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Introduction 
In recent years, communications via open networks such as 

satellites and internet occur more and more frequently. In most 
communication society, the transmitted messages are not to the public 
destination and must be protected against the pirate’s access. In digital 
communications, only periodic pulse are used as carrier wave to 
modulate signals before their transmission [1], which remain a very 
promising practical application since the modulated signal by periodic 
pulse will propagate over very long distance without a significant 
attenuation, but remains nevertheless unsatisfactory since these 
information can easily be accessible.

Recent works on chaotic communication have revealed that 
information secured by chaos can be transferred from one place to 
another with higher security [2,3]. Since the chaotic signal is non-
periodic, it cannot be stored in the receiver as a reference in order to 
achieve coherent detection of the transmitted signal [4]. This is why 
the interest in chaotic oscillators [5-7] and their possible applications 
in secure communication remain increasing. The use of fully digital 
chaos communication, necessary for the confidentiality of information 
requires a chaotic pulse train, which is not easy to generate [1]. 
The chaotic pulse train means the inter-spike interval has a broad 
distribution and is uncorrelated. Chaotic pulses have been already 
found in the literature [1,8] but the circuits are not simple and the 
pulse generation need a given chaotic time series and a pulse converter, 
using for a deep amplitude modulation of stationary chaotic signal at 
the output of chaotic source and which require permanent operation 
of chaotic oscillator. Chaotic radio-pulses are used as an information 
carrier in wideband and ultra-wideband communication systems 
[9,10].

More recently [11], the autonomous chaotic oscillator, consisting 
of the Deliyannis single amplifier biquad [11,12] and a LC resonant 
circuit coupled by means of a diode has been considered. In this chaotic 
oscillator, the negative resistance has been introduced in order to 
preserve the oscillations and has been implemented by using a negative 
impedance converter. It has been proved that this oscillator is described 

by a set of four differential equations, which exhibits a chaotic-like 
behavior, according to the resistance of the negative resistor.

In this paper, we reconsider the chaotic oscillator previously 
introduced in [11], in which some particular modifications have been 
carried out in order to introduce new effects on its dynamics, and we 
study the effects due to operational amplifiers on the dynamics of the 
system. To this end, the paper is organized as follows: In Section 2 we 
present the circuit under consideration, derive the equation of state 
and study the fixed point stability. In section 2, Numerical simulations 
will be carried out first, based on the derived state equations, in order 
to study the dynamic bifurcation and the pulse train generation. Next 
Pspice simulations are used to check numerical investigations and 
to justify the ability of the system to generate chaotic pulse train-like 
signal. Finally concluding remarks are devoted to section 3.

Circuit Description and State Equation
Circuit description

In this section, we describe the physical structure of the autonomous 
chaotic oscillator as depicted in Figure 1. This oscillator consists of 
two different stages operational amplifiers connected by means of 
a nonlinear diode. The first stage contains the linear inductor L, the 
linear capacitor, the resistors R0, R1 and R2 in the positive feedback, and 
also the resistors R0 and R3 in the negative feedback. In this stage, the 
operational amplifier associate to both two identical resistors, R0 and 
R3 act as negative resistance (if the voltages at the positive and negative 
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coupled by mean of diode employed as the nonlinear device, recently introduced by Giannakopoulos and Deliyannis is 
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where id is the current in the diode, which is related to the diode 
voltage as 
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where IS is the saturation current of the junction, Vt is the 
thermal voltage [13]. This thermal voltage is proportiona l to absolute 
temperature and takes the value 26 mV at room temperature, that is at 
293 K, while η, with 1< η <2 is the ideality factor of the diode. The input 
voltages vi1 and vi2, are related to v1 and v2 by the following equations:
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while dvi1/dv2 is the derivative of vi2 in term of v3 When the 
operational amplifiers are supposed to be ideal, that is when vi1 = vi2 = 
0, the set of Eq.(2) reduces to the following set of differential equations:
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In order to modify the above set of differential equations in the 
dimensionless form in a way convenient for analytical and numerical 
analysis, we introduce the following change of variables:
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which lead the set of Eq. (2) to the following set of four ordinary 
differential equations governing signal voltage in the system
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terminals are supposed to be identical) and can reduce to a negative 
resistance which –R3 is introduced to preserve oscillations. The second 
stage contains both the linear capacitors c2 and c3, the resistors R4 and R7 
in the positive feedback, and also the resistors R5 and R6 in the negative 
feedback. We notice that in [11], the resistors R1 and R2 had been not 
introduced and the effects due to operational amplifiers were neglected. 
In present work and in order to approximate our studies to the results 
which can be obtained with physical realistic operational amplifiers 
with the best accuracy, we suppose that the voltage difference between 
the positive and negative terminals V in = V+ - V- operational amplifiers 
are nonzero, that is the operational amplifiers are supposed to be non 
ideal. As proved in Figure 1a, the transfer voltage function characteristic 
of the operational amplifier in the open loop configuration, from input 
to output is nonlinear and is expressed as

β
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cc
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V
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Where β is the voltage gain of operational amplifiers and the supply 
voltage used.

Equation of state

Denoting by iLthe current flowing through the inductor L, v1 the 
voltage across the capacitor c1, v2 and v3 he voltages at the left and 
the right of the capacitor c1, respectively, and applying Kirchhoff’s 
laws to the circuit of Figure 1, we obtain the following set of ordinary 
differential equations governing the dynamics of the system:
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Figure 1: (a) Schematic diagram of the chaotic pulse oscillator. (b) Pspice 
transfer voltage characteristic, vout vs vin = (v+ -v-) of the operational amplifier 
in open loop configuration, showing its tan h model.
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where by the dots we mean the derivative with respect to τ and 
where the following parameters are introduced
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For simplifying our investigations, the following values of 
parameters have been kept constant as follows:

L = 188.8 mH, R1 = 2 kΩ, R2 = 20 Ω, R0 = 5.6 kΩ, R4 = 200 kΩ, R5 
= 4 kΩ 

R6 = 100.1 kΩ, R7 = 12.99 kΩ, c1 = 62 nF, c2 = 60 nF, c3 = 70 nF    (11)

The nonlinear diode used is the D1N4148 model with the 
characteristics IS = 2.682 × 10-9 A and η = 1.9 leading to the following 
parameters values:
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while σ (that is, R3 since σ = 1745.039051/R3) and β are the tuning 
parameter 

Fixed point analysis

It is easy to show that system [7] has one equilibrium point. 
E0 (0,0,0,0) Physically, a steady state solution corresponds to an 
equilibrium state of the system and the behavior of the system may 
depend on its stability. To test this stability, let us consider the state 
E = E0 + δ E vector, where δ E is the perturbation of the equilibrium 
solution E0 (0,0,0,0). The stability of this equilibrium state against the 
perturbation δ E depends on the properties of the eigenvalues of the 
Jacobian matrix J(E0), which can be easily computed as follows:

( )

( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( )

10

0 0 1 0 0

0

0 0 0 0

1 1 1 2
2 1

1 1 1
2 1 2

1 1 0
1 1 / 1

1 0 0
1 1

1 1 1 1 1
0

1 1 1 1

1 1 1 1
0

1 1

σ β
γ γ

β σ

ε γ ε β ε γ ε β βε ε
ε

ε β β ε β ε

ε γ ε β ε γ ε β
ε ε

ε β β ε

  + − 
− + + −  

+ + + +  
 
 −

+ + 
 

 + + + + + + − +   + − − − + +  
 + + + + +
 − +
 + − − − 

aa
a b a a b

b
a b a b

b
b

b
b

 (13)

This Jacobean matrix evaluated at the equilibrium point E0 satisfies 
the following characteristic equation:
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Figure 2: (a1) Parameters Γ1 and Γ2, and (a2) Representation in the complex 
plane of the eighteen values of the Jacobian matrix solutions of Eq. (14). The 
parameters of the system are listed in (12) (b1) β = 1500 and the parameter 
σ is used as the control parameter of the system. (b2) σ = 0.88 and β chosen 
as the control parameter.
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A set of necessary and sufficient conditions for all the roots of (14) 
to have negative real parts is given by the well-known Routh-Hurwitz 
criterion expressed in the form:
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The plot of parameters Γ1 and Γ2 are shown in Figure 2 for certain 
choice of the system parameters, from where it appears that when β 
= 1500 and σ chosen as a control parameter as shown in Figure 2a 
in one hand, the corresponding equilibrium set E0 is unstable for σ 
> σ0 = 0.121, which implies that the orbit of system [7] starting from 
the equilibrium set is unstable and asymptotically tend to limit cycle 
or attractor or infinite. Otherwise for σ <σ0 the equilibrium set E0 is 
attractive, implying that regular oscillations may appear, but the system 
will not be chaotic. In the other hand when σ = 0.88 and β chosen as 
a control parameter as shown in Figure 2b, the equilibrium point E0 is 
always unstable, provided that Γ1 and Γ2 are negatives. 

Figure 3: Bifurcation diagram obtained for σ = 0.88and the parameters given 
in Eq. 12, while is β chosen as a control parameter.
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Figure 4: (a) Time waveform of variable x1 (t), (b) Phase space plot x2 against 
x1. The parameters of the system are taken as in Figure 2, but with σ = 0.88 
and β = 1500.
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Results of Numerical and Pspice Simulations
Numerical investigations

In order to investigate the dependency of the dynamics of the 
system to the choice of the operational amplifier, system [7-9] is 
integrated numerically using the classical fourth-order Runge-Kutta 
integration scheme, with the integration time step Δτ = 0.002 and 
the computations are performed out using variables and constants 
parameters in extended mode given in [12]. For σ = 0.88, system [7-9] 
is integrated for a sufficiently long time to discard the transient, leading 
to the bifurcation diagram plotted as a function of the amplifier gain 
to prove the sensitivity of the system to the choice of the operational 
amplifier. This bifurcation diagram is obtained by plotting the local 
maxima of state variables in terms of the bifurcation control parameter 
β. As illustrated in Figure 3, when β <140, there is no oscillation in the 
system. Otherwise the dynamics of the system varies for increasing value 
of β and rise to periodic 1 limit cycle for β >875. To confirm the ability 
of the system to generate regular and chaotic pulse-like signals, sample 
time traces with the corresponding phase portraits are computed for 
some discrete values of the control parameters σ and β. The chaotic 
pulse train is obtained for β = 1500 and σ = 0.98 as depicted in Figure 4, 
while in Figure 5, only regular pulses are obtained. In Figure 6 it shows 
two aspects of the behavior of the system, the transient regular pulses, 
and the incoherent pulse train obtained after the transient.

Pspice simulations and bifurcation of phase portrait

Based on the theoretical analysis presented above, realistic Pspice 
simulations of the system shown in Figure 1 are simulated, in order to 
validate the mathematical model proposed in this work, and to evaluate 
the effects of ideal diode model and operational amplifiers on the 
dynamics of the system. For this end, the parameters used for the circuit 
simulation are chosen as indicated in Eq. (11), with varying values of 
R3, first in order to confirm the sensitivity of the system with respect to 
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Figure 6: (a) Transient pulse like signal x1(t), (b) Phase space plot x2 against 
x1. The parameters of the system are taken as in Figure 2, but with σ = 0.88 
and β = 1500.

 

 
Figure 7: Results of the Pspice simulations, obtained for the LM759CP model 
of operational amplifier, and for the values of parameters given in Eq (11). (a1) 
Time dependent signal voltage v1(t), (a2) Phase space plot. (a) is obtained for 
R3 = 5 kΩ, while (b1) is obtained for R3 = 10 kΩ. As one can see, the system 
exhibits the periodic modulated pulse signals.
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parameter as σ outlined in Section 2. Secondly for two different choices 
of the operational amplifiers, that is to show that the dynamics of the 
system is also sensitive to the nature of operational amplifiers. And the 
obtained results are given as follows:

When the LM759CP model of the operational amplifier is used, 
as shown in Figure 7, and for different choice of R3, it appears that the 
dynamics of the system is not more rich and the system exhibits only 
regular periodic pulse-like behavior, but R3 must be chosen in intervals 
4.68 kΩ ≤ R3 ≤ 15.6 kΩ and, 19.5 kΩ ≤ R3 ≤ 50 kΩ agreeing with results 
of numerical simulations. That is the ability of the system to generate 
regular pulses signals.

When the LM675 model of operational amplifier is used, as 
depicted in Figures 8-11, the dynamics of the system is more complex 
and the system exhibits a regular pulse like behavior (Figure 8), chaotic 
pulse like behavior (Figures 9 and 10) and transient chaotic pulse like 
behavior (Figure 11).

Concluding Remarks
In this paper, we have presented an autonomous chaotic pulse 

oscillator, using two stages operational amplifier coupled by mean 
of diode employed as the nonlinear device element, as well as a new 
mathematical model for a better description of its nonlinear dynamics. 
Using the bifurcation diagram, the dynamics of the system has been 
characterized with respect to the transfer voltage gain of operational 
amplifiers. It was found that this system exhibits regular pulse and Figure 8: Results of the Pspice simulations, obtained for R3 = 5 kΩ and for the 

LM675 model of operational amplifier. The values of the others parameters 
are given in Eq.(11). (b1): Time dependent signal voltage v1(t), (b2): Phase 
space plot. The phase portrait is the homoclinic orbit, that is the orbit which 
begins on one fixed point and end on the same fixed point, corresponding to 
pulse train-like signals.

 

Figure 9: Results of the Pspice simulations, obtained for R3 = 7 kΩ and for the 
LM675 model of operational amplifier. The values of the others parameters are 
given in Eq(11). (a2): Time dependent signal voltage v1(t) (a2): Phase space 
plot. Showing the chaotic pulse signals generated by the system, provided that 
the behaviour of the system is sensitive to the choice of operational amplifier.

Figure 10: Results of the Pspice simulations, obtained for R3 = 10 kΩ and 
for the LM675 model of operational amplifier. The values of the others 
parameters are given in Eq(11). (b1) Time dependent signal voltage v1(t), (a2) 
Phase space plot showing the chaotic behavior of the system.
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chaotic pulse oscillations for certain range of the control parameters 
that are the negative resistance and the transfer voltage gain. Justifying 
then the dependency of the dynamics of the system on the nature of 
operational amplifiers. These obvious results were agreed by Pspice 
investigations, which confirm the dependency of oscillations on 
the nature of operational amplifiers and which for certain classes of 
operational amplifiers show new behavior, like transient chaotic 

pulse, not predicted by our analytical investigations, but which can be 
attributed to the layout of the components of operational amplifiers, 
which are not considered analytically. In future work, we will 
furthermore explore the influence of the layout of operational amplifier 
components, establish the sufficient conditions for the occurring of 
pulse and chaotic pulse signal, and try to find the exact pulse solution 
of the obtained dynamical equations.
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