai) into the raw 
fly ashes at the proportion of 10 wt. % and 20 wt. %, respectively. Liquid 
ceramic (LC, composed of SiO2 and Al2O3) (Beijing Dingxin Aihua 
Science-Technologies Corp.) was also introduced into FA3 by 2.5 wt. 
%, as another additive for comparison. Then these samples were placed 
into the plasma melting furnace for vitrification and the vitreous slags, 

named SlagFA1 and SlagFA3, respectively, were analyzed to evaluate 
their physical and chemical properties.

The leaching content of heavy metals is showed in Figure 2. As can 
be seen, for both SlagFA1 and SlagFA3, the leaching amounts decreased 
significantly when SiO2 was used as additive to raw fly ashes. For 
SlagFA1 (Figure 2a), the leaching level of Cu and Zn was noticeably 
reduced. The amount of Cu dramatically decreased from 1.53 mg/L to 
0.09 mg/L (10 wt% SiO2) and 0.11 mg/L (20 wt% SiO2). And the amount 
of Zn remarkably decreased from 5.9 mg/L to 1.26 mg/L (10 wt% SiO2) 
and 0.47 mg/L (20 wt% SiO2), respectively. For SlagFA3 (Figure 2b), the 
molten slags of blended ashes exhibited much better effect on retaining 
heavy metals than that of fly ash alone. The immobilizing of Cd, Cr, 
Pb and Ni was significantly improved, except for Cu and Zn. For Cu, 
no noteworthy trend of the leaching concentrations could be observed 
with a variety of SiO2 values, and for Zn, the leaching value decreased 
as the portion of SiO2 increased. While 2.5 wt% of LC was introduced 
into FA3, the produced molten slag showed extraordinary effect on 
immobilization of heavy metals. Similar results were reported by other 
researchers [30,31]. In general, chemical stability is consistent with the 
progressive formation of a more compact and interconnected glass 
network structure with the addition of the glass formers. Therefore, 
addition of SiO2 and LC strengthened the chemical stability of the glass-
like slags.

XRD of fly ash and slag

The X-ray diffraction (XRD) investigations were carried out with 
a Rigaku Model D/max-rA diffractometer using Cu Kα radiation, 
operated at 40kV and 100mA in the 2θ range from 5° to 80°. Crystalline 
phases were identified by comparing intensities and positions of Bragg 
peaks with those listed in the Joint Committee on Powder Diffraction 
Standards data files. 
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Figure 3: XRD results of raw fly ashes.
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Figure 3 shows the XRD results of the raw ash samples. As can be 
seen, the main phases were quartz (SiO2), hematite (Fe2O3) and calcium 
salt (CaSO4 and CaCO3) in FA2. This crystal characterization had 
disadvantage over fastening metals but was conductive to vitrification. 
As for FA1 and FA3, their crystalline phases were much complex 
including halite (NaCl), sylvine (KCl) and rondorfite (Cl-bearing) and 
this kind mineral phase led to poor effect of melting raw materials [32].

The crystal phases of molten slags are exhibited in Figure 4. The 
XRD pattern of each slag was completely different from that of raw ash. 
Compared with S1 and S3, both S2 and SlagFA3 show no noticeable 
crystalline peaks and confirm the amorphous glass structure which 
contributed to holding heavy metals in the silicate glass framework [33].

SEM of slag

The produced vitrified slags were ground to powder then their 
microstructure characterizations were investigated using Scanning 
Electron Microscopy (SEM). The SEM micrographs are shown in 
Figure 5. These SEM images indicate that these three fly ashes can be 
transformed into extremely compact and uniform vitreo us slags under 
appropriate vitrification, thus making them more inert to chemical 
etching and higher mechanical strength for reclamation.

Volume reduction

Archimedes method was utilized to measure the density of raw 
ashes and molten slags. After thermal melting treatment, the densities 
of samples significantly increased from 0.62-0.84 g/cm3 (fly ashes) to 
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Figure 4: XRD results of molten slags.
(a)S1; (b) S2; (c) SlagFA3 (FA3+10 wt% SiO2); (d) S3.

a a

b b

c c

Acc,V    Spot Magn     Det   WD                               100 µm
5.00 kV 3.0   500x       SE    7.0   Zhejiang University

Acc,V    Spot Magn     Det   WD                               1 µm
5.00 kV 3.0   50000x   SE    7.2   Zhejiang University

Acc,V    Spot Magn     Det   WD                               1 µm
5.00 kV 3.0   50000x   SE    7.2   Zhejiang University

Acc,V    Spot Magn      Det   WD                               100 µm
5.00 kV 3.0   500x       SE    7.4   Zhejiang University

Acc,V    Spot Magn      Det   WD                               100 µm
5.00 kV 3.0   500x       SE    7.2   Zhejiang University

Acc,V    Spot Magn     Det   WD                               1 µm
5.00 kV 3.0   50000x   SE    7.3   Zhejiang University

Figure 5: SEM of molten slags obtained from various fly ashes (a) S1; (b) S2; 
(c) SlagFA3 (FA3+10 wt% SiO2).

1.89-3.11 g/cm3 (slags). Thus the reduction of volume reached 60-73%.

Conclusions
A lab-scale DC thermal plasma melting system was used to dispose 

the hazardous fly ashes. After the melting process, the crystalline phases 
and microstructures of raw fly ashes were changed drastically, and the 
produced slags exhibited a glass-like monolithic morphology and 
interconnected compact microstructure, the reduction of bulk volume 
was in range of 60-73%. Compared with the raw ashes, the molten slags 
manifest well leaching-resistance of heavy metals, especially for Cd, Pb 
and Cr. The high chlorine content and low basicity in raw ash hampered 
solidification of heavy metals. Nevertheless, additive of SiO2 and LC 
conduced to the formation of silicate glassy for immobilization of heavy 
metals and enhanced vitrification treatment significantly.

In conclusion, the thermal plasma torch is an alternative and 
promising technology for vitrification of hazardous fly ash.
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